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figure 6d of Górski et al. (2005)

5. SPHERICAL HARMONIC TRANSFORMS

The requirement of an isolatitude distribution for all pixel
centers was built into HEALPix in order for the grid to support
fast discrete spherical harmonic transforms. The reason for the
fast computational time of the harmonic transform (scaling as
!N

3=2
pix ) is entirely geometrical—the associated Legendre func-

tion components of spherical harmonics, which can only be
generated via slow recursions, have to be evaluated only once
for each pixel ring. For other grids that are not constrained to be
isolatitude, extra computing time is wasted on the nonoptimal
generation of the associated Legendre functions, which typi-
cally results in a computational performance of order !N 2

pix.
This geometrical aspect of the discrete spherical transform com-
putation is illustrated in Figure 6, which compares HEALPix
with other tessellations including the QuadCube, icosahedral
tessellation of the sphere, and the ECP or ‘‘geographic grid.’’
This plot makes it visually clear why the isolatitude ECP and
HEALPix point sets support faster computation of spherical har-
monic transforms than the QuadCube, the icosahedral grid, and
any nonisolatitude construction.

Figure 7 demonstrates the fundamental difference between
computing speeds, which can be achieved on isolatitude and
nonisolatitude point sets. In order to be able to perform the
necessary computational work in support of multimillion pixel
spherical data sets one has to resort to isolatitude structures of
point sets/sky maps, e.g., HEALPix. Moreover, future require-
ments are already fairly clear—the measurement of the CMB
polarization will require huge multielement arrays of detectors,
and will produce data sets characterized by a great multiplicity
(of the order of a few thousand) of sky maps. Since there are no

computationally faster methods than those already employed in
HEALPix, and global synthesis/analysis of a multimillion pixel
map consumes about 103 s of CPU time for a standard serial ma-
chine, the necessary speed-up will have to be achieved via op-
timized parallelization of the required computations.

A detailed description of the implementation and perfor-
mance of spherical harmonic transforms in the HEALPix soft-
ware package will be given in a separate publication.

6. SUMMARY

The Hierarchical Equal Area isoLatitude Pixelization,
HEALPix, is a methodology for the discretization and fast nu-
merical analysis and synthesis of functions or data distributed on
the sphere. HEALPix is an intermediate data-structural, algo-
rithmic, and functional layer between astronomical data, and the
domain of application of a variety of science extraction tools.
HEALPix as a skymap format and associated set of analysis and
visualization tools has already been extensively adopted as an
interface between Information Technology and Space (and sub-
orbital) Science. This is manifested by applications of HEALPix
in the following projects: CMB experiments such as the bal-
loon-borne BOOMERANG (de Bernardis et al. 2000; Ruhl et al.
2003) and Archeops (Benoit et al. 2003a, 2003b), the satellite
mission WMAP (Bennett et al. 2003), the forthcoming satel-
lite mission Planck, the Sloan Digital Sky Survey, and others.
Figure 8 demonstrates a selection of illustrations of some of
the better known applications of HEALPix to date.

Fig. 7.—Illustration of the fundamental difference between the computing
speeds that can be achieved on isolatitude and nonisolatitude point sets. In
order to be able to perform the necessary computational work in support of mul-
timillion pixel spherical data sets one has to resort to isolatitude structures of
point sets/sky maps, e.g., HEALPix. Moreover, future requirements are already
fairly well established—measurements of the CMBpolarizationwill require huge
multielement arrays of detectors and will produce data sets characterized by a
great multiplicity (!1000) of sky maps. Since there are no computationally
faster methods than those already employed in HEALPix and global synthesis/
analysis of a multimillion pixel map consumes about 103 s of CPU time on a
standard serial machine, the necessary speed-up will need to be achieved via
optimized parallelization of the software.

Fig. 6.—Comparison of HEALPix with other tessellations, including the
QuadCube, icosahedral tessellation of the sphere, and ECP or ‘‘geographic
grid.’’ The shaded areas illustrate the subsets of all pixels on the sky for which
the associated Legendre functions have to be computed in order to perform the
spherical harmonic transforms. This plot demonstrates why the isolatitude ECP
and HEALPix point sets support faster computation of spherical harmonic
transforms than the QuadCube, the icosahedral grid, and any nonisolatitude
construction.
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Multiple telescope case

F or multiple telescopes, the figure of merit is the probability of imaging
the source with at least one telescope:

p⩾1 ≡ p(em1 ∪ em2 ∪ · · · ∪ emN |γ1, γ2, . . . , γN ,gw)

= 1−
∫ [

1− b1

(
γ−1
1 ω

)
v1(ω)

] [
1− b2

(
γ−1
2 ω

)
v2(ω)

]
· · ·

[
1− bN

(
γ−1
N ω

)
vN (ω)

]
s(ω) dΩ. (2)

The integral expression above can be evaluated iteratively one telescope at
a time, suggesting a greedy algorithm depicted in the flow chart at right.
Themost sophisticated planning algorithm that we tried used simulated an-
nealing to simultaneously vary thepointingsof all of the telescopes. Weused
the Pythonmodule scipy.optimize.anneal and amodified version of the
“very fast” cooling schedule described by Ingber (1989).

