

# LIGO Laboratory / LIGO Scientific Collaboration

| LIGO- E1100296            | LIGO                                          | October 20th, 2012 |
|---------------------------|-----------------------------------------------|--------------------|
| aLIGO BSC-ISI, F<br>Phase | Pre-integration<br>I (post-asseml             | n Testing report,  |
|                           | E1100296 – V1                                 |                    |
|                           | Vincent Lhuillier                             |                    |
| Distri<br>Ad              | bution of this documen<br>vanced LIGO Project | ıt:                |

This is an internal working note of the LIGO Laboratory

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory P.O. Box 1970 Mail Stop S9-02 Richland WA 99352 Phone 509-372-8106 Fax 509-372-8137 Massachusetts Institute of Technology LIGO Project – NW22-295 185 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

LIGO Livingston Observatory P.O. Box 940 Livingston, LA 70754 Phone 225-686-3100 Fax 225-686-7189



# Table of contents:

| Intr | oduction                                                                      | 4  |
|------|-------------------------------------------------------------------------------|----|
| I.   | Pre-Assembly Testing                                                          | 5  |
| •    | Step 1 - CPS Test and calibration – E1100369                                  | 5  |
| -    | Step 2 - GS13 – Inspection/Assembly – E1000058 – E1100740                     | 5  |
| •    | Step 3 - L4C – Inspection/Assembly – E1000136 – E1100740                      | 5  |
| •    | Step 4 - T240 – Inspection/Assembly - E1100326 – E1100740                     | 6  |
| •    | Step 5 - Actuators - T0900564 - T1100234 – E1100741                           | 6  |
| II.  | Tests to be performed during assembly                                         | 7  |
| •    | Step 1 - Test stand level                                                     | 7  |
| •    | Step 2 - Actuators Inventory                                                  | 7  |
| •    | Step 3 - Sensors Inventory                                                    | 7  |
| •    | Step 4 - Electronics Inventory                                                | 9  |
| •    | Step 5 - Check level of Stage 0 after top-bottom plate assembly               | 9  |
| •    | Step 6 - Check gaps under the blade posts                                     | 9  |
| •    | Step 7 - Blade post shim thickness                                            | 10 |
| •    | Step 8 - Blade 0-1 post launch angle                                          | 10 |
| •    | Step 9 - Gap checks on actuators                                              | 10 |
| •    | Step 10 - Mass budget                                                         | 11 |
| •    | Step 11 - Lockers adjustment                                                  | 12 |
| •    | Step 12 – Cables inventory – E1100822                                         | 13 |
| •    | Step 13 - Cable routing                                                       | 14 |
| III. | Tests to perform after assembly                                               | 14 |
| •    | Step 1- Geophones pressure readout                                            | 14 |
| •    | Step 2- Set up sensors gap – Locked vs unlocked position                      | 15 |
| •    | Step 3 - Measure the Sensor gap                                               | 16 |
| S    | Step 4- Performance of the limiters                                           | 16 |
| С    | Step 4.1 - Test N°1 - Push "in the general coordinates Z/RZ"                  | 16 |
| С    | Step 4.2 - Test N°2 – Push "locally"                                          | 16 |
|      | Step 5 - Sensors Powespectra                                                  | 17 |
| •    | Step 6 - Coil Driver, cabling and resistance check                            | 20 |
| •    | Step 7- Actuators Sign and range of motion (Local drive)                      | 21 |
| С    | Step 7.1 - Actuators sign                                                     | 21 |
| С    | Step 7.2 - Range of motion - Local drive                                      | 21 |
|      | Step 8 - Vertical Sensor Calibration                                          | 22 |
|      | Step 9 - Vertical Spring Constant                                             | 22 |
|      | Step 10 - Static Testing (Tests in the local basis)                           | 23 |
|      | Step 11- Static Testing - In the general coordinate basis (Static test - CPS) | 24 |
| С    | Step 11.1 – Change of basis matrices from Cartesian to Local                  | 24 |
| С    | Step 11.2 – Base change matrices from Cartesian to Cartesian                  | 25 |
| =    | Step 12 - Linearity test                                                      | 26 |
|      | Step 13 – Transfer functions – Local to Local                                 | 28 |
|      | Step 14 - Symmetrization – Calibration                                        | 35 |
|      | Step 15 – Change of base – Cartesian to Cartesian - Simulations               | 35 |
|      | Step 16- Transfer functions - Cartesian to Cartesian - Measurements           | 38 |
|      | Step 17 - Lower Zero Moment Plan                                              | 38 |

# LIGO

# TEST REPORT – LVEA – ISI-BSC2 – UNIT 3

| 0   | Step 17.1 - Stage 1 - LZMP                               | . 38 |
|-----|----------------------------------------------------------|------|
| 0   | Step 17.2 - Stage 2 - LZMP                               | . 38 |
| ■   | 1 0                                                      | . 38 |
| •   | Step 18- Damping Loops – Transfer function – Simulations | . 39 |
| 0   | Step 18.1 - Damping Loops – Stage 2                      | . 39 |
| 0   | Step 18.2 - Damping Loops – Stage 1                      | . 39 |
| •   | Step 19- Damping Loops – Powerspectra                    | . 39 |
|     | Step 20- Isolation Loops – for one unit per site         | . 39 |
| IV. | BSC-ISI testing Summary                                  | . 40 |



# Introduction

The BSC-ISI testing is performed in three phases:

1) BSC-ISI, Pre-integration Testing, Phase I (post-assembly)

2) BSC-ISI, Pre-integration Testing, Phase II: Tests done after Transport (and possible storage), during mating phase with Suspensions, before insertion.

