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Abstract. Transfer functions for the fields in a %mirror nested cavity are obtained. 
Explicit formulae for their poles and zeros are found. These results are used for simple 
analysis of the response of power recycling and signal recycling interferometers. 

INTRODUCTION 

Fabry-Perot cavities are an essential part of the optical topology of emerging 
interferometric gravitational wave detectors. It is well-known that the sensitivity 
of these detectors can be improved if one or two external cavities are formed by 
adding more mirrors to the interferometer. The result is equivalent to having a 
cavity inside a cavity or a nested cavity. Optical topologies with equivalent nested 
cavities are power recycling [I], signal recycling [2] and resonant sideband extraction 
[3]. In the first generation of the interferometric gravitational wave detectors the 
only equivalent nested cavity appears in the dynamics of the common mode of the 
arm-cavity motion and the laser frequency. The next generation of detectors may 
have two or more nested cavities. In this paper we obtain the transfer functions 
for fields in an arbitrary nested cavity and describe how to calculate the most 
important parameter of these transfer functions: the lowest order pole. 

FABRY-PEROT CAVITY 

We begin with a reminder of how the transfer function of a single Fabry-Perot 
cavity can be obtained. Let the length of the Fabry-Perot cavity be L and the 
delay time T (T = Llc) .  If the amplitude of the incident field is Ei,(t) then the 
amplitude of the field in the cavity, E(t), is defined by the self-consistent equation 

E (t) = t4Ei,(t) + r,rbE(t - 2T), (1) 

where T ~ J ,  is the reflectivity and t4,b is the transmissivity of the cavity mirrors. 
Figure 1 shows how the self-consistent field is formed. 
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FIGURE 1. Self-consistent field in the Fabry-Perot cavity. 

1 
By applying the Laplace transformation to both sides of equation (1) we obtain 

the relation between the fields in s-domain: 

E(S) = ~ , E ~ ~ ( S )  + T ~ T ~ E ( s ) ~ - " ~ ,  (2) 

where tilde stands for the Laplace transform. Therefore, the cavity acts as a linear 
operator and its transfer function is 

This transfer function has an infinite set of poles: 

. ll- ln(raTb) 
Z, = zo + 2-n, where zo = ------ 

T 2T ' 

Here zo is the lowest order pole and n is an integer. 

NESTED CAVITY 

A nested cavity can be formed by adding a mirror to the existing Fabry-Perot 
cavity, as shown in Figure 2. Then there will be two fields and their amplitudes, E 
and El, satisfy the self-consistent equations: 

E(t) = taE1(t - TI) + ~ ~ r b E ( t  - 2T), (5) 
E' (t) = tcEin(t) - qr ,~~E ' ( t  - 2T1) + q t , ~ ~ ~ , E ( t  - T1 - 2T), (6) 

where 11 = ed2'+ and q5 is the detuning phase of the outer cavity. Let us apply the 
Laplace transformation to these equations. The result can be written as a matrix 
equation for complex 2-vectors: 



FIGURE 2. Self-consistent fields in a %mirror nested cavity with partial length L and L1. 

c a b I 

where M is the matrix function of s: 

By inverting the matrix we obtain the two transfer functions: 

These transfer functions share the same poles, which are defined by 

In addition, the transfer function G ~ ( s )  has zeros, which are defined by Mll = 0. 
Note that the zeros are s = zn, where z,, are given by the equation (4). In other 
words, the zeros of the outer cavity appear at the frequencies where the poles of 
the inner caGty were before the nested cavity was formed. This is a general result. 

The equation for the poles (eq. ( l l )) ,  cannot be solved analytically, unless some 
approximations are made. In the low frequency approximation we replace the 
exponents by linear functions and obtain the solution for the lowest order pole: 

1 + T a r e  - TaTb - q(t: + T:)T~T~ 
So M 

2[qrarCT1 - T ~ T ~ T  - q(t: + T:)T~T~(TI + T)] ' 

This approximation is valid as long as lsolT << .rr, that is the frequency of the pole 
must be much less than the free spectral range of the longer cavity. 

Another formula for the lowest order pole can be obtained if one of the cavities 
is much shorter than the other. Assume that T' << T then we can neglect TI in 
equation (11) and obtain the solution - 



, 
which is valid as long as IsolT' << n, that is the frequency of the pole must be much 
less than the free spectral range of the shorter cavity. 

At low frequencies the transfer functions can be approximated up to a constant 
by a low-pass and a lead-lag filter respectively: 

The formulae above can be used for a simple analysis of optical response of 
gravitational wave detectors. First consider a power recycling interferometer, for 
example, the 4km LIGO interferometer. Its equivalent nested cavity appears in 
the dynamics of the common mode of the arm motion. The target bandwidth of 
the detector sets the lowest order pole of the arm cavity: Izol/2n = 90 Hz. This 
condition defines the transmission of the input mirror (ti = 0.03) provided the 
transmission of the end mirror is fixed (tf = 20 ppm.) The condition for optimal 
coupling of the laser power to the interferometer defines the transmission of the 
recycling mirror (t: z 0.024). The result of the recycling is that the circulating 
power reaches 16 kW for an input power of only 6 W. Fkom either equation (12) 
or (13) with 71 = 1 we find that the lowest order pole for the common mode is 
Isol/2.rr = 1.1 Hz. Thus the transfer function of the power recycling cavity has a 
pole at 1.1 Hz and a zero at 90 Hz. 

Now consider an interferometer with LIGO parameters, which has a signal recy- 
cling mirror instead of a power recycling mirror. Then an equivalent nested cavity 
appears in the dynamics of the differential mode of the arm motion. Such an inter- 
ferometer can be analyzed as follows. The optimal coupling of the laser power to 
the arm cavities defines the transmission of the input mirror t i  = 120 ppm under 
the assumption that the losses are 50 ppm per mirror. This sets the arm cavity pole 
1z01/27r = 0.7 HZ, and also results in a high circulating power (25 kW for the same 
6 W of input power). The reflectivity of the signal recycling mirror will define the 
detection bandwidth according to the equation (12) or (13) with q = -1. These 

. equations show that in order to obtain the same 90 Hz-bandwidth the signal re- 
cycling mirror must have transmission t; = 0.011. Note that the transfer function 
of the signal recycling cavity will have a pole a t  90 Hz and a zero at 0.7 Hz. This 
means that in general the response of the cavity will be poor at low frequencies, 
and, therefore, it will be hard to control the signal recycling mirror. These two 
examples show how the formulae for the lowest order pole of a nested cavity can . 
be used in a simple analysis of the interferometer response. 
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