Case study
We compared the detection efficiency of the noncoordinated planner and
our two coordinated planners using a set of 2126 GW skymaps from low-
mass inspiral signals injected into 24 hours of simulated initial LIGO noise.

We computed the environmental masks vi(ω) using the Python edition
ofNOVAS, the US Naval Observatory’s positional astronomy library.

Surprisingly, we found that (a) greedy performed almost as well as an-
neal in terms of detection efficiency, and (b) both coordinated planners had
roughly double the detection efficiency of the noncoordinated planner.

P lanning optical followup of gravitational wave (GW) events is a chal-
lenging optimization problem. GW sky maps are multimodal and dis-

persed over 4π. A telescope’s field of view (FOV) may have gaps between
CCDs, dead CCDs, or vignetted or clipped regions. Any of these complica-
tions make it difficult to decide on the “best” place to point a telescope.

We realized that if we phrased the single telescope problem as a cross-
correlation of the telescope’s FOV and the GW sky map, we could attack
it with HEALPix — the workhorse of CMB maps — and spherical harmonic
analysis.

Our summer student (A. Speranza) implemented the fast convolution
ofWandelt&Górski (2001) andused it to compute theprobability of imaging
an EM counterpart. As we expected, the harmonic analysis algorithm was
much faster than the spatial algorithm.

What surprised us was that coordinating all of the observations bymax-
imizing the probability of imaging the source conditioned on all of the tele-
scopes’ pointings doubled the number of detectable sources as compared to
deciding each telescope’s configuration in isolation.

Our key results are the two figures below. At left
is the fraction of injected signals that wewould have imagedwith one point-
ing of each telescope at the time of the trigger as a function of luminosity
distance. Solid lines represent observing plans that account for interference
from the Sun and Earth. Dashed lines represent observing plans in which
these considerations are neglected.

We tested three different planning algorithms:

noncooperative Each telescope is independently pointedwhere it ismost
likely to observe an EM counterpart.

greedy sorted Suppose that we have chosen pointings for telescopes 1, 2,
. . . , i. The pointing of telescope i + 1 is chosen to maximize the probability
of detection, subject to telescopes 1, 2, . . . , i, remaining fixed.

anneal Uses simulated annealing to the probability of imaging the source
by varying the configurations of all of the telescopes simultaneously.

Single telescope case

T he posterior distribution of source locationω given all GWobservations
gw is commonly called the GW sky map, denoted p(ω|gw).
Let emi denote the event of observing an optical transient with tele-

scope i. Let γi represent the pointing of telescope i. The probability of ob-
serving an EM counterpart in telescope i given its pointing γi is

p(emi|γi, ω) ≡ bi(γ
−1
i ω) vi(ω).

Here, the function bi(γ
−1
i ω) describes the telescope’s (rotated) FOV and vi

describes environmental features such as the twilight/nighttime termina-
tor, the horizon, and optionally the seeing. Now, marginalizing over the un-
known source location, this becomes

p(emi|γi,gw) ≡
∫

bi(γ
−1
i ω) v(ω) s(ω) dΩ. (1)

The optimal pointing is

γ∗i ≡ arg max
γi

p(emi|γi,gw).

Numerical implementation
Equation (1) resembles a cross-correlation integral. For scalar
functions, the convolution theorem and the fast Fourier trans-
form(FFT)makecross-correlation in the frequencydomainvery
efficient. Driscoll & Healy (1994), Wandelt & Górski (2001), and
others havedescribedanalogous fast convolution algorithms for
functions defined on the unit sphere. We used HEALPix to write

two convolution algorithms:

spatial uses nearest neighbor interpolation of the rotated kernel to ap-
proximate the integral in spherical polar coordinates.

multipole involves a spherical harmonic transformof both themasked sky
map vi(ω)s(ω) and the FOV bi(ω), a weighted inner product of the spherical
harmonic coefficients, and a 2D inverse FFT to return to polar coordinates.

We checked convergence and run time of both algorithms. At a reso-
lution of ≈ 0.05 deg2, spatial takes ≈1000 s while multipole takes ≈25 s
of CPU time. Both versions are OpenMP accelelerated to exploit multiple
cores. On the LIGO-Caltech cluster head node, themultipole algorithm has
achieved run times as short as 5 s, though further speedup is possible.
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Conclusion

W e have demonstrated that coordinating observations amongst mul-
tiple telescopes is apromising strategy forEMfollowupofGWevents.

We have developed an observation planning code that is fast enough to be
used for extensive simulation campaigns and flexible enough to accommo-
date any network of telescopes. Our code aims to be scalable enough to
produce observing plans in near real-time on amulti-core machine.

Thisproject lays thegroundwork for futuremulti-messenger studies that
will account for a mix of telescopes with different limiting magnitudes, slew
times, in addition to fields of view.
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