3) BSC-ISI, Integration Phase Testing: Procedure and results related to the commissioning in the chamber.

This document presents the series of tests (Phase I) performed on the ISI-BSC2 in the LVEA.

The testing procedure document E1000486-v5 was used.

All results are posted on the SVN at: *https://svn.ligo.caltech.edu/svn/seismic/BSC-ISI/H2/Data/BSC2/* 

The following type of document can be found in the SVN:

- Excel spreadsheet (.xls)
- Data location
- Figures location
- Masses distribution scheme (ppt)



# I. Pre-Assembly Testing

## • Step 1 - CPS Test and calibration – E1100369

CPS sensors are tested (calibration and noise test) at MIT before being cleaned and baked at LLO. The list of installed sensors used for testing (phase I) are reported in step II.3.

All data related to the CPS testing can be found in the SVN at /svn/seismic/Common/Data/aLIGO\_BSC\_ISI\_CPS/

**Test result:** 

 Passed:
 X
 Failed:
 Waived :

## Step 2 - GS13 – Inspection/Assembly – E1000058 – E1100740

GS13 are tested and podded at LLO. We had to replace one GS-13 on this Unit due to a bad feed thru, the cable screw wouldn't go all the way, leaving the cable the possibility to wobble. The feed thru is going to be inspected and tested again.

The list of installed sensors used for testing (phase I) are reported in step II.3.

All the data related to GS-13 post podding testing can be found in the SVN at : /svn/seismic/Common/Data/aLIGO\_GS13\_TestData/PostMod\_TestResults\_PDFs

E1000058 and E1100740 spreadsheets provide the status of each individual GS-13 at LLO site for HAM-ISI and BSC-ISI and the installation location of the geophones.

**Test result:** 

 Passed: X
 Failed: Waived : \_\_\_\_

# Step 3 - L4C – Inspection/Assembly – E1000136 – E1100740

L4C are tested and podded at LLO. The list of installed sensors used for testing (phase I) are reported in step II.3.

All the data related to L4C post podding testing can be found in the SVN at : /svn/seismic/Common/Data/aLIGO\_L4C\_TestData/TestResults\_PDFs/

Test result:

 Passed: X
 Failed: Waived : \_\_\_\_



## Step 4 - T240 – Inspection/Assembly - E1100326 – E1100740

T240 are tested and podded at LLO. We haven't had to replace the T240s on this Unit, and these are the ones with the new Voltage Regulator, it seems that they are working fine and keep the pressure sensor from dying. The list of installed sensors used for testing (phase I) are reported in step II.3.

All the data related to T240 post podding testing can be found in the SVN at : seismic/Common/Data/aLIGO\_T240\_TestData/AsReceived\_TestResults\_PDFs.

E1100326 and E1100740 spreadsheets provide the status of each individual T240 at LLO site for BSC-ISI and the installation location of the geophones.

**Test result:** 

Passed: X Failed: Waived : \_\_\_\_

## Step 5 - Actuators - T0900564 - T1100234 - E1100741

The list of installed sensors used for testing (phase I) are reported in step II.2 Large actuators data can be found at: T0900564. Actuator inventory is made at Section II – Step 2. Small actuators data can be found at: T1100234. Actuator inventory is made at Section II – Step 2.

**Test result:** 

 Passed: X
 Failed: Waived : \_\_\_\_



# II. Tests to be performed during assembly

# • Step 1 - Test stand level

The Test Stand was transformed and re-leveled to dock a BSC-ISI.

**Test result:** 

Passed: X Failed: Waived : \_\_\_\_

Step 2 - Actuators Inventory

The actuators S/N are reported in the table below. Further information can be found in T0900564 and T1100234.

| Stage 1  |              | Stage 2  |              |
|----------|--------------|----------|--------------|
| Actuator | Actuator S/N | Actuator | Actuator S/N |
| ST1 - H1 | L120         | ST2 - H1 | S039         |
| ST1 - H2 | L119         | ST2 - H2 | S040         |
| ST1 - H3 | L106         | ST2 - H3 | S050         |
| ST1 - V1 | L103         | ST2 - V1 | S043         |
| ST1 - V2 | L104         | ST2 - V2 | S047         |
| ST1 - V3 | L101         | ST2 - V3 | S049         |

Table 1 - Actuators' inventory

**Test result:** 

Passed: X

Failed: \_\_\_\_

Waived : \_\_\_\_

# Step 3 - Sensors Inventory

The sensors S/N are reported in the table below.

| CPS Stage 1 | CPS S/N | ADE board<br>serial # |
|-------------|---------|-----------------------|
| H1          | 12429   | 13201                 |
| H2          | 12533   | 13419                 |
| H3          | 12828   | 13454                 |
| V1          | 13084   | 13183                 |
| V2          | 13081   | 13528                 |
| V3          | 12580   | 12953                 |

 Table 2 - Capacitive position sensors' inventory – Stage 1



#### **TEST REPORT – LVEA – ISI-BSC2 – UNIT 3**

| CPS Stage 2 | CPS S/N | ADE board<br>serial # |
|-------------|---------|-----------------------|
| H1          | 12520   | 13230                 |
| H2          | 12541   | 13418                 |
| H3          | 12448   | 13450                 |
| V1          | 12569   | 13238                 |
| V2          | 12577   | 13439                 |
| V3          | 12561   | 13452                 |
|             |         | <i>a</i> . •          |

Table 3 - Capacitive position sensors' inventory – Stage 2

| Geophones<br>GS13 | Serial Number | POD |
|-------------------|---------------|-----|
| H1                | 852           | 54  |
| H2                | 834           | 70  |
| H3                | 540           | 50  |
| V1                | 770           | 64  |
| V2                | 725           | 55  |
| V3                | 762           | 12  |

Table 4 - GS13 inventory

| Geophones L4C | Serial Number | POD |
|---------------|---------------|-----|
| H1            | 1092          | 92  |
| H2            | 811           | 36  |
| H3            | 804           | 53  |
| V1            | 918           | 115 |
| V2            | 1093          | 18  |
| V3            | 809           | 43  |

 Table 5 - L4C inventory

| Geophones | Serial Number | POD |
|-----------|---------------|-----|
| 1240      | Ochar Number  | 100 |
| 1         | 117           | 15  |
| 2         | 121           | 501 |
| 3         | 123           | 3   |

Table 6 - T240 inventory

**Test result:** 

Passed: X Failed:



# • Step 4 - Electronics Inventory

Write down in the table below all serial numbers all the electronic equipment:

| Hardware                | Ligo<br>reference | S/N      |
|-------------------------|-------------------|----------|
| Interface Chassis Pod 1 | D1002432          | S1102228 |
| Interface Chassis Pod 2 | D1002433          | S1102230 |
| Interface Chassis Pod 3 | D1002434          | S1102229 |
| Anti-alliasing Chassis  | D1002693          | S1103404 |
| Anti-alliasing Chassis  | D1002693          | S1103405 |
| Anti-image Chassis      | D1002693          | S1103402 |
| Pinany Input Chassis    | D1001726          | S1101284 |
| Binary input chassis    | D1001726          | S1101280 |
| Binary Output Chassis   | D1001728          | S1101319 |
| T240 Interface Pod 1    | D1002694          | S1103177 |
| T240 Interface Pod 2    | D1002694          | S1103181 |
| T240 Interface Pod 3    | D1002694          | S1103180 |
| Anti-image Chassis      | D1000305          | S1103502 |
| Coil driver Pod 1       | D0902744          | S1103564 |
| Coil driver Pod 2       | D0902744          | S1103563 |
| Coil driver Pod 3       | D0902744          | S1103356 |

 Table 7 - Electronic equipment

Note: The electronic rack used to test BSC2 (unit #3) is the BSC8 electronic rack.

**Test result:** 

 Passed: X
 Failed: Waived : \_\_\_\_

# • Step 5 - Check level of Stage 0 after top-bottom plate assembly

Note: This test has not been performed

Test result:

It: Passed: \_\_\_\_\_ Failed: \_\_\_\_ Waived : \_X\_\_\_

• Step 6 - Check gaps under the blade posts

| Test result: | Passed: X | Failed: | Waived : |
|--------------|-----------|---------|----------|
|              |           |         |          |



# Step 7 - Blade post shim thickness

This table shows the shims thickness installed under the lockers.

| Stage 0-1 |                      | Stage 1-2           |                      |
|-----------|----------------------|---------------------|----------------------|
| Lockers   | Shim thickness (mil) | Lockers             | Shim thickness (mil) |
| Corner 1  | 121                  | Corner 1            | 121                  |
| Corner 2  | 114                  | Corner 2            | 133                  |
| Corner 3  | 117                  | <b>Corner 3</b> 125 |                      |
|           |                      |                     |                      |

Table 8 - Shims thickness

Acceptance criteria: Both D0901805 Stage 0-1 Locker Shims & D0902551 Stage 1-2 Locker Shims goes from .110" up to .130" with an increment of .001".

| Test result:              | Passed: X              | Failed: | Waived :   |
|---------------------------|------------------------|---------|------------|
| Step 8 - Blade            | 0-1 post launch angle  |         |            |
| This test has not been pe | rformed on LLO Unit 2. |         |            |
| Test result:              | Passed:                | Failed: | Waived : X |
| Step 9 - Gap cl           | hecks on actuators     |         |            |
| Test result:              | Passed: X              | Failed: | Waived :   |



## Step 10 - Mass budget

Note: The initial version (V1) of the blade spacers was used. Consequently, the additional payload is expected to be lower than design due to the "relative overall softness" of the ISI.

The figure below presents the location of the masses on both stages. Two vibration absorbers were installed in corner 1 and 2 vibration absorbers were installed in corner 3. Masses on stage 2 are resting on Viton pads.



Figure 1: Masses distribution

#### Stage 1:

The stage 1 payload is reported in the table below:

| Stage 1  |             |             |  |  |
|----------|-------------|-------------|--|--|
| Location | Weight (lb) | Weight (Kg) |  |  |
| C1-1     |             | 0.0         |  |  |
| C1-2     | 30          | 13.6        |  |  |
| C2-1     |             | 0.0         |  |  |
| C2-2     | 7.5         | 3.4         |  |  |
| C3-1     |             | 0.0         |  |  |
| C3-2     | 30          | 13.6        |  |  |
| Total    | 67.5        | 30.6        |  |  |

 Table 9 - Payload Stage 1

Nominal payload on stage 1: 109Kg – 240lb Additional payload on stage 1 is 70.9 kg (172lb) less than expected. Nominal mass of stage 1=916Kg - 2019lb



#### Stage 2:

| Mass Type        | Quantity | Weight | Unit | Weight (lb) |
|------------------|----------|--------|------|-------------|
| D972213          | 3        | 610    | lb   | 1830        |
| D0972215         | 1        | 233    | lb   | 233         |
| D071200 - type 1 | 3        | 1.1    | lb   | 3.3         |
| D071200 - type 2 | 6        | 2.2    | lb   | 13.2        |
| D071200 - type 3 | 8        | 4.5    | lb   | 36          |
| D071200 - type 4 | 9        | 7.9    | lb   | 71.1        |
| D071200 - type 5 | 0        | 15.6   | lb   | 0           |
| D071200 - type 6 | 6        | 27.2   | lb   | 163.2       |
|                  |          |        |      | 2349.8      |

The stage 2 payload is reported in the table below:

Table 10 - Payload Stage 2

Nominal payload: 1183.4Kg – 2609lb Total nominal mass of Stage 2: 2913.9Kg – 6424lb Additional stage 2 payload is 260lb lighter than the design.

# Stage 2 additional payload 10% lighter than nominal => Stage 2 is 9% lighter than nominal. Payload on stage 0-1 blades is 432lb lighter than design (5%).

**Test failure Mitigation:** The blade stiffness is lower than design but in good agreements with the mass budget (see section III.7.2). The rigid body mode frequencies should be close from nominal.

**Test result:** 

Passed: \_\_\_\_ Failed: \_X\_\_

Waived : \_\_\_\_

Step 11 - Lockers adjustment

**Test result:** 

Passed: X

Failed: \_\_\_\_

Waived : \_\_\_\_



# *Step 12 – Cables inventory – E1100822*

The final Class A cables have been used for the testing of this Unit.

| DCC Number | Description                                             | Length<br>(in)              | Serial Number          | Location              |
|------------|---------------------------------------------------------|-----------------------------|------------------------|-----------------------|
| D1100148   | 2-wire, 14awg 3-pin M to 3-pin F                        | 80                          | S1106933               | ST1 - V2 - ext        |
| D1100148   | 2-wire, 14awg 3-pin M to 3-pin F                        | 80                          | S1106935               | ST1 - V3 - ext        |
| D1100148   | 2-wire, 14awg 3-pin M to 3-pin F                        | 80                          | S1106937               | ST1 - H3 - ext        |
| D1100148   | 2-wire, 14awg 3-pin M to 3-pin F                        | 80                          | S1106941               | ST1 - H2 - ext        |
| D1100148   | 2-wire, 14awg 3-pin M to 3-pin F                        | 80                          | S1106943               | ST2 - H2 - ext        |
| D1100150   | 2-wire, 14awg 2 pins to 3-pin F                         | 40                          | S1107086               | ST1 - V2              |
| D1100150   | 2-wire, 14awg 2 pins to 3-pin F                         | 40                          | S1107092               | ST1 - H1              |
| D1100150   | 2-wire, 14awg 2 pins to 3-pin F                         | 40                          | S1107094               | ST1 - H2              |
| D1100150   | 2-wire, 14awg 2 pins to 3-pin F                         | 40                          | S1107097               | ST1 - V3              |
| D1100150   | 2-wire, 14awg 2 pins to 3-pin F                         | 40                          | S1107109               | ST1 - V1              |
| D1100150   | 2-wire, 14awg 2 pins to 3-pin F                         | 40                          | S1107113               | ST1 - H3              |
| D1100151   | 2-wire, 14awg 2 pins to 3-pin F                         | 60                          | S1107161               | ST2 - V1              |
| D1100151   | 2-wire, 14awg 2 pins to 3-pin F                         | 60                          | S1107168               | ST2 - V3              |
| D1100151   | 2-wire, 14awg 2 pins to 3-pin F                         | 60                          | S1107175               | ST2 - V2              |
| D1100151   | 2-wire, 14awg 2 pins to 3-pin F                         | 60                          | S1107179               | ST2- H1               |
| D1100151   | 2-wire, 14awg 2 pins to 3-pin F                         | 60                          | S1107181               | ST2 - H3              |
| D1100151   | 2-wire, 14awg 2 pins to 3-pin F                         | 60                          | S1107196               | ST2 - H2              |
| D1100152   | 25-pin F-to-25-pin F                                    | 110                         | S1107242               | ST1 - T240 - C1       |
| D1100152   | 25-pin F-to-25-pin F                                    | 110                         | S1107250               | ST1 - T240 - C3       |
| D1100152   | 25-pin F-to-25-pin F                                    | 110                         | S1107262               | ST1 - T240 - C2       |
| D1100153   | 25-pin F-to-25-pin F                                    | 80                          | S1107300               | ST1 - L4C - C1 - ext  |
| D1100153   | 25-pin F-to-25-pin F                                    | 80                          | S1107301               | ST1 - L4C - C2 - ext  |
| D1100153   | 25-pin F-to-25-pin F                                    |                             | S1107302               | ST1 - L4C - C3 - ext  |
| D1100153   | 25-pin F-to-25-pin F                                    | in F-to-25-pin F 80 S110730 |                        | ST2 - GS13 - C3 - ext |
| D1100153   | 25-pin F-to-25-pin F                                    | 80                          | S1107304               | ST2 - GS13 - C1 - ext |
| D1100153   | 25-pin F-to-25-pin F                                    | 80                          | S1107306               | ST2 - GS13 - C2 - ext |
| D1100148   | 2-wire, 14awg 3-pin M to 3-pin F                        | 80                          | S1107019               | ST2 - V2 - ext        |
| D1100148   | 2-wire, 14awg 3-pin M to 3-pin F                        | 80                          | S1107011               | ST2- V1 - ext         |
| D1100148   | 2-wire, 14awg 3-pin M to 3-pin F                        | 80                          | S1107003               | ST2 - H3 - ext        |
| D1100148   | 2-wire, 14awg 3-pin M to 3-pin F                        | 80                          | S1106991               | ST2 - H1 - ext        |
| D1100148   | 2-wire, 14awg 3-pin M to 3-pin F                        | 80                          | S1106988               | ST1 - V1 - ext        |
| D1100148   | 2-wire, 14awg 3-pin M to 3-pin F                        | 80                          | S1106987               | ST2 - V3 - ext        |
| D1100148   | 2-wire, 14awg 3-pin M to 3-pin F                        | 80                          | S1107010               | ST1 - H1 - ext        |
| D1100154   | 25-pin M-to-two 9-pin F straight                        | 48                          | S1107375               | ST1 - L4C - C2        |
| D1100154   | 154 25-pin M-to-two 9-pin F straight 48 S1107339        |                             | S1107339               | ST1 - L4C - C1        |
| D1100154   | 25-pin M-to-two 9-pin F straight                        | 48                          | S1107377 ST1 - L4C - C |                       |
| D1100155   | <b>55</b> 25-pin M-to-two 9-pin F straight 120 S1107417 |                             | S1107417               | ST2 - GS13 - C2       |
| D1100155   | 25-pin M-to-two 9-pin F straight                        | 120                         | S1107401               | ST2 - GS13 - C3       |
| D1100155   | 25-pin M-to-two 9-pin F straight                        | 120                         | S1107396               | ST2 - GS13 - C1       |





Test result:

| Passed: | Χ | Failed: | Waived: |
|---------|---|---------|---------|
|         |   |         |         |

# • Step 13 - Cable routing

The final Class A cables have been used for the testing of this Unit. The cabling has been done following <u>E1101027 aLIGO BSC-ISI Cable Routing Manual</u>.

**Test result:** 

Passed: X Failed:

Waived : \_\_\_\_

# **III.** Tests to perform after assembly

# • Step 1- Geophones pressure readout

Calibrated pressure measured by the geophones is reported in the table below:

|            | Pressure (counts)          |        |        |  |  |  |
|------------|----------------------------|--------|--------|--|--|--|
| Sensors    | Corner 1 Corner 2 Corner 3 |        |        |  |  |  |
| ST1-L4C-P  | 102.58                     | 102.50 | 102.59 |  |  |  |
| ST1-L4C-D  | 0.11                       | 0.08   | -0.34  |  |  |  |
| ST1-GS13-P | 102.77                     | 102.42 | 102.45 |  |  |  |
| ST1-GS13-D | 0.40                       | 0.23   | -0.60  |  |  |  |
| ST1-T240-P | 101.86                     | 99.80  | 100.41 |  |  |  |

**Test result:** 

Passed: X

Failed: \_\_\_\_

Waived : \_\_\_\_



## Step 2- Set up sensors gap – Locked vs unlocked position

During this step, sensors gap are adjusted. This step considers that the lockers have been finely setup during assembly.

|          | Table         | Table locked Table unlocked Diff |               | Table unlocked |               | d - unlocked |
|----------|---------------|----------------------------------|---------------|----------------|---------------|--------------|
| Sensors  | Offset (Mean) | Std deviation                    | Offset (Mean) | Std deviation  | Offset (Mean) | mil          |
| ST1 - H1 | -65.3         | 4.0                              | -380.6        | 24.4           | 315           | 0.38         |
| ST1 - H2 | -447.0        | 4.5                              | -736.2        | 19.2           | 289           | 0.34         |
| ST1 - H3 | -2320.9       | 4.2                              | -1694.1       | 29.6           | -627          | -0.75        |
| ST1 - V1 | 416.8         | 6.6                              | -1302.2       | 30.5           | 1719          | 2.05         |
| ST1 - V2 | 676.9         | 5.2                              | -175.4        | 38.5           | 852           | 1.01         |
| ST1 - V3 | 772.7         | 8.1                              | -731.3        | 45.6           | 1504          | 1.79         |
| ST2 - H1 | 617.7         | 21.3                             | 1026.3        | 40.2           | -409          | -0.12        |
| ST2 - H2 | -355.3        | 20.7                             | -1966.4       | 33.0           | 1611          | 0.48         |
| ST2 - H3 | -509.9        | 18.7                             | -412.9        | 28.5           | -97           | -0.03        |
| ST2 - V1 | 133.0         | 21.5                             | 1424.3        | 80.3           | -1291         | -0.38        |
| ST2 - V2 | 1653.5        | 33.9                             | 226.0         | 93.7           | 1427          | 0.42         |
| ST2 - V3 | -691.1        | 15.1                             | 398.8         | 119.7          | -1090         | -0.32        |

