LASER INTERFEROMETER GRAVITATIONAL WAVE **OBSERVATORY**

-LIGO-

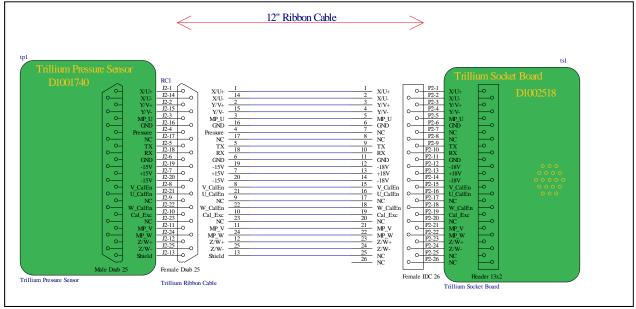
CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type	DCC Number	Date		
Test Procedure and Results	LIGO-T1100503-v3	30 May, 2013		
Trillium In-Pod Cable Test Procedure				
Ben Abbott				

Distribution of this draft: NSF reviewers, LIGO scientists This is an internal working note of the LIGO Laboratory

California Institute of Technology LIGO Project – MS 18-33 Pasadena, CA 91125

Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu **Massachusetts Institute of Technology** LIGO Project - MS 20B-145 Cambridge, MA 01239 Phone (617) 253-4824


> Fax (617) 253-7014 E-mail: info@ligo.mit.edu

www: http://www.ligo.caltech.edu/

Performed by:	
Date:	_
Cable Serial Number:	

1. Overview

The Trillium-240 Seismometer Interface Cable connects the Trillium seismometer to the vacuum pod feedthrough. It also provides pressure readings of the in-pod pressure to the outside world. It is made up of a Trillium Socket Board D1002518-v4, a Trillium Pressure Board D1001740-v1, and a connecting ribbon cable. See drawing 1. below.

Drawing 1

2. Test Equipment

- **2.1** Power Supply capable of +/- 18 volts
- 2.2 Trillium Interface Chassis D1002694
- **2.3** DMM

3. Preliminaries

- **3.1** Perform visual inspection on boards and cable to check for missing components or solder deficiencies
- **3.2** Before connecting the power to the Trillium chassis, set power supplies to +/- 18 Volts, and then turn them off. Connect the power supplies to the chassis at the back panel 3-pin power connector.

LIGO-T1100503-v3

4. Continuity Tests

Using the table below, make sure that the pin on the MIL connector pins (P1) is connected to the pins on the DB25 (J1) on the Pressure Board. A DMM Set to Diode Check is sufficient for these readings. For pins G-19&20, the black lead should be in the DB25 connector, and a short beep should be heard. For pins H-7, the red lead should be in the DB25 connector, and another short beep should be heard. For all the rest of the pins, polarization does not matter, and a long, continuous beep should be heard.

MIL (P1)	DB25 (J1)
A	15
A B C D	14
С	18
D	5 3
Е	3
E F	11
G G	19
G	20 7
Н	7
J	8
K	21
L	12 25 2 1
M	25
N	2
P	1
R	6
S	24
T	10
S T U V	22
V	16
Connections	
All Good?	
(Y/N)	

5. Connect the cable to the front of the Trillium Interface Chassis (D1002694). Turn on the power supplies to the chassis, and read the pressure voltage between pins 7(+) and 15(-) on the "To AA Chassis connector, J1. The nominal pressure voltage is 14.6V +/- 0.5V, depending on atmospheric pressure.

Pressure Voltage_	
C	
Pass? (Y/N)	