15-Oct-11

 Table 11 - Capacitive position sensors readout after gap set-up

#### Acceptance criteria:

- In the locked position, all mean values must be lower than 400 counts for stage 1 CPS and 1600 counts for stage 2 CPS on Dataviewer (a bit less than .0005").
- In the locked position, all standard deviations below 25 counts for stage 1, 100 counts for stage 2
- Absolute values of the difference between the unlocked and the locked table must be below: **Stage 1** 
  - o 1600 cts for horizontal sensors (~0.002")
  - o 1600 cts for vertical sensors (~0.002")

#### Stage 2

- o 6500 cts for horizontal sensors (~0.002")
- 6500 cts for vertical sensors (~0.002")
- Considering the acceptance criteria of step 2, all mean values must be lower than **Stage 1** 
  - o 2000 cts for horizontal sensors (~0.0025")
  - o 2000 cts for vertical sensors (~0.0025")

#### Stage 2

- o 8000 cts for horizontal sensors (~0.0025")
- 8000 cts for vertical sensors (~0.0025")

#### Note: The CPS will be readjusted once SUS will installed

Test result:

Passed: X

Failed: \_\_\_\_

Waived : \_\_\_\_



#### Step 3 - Measure the Sensor gap

#### **Test Failure mitigation:**

This test was not performed. The sensor gaps have not been measured. These sensors have already been tested at LASTI. Moreover, risks of scratching the target are so high that we preferred not performing this test. In the future, this test will be removed from the testing procedure.

| Fest result: | Passed: | Failed: | Waived : X |
|--------------|---------|---------|------------|
|              |         |         |            |

### Step 4- Performance of the limiters

• Step 4.1 - Test N°1 - Push "in the general coordinates Z/RZ"

Failed:

**Test result:** 

Passed: \_\_\_\_

Waived : X

| Sensors  | Push in positive direction | Push in negative direction | Mil | Mil | Actuator Gap Check |
|----------|----------------------------|----------------------------|-----|-----|--------------------|
| ST1 - H1 | -16000                     | 18500                      | -19 | 22  | Х                  |
| ST1 - H2 | -16500                     | 17500                      | -20 | 21  | Х                  |
| ST1 - H3 | -19000                     | 16800                      | -23 | 20  | Х                  |
| ST1 - V1 | -20000                     | 21000                      | -24 | 25  | Х                  |
| ST1 - V2 | -28400                     | 18600                      | -34 | 22  | Х                  |
| ST1 - V3 | -24700                     | 20700                      | -29 | 25  | Х                  |
| ST2 - H1 | rail                       | rail                       |     |     | Х                  |
| ST2 - H2 | rail                       | rail                       |     |     | Х                  |
| ST2 - H3 | rail                       | rail                       |     |     | Х                  |
| ST2 - V1 | rail                       | rail                       |     |     | Х                  |
| ST2 - V2 | rail                       | rail                       |     |     | Х                  |
| ST2 - V3 | rail                       | rail                       |     |     | Х                  |

• Step 4.2 - Test N°2 – Push "locally"

Table 12 - Stages range of motion – "Push locally"

#### Acceptance criteria:

- The vertical sensor readout must be positive when the optical table is pushed in the +Z direction
- The horizontal sensor readout on Stage 2 must be positive when the optic table is pushed in the +RZ direction
- Step 4.2
  - Absolutes value of all estimated motions must be higher than 15000counts for stage 1 ( $\sim 0.018$ ")
  - $\circ~$  Absolutes value of all estimated motions must be higher than 32000 counts for stage 2 (~0.010")

Test result:

| Passed: X Failed: | Waived : |
|-------------------|----------|
|-------------------|----------|



### Step 5 - Sensors Powespectra

The geophones powerspectra have been measured and can be found in the SVN:

/seismic/BSC-ISI/H2/BSC2/Data/Figures/Spectra/Undamped/

/seismic/BSC-ISI/H2/BSC2/Data/Spectra/Undamped

- LLO\_ISI\_BSC3\_ASD\_m\_LOC\_CPS\_T240\_L4C\_GS13\_2012\_09\_24\_205825.mat
- LLO\_ISI\_BSC3\_ASD\_m\_L4C\_GS13\_Stage\_Tilted\_2012\_10\_01.mat

# Stage locked – unlocked

The powerspectra are measured in two different configurations:

- Stage 1 locked Stage 2 locked
- Stage 1 unlocked Stage 2 unlocked

seismic/BSC-ISI/H2/BSC2/Data/Spectra/Undamped/

- LHO\_ISI\_BSC2\_ASD\_m\_LOC\_CPS\_T240\_L4C\_GS13\_2012\_10\_16\_153749.mat
- LHO\_ISI\_BSC2\_ASD\_m\_LOC\_CPS\_T240\_L4C\_GS13\_2012\_10\_18\_155138.mat

seismic/BSC-ISI/H2/BSC2/Data/Figures/Spectra/Undamped/

- <u>LHO\_ISI\_BSC2\_ASD\_CT\_LOC\_CPS\_T240\_L4C\_GS13\_2012\_10\_16\_153749.fig</u>
- <u>LHO\_ISI\_BSC2\_ASD\_CT\_LOC\_CPS\_T240\_L4C\_GS13\_2012\_10\_18\_155138.fig</u>
- LHO ISI BSC2 ASD m LOC CPS T240 L4C GS13 2012 10 16 153749.fig
- LHO\_ISI\_BSC2\_ASD\_m\_LOC\_CPS\_T240\_L4C\_GS13\_2012\_10\_18\_155138.fig



Figure 2: Spectra Stage 1 Locked Stage 2 Locked





Figure 3: Spectra Stage 1 Unlocked Stage 2 Unlocked

**Note:** All sensors are working properly. However, the noise floor of the stage CPS in corner 2 is pretty high above 10Hz. It is probably a grounding issue. Consequently, the problem will be assessed once the ISI will in the chamber.

# **Stage Tilted**

The powerspectra are measured when the ISI is unlocked a mass is placed on stage 2 to tilt Stage 1 and Stage 2.

The six configurations are the following in six different configurations:

- Mass placed in the actuator pocket at corner 1
- Mass placed in the pocket under the blade 0-1 at corner 1
- Mass placed in the actuator pocket at corner 2
- Mass placed in the pocket under the blade 0-1 at corner 2
- Mass placed in the actuator pocket at corner 3
- Mass placed in the pocket under the blade 0-1 at corner 3

/seismic/BSC-ISI/H2/BSC2/Data/Spectra/Undamped/

- LHO\_ISI\_BSC2\_ASD\_m\_L4C\_GS13\_Stage\_Tilted\_2012\_10\_18.mat

seismic/BSC-ISI/H2/BSC2/Data/Figures/Spectra/Undamped/

- LHO\_ISI\_BSC2\_Tilted\_ASD\_CT\_LOC\_ST1\_L4C\_2012\_10\_18.fig
- LHO\_ISI\_BSC2\_Tilted\_ASD\_CT\_LOC\_ST2\_GS13\_2012\_10\_18.fig
- LHO\_ISI\_BSC2\_Tilted\_ASD\_m\_LOC\_ST1\_L4C\_2012\_10\_18.fig
- LHO\_ISI\_BSC2\_Tilted\_ASD\_m\_LOC\_ST2\_GS13\_2012\_10\_18.fig



TEST REPORT – LVEA – ISI-BSC2 – UNIT 3





# • Step 6 - Coil Driver, cabling and resistance check

Resistances of the couple (actuators + cables) were measured using the voltage and current the coil drivers read back. Resistances of the couple actuator + cables are reported in the table below:

seismic/BSC-ISI/H2/BSC2/Data/Static\_Tests/ LHO ISI BSC2 Actuators Resistance 20121015T161350.mat

|          | Resistance |
|----------|------------|
| Actuator | (Ω)        |
| ST1 H1   | 7.3        |
| ST1 H2   | 7.3        |
| ST1 H3   | 7.4        |
| ST1 V1   | 7.4        |
| ST1 V2   | 7.3        |
| ST1 V3   | 7.3        |
| ST2 H1   | 11.1       |
| ST2 H2   | 10.9       |
| ST2 H3   | 10.8       |
| ST2 V1   | 11.2       |
| ST2 V2   | 11.2       |
| ST2 V3   | 10.9       |

Note : All resistance are within 0.3ohmsand the cable resistance is about 1 ohm. The test is passed.

#### Acceptance criteria:

- For the actuators of stage 1, the measured resistance between the middle pin and one side pin must be  $6.3 \pm 0.5$  ohms
- For the actuators of stage 2, the measured resistance between the middle pin and one side pin must be  $10.3 \pm 0.5$  ohms
- Actuator neutral pins must be connected on pin #1 (left side pin of the plug)
- Actuator drive pins must be connected on pin #2 (middle pin of the plug)
- Actuator ground shield pins must be connected on pin #3 (right pin of the plug)
- All LEDs on the coil driver front panel must be green the binary input bit must be in the upper state.

Test result:

Passed: X Failed: Waived : \_\_\_\_



# Step 7- Actuators Sign and range of motion (Local drive) Step 7.1 - Actuators sign

**Test result:** 

Passed: X

Failed: \_\_\_\_

Waived :

## • Step 7.2 - Range of motion - Local drive

In this step, range of motion of the two stages is checked when applying a local drive (30000 counts) on actuators.

```
seismic/BSC-ISI/H2/BSC2/Data/Static_Tests/
```

- LHO\_ISI\_BSC2\_Range\_Of\_Motion\_20121011.mat

| Sensor readout (counts) | Negative drive | no drive | Positive drive | Amplitude count | mil |
|-------------------------|----------------|----------|----------------|-----------------|-----|
| ST1 - H1                | -16167         | -389     | 15518          | 31684           | 38  |
| ST1 - H2                | -15692         | -734     | 15253          | 30945           | 37  |
| ST1 - H3                | -17844         | -1689    | 13649          | 31492           | 37  |
| ST1 - V1                | -14068         | -1292    | 11449          | 25517           | 30  |
| ST1 - V2                | -13099         | -202     | 12701          | 25800           | 31  |
| ST1 - V3                | -13212         | -369     | 12483          | 25695           | 31  |
| ST2 - H1                | -8375          | 1025     | 10426          | 18801           | 5.6 |
| ST2 - H2                | -10696         | -1723    | 7202           | 17898           | 5.3 |
| ST2 - H3                | -9803          | -428     | 8915           | 18718           | 5.6 |
| ST2 - V1                | -10006         | 1400     | 12807          | 22813           | 6.8 |
| ST2 - V2                | -10874         | 224      | 11291          | 22165           | 6.6 |
| ST2 - V3                | -11120         | 385      | 11854          | 22974           | 6.8 |

Table 13 - Range of motion - Local drive

#### Acceptance criteria:

**Test result:** 

- Amplitude p-p must be at least 30000 counts (0.035") for Stage 1 CPS H
- Amplitude p-p must be at least 25000 counts (0.03") for Stage 1 CPS V
- Amplitude p-p must be at least 18000 counts (0.005") for Stage 2 CPS H
- Amplitude p-p must be at least 22000 counts (0.006") for Stage 2 CPS V
- Signs of actuators drive and sensors read out have to be the same

**Note:** The motion of the platform can be computed. For a 30000 counts drive in the +Z direction, the platform should move by 12.6 mil on Stage 1 and 3.6mil on Stage 2.

#### In the Cartesian basis, the platform should move (calculation) by:

| Stage 1 - Platform move for 32K counts drive: | 12.63 | mil |
|-----------------------------------------------|-------|-----|
| Stage 2 - Platform move for 32K counts drive: | 3.59  | mil |

**Note:** The range of motion in the case of a "local drive" is in agreements with the measurements done on the previous units.

| Passed: | Χ | Failed: | Waived : |
|---------|---|---------|----------|
|         |   |         |          |



### Step 8 - Vertical Sensor Calibration

This test is inaccurate due to the important hysteresis introduced by the dial indicators. Moreover, the sensors calibrations have been checked at LASTI. This test has not been performed on LLO Unit 2.

Test result:

 Passed:
 Failed:
 Waived :
 X

# Step 9 - Vertical Spring Constant

This test is realized by loading the ISI when one stage is locked and using the capacitive position sensors as reference.

The stiffness measurements of the spring are reported in the tables below. The nominal blade stiffness are:

- Stage 1: 12411b/in
- Stage 2: 1465lb/in

# **Blade Stage 0-1**

Stage 2 Locked & Stage 1 Unlocked. Stage 1 is loaded with 3 x 10Kg masses and the measurements are repeated three times (by rotating the masses).

|    | No load | Mean load | Diff 1   |       |
|----|---------|-----------|----------|-------|
| V1 | -1243   | -8894.5   | -7651.5  |       |
| V2 | -187    | -7813     | -7626    |       |
| V3 | -398    | -8193     | -7795    |       |
|    |         |           | -7690.83 | count |
|    |         |           | -9.24    | mil   |
|    |         |           | 1191     | lb/in |
|    |         |           | -4       | %     |
|    |         |           |          |       |

The blades from stage 0 to stage 1 are too soft by 4%.

# **Blade Stage 1-2**

Stage 1 Locked & Stage 2 Unlocked. Stage 2 is loaded with 3 x 5Kg masses and the measurements are repeated three times (by rotating the masses).

|    | Mean No load | Mean Load | Diff      |       |
|----|--------------|-----------|-----------|-------|
| V1 | 1415.5       | -25258.75 | -26674.25 |       |
| V2 | 1455.5       | -24681.75 | -26137.25 |       |
| V3 | 357.5        | -26905.5  | -27263    |       |
|    |              |           | -26692    | count |
|    |              |           | -8.02     | mil   |
|    |              |           | -1361     | lb/in |
|    |              |           | -7        | %     |



In section II.10, it is shown that:

- Payload on stage 0-1 blades is 432 lighter than design (-5%)
- Payload on stage 1-2 blades is 260lb lighter than design (-8%)

In this section we measured the blade stiffness:

- Stage 0-1 blades are softer by 4% than design
- Stage 1-2 blades are softer by 7% than design

**Test mitigation:** Blades are softer than design. The low stiffness measurement is in good agreements with the mass budget. The rigid body modes frequencies should be close from design.

**Test result:** 

Passed: \_\_\_\_

\_\_\_\_\_Failed: <u>X</u>\_\_\_\_\_Wa

Waived : \_\_\_\_

## • Step 10 - Static Testing (Tests in the local basis)

The static tests results are reported in the SVN at : seismic/BSC-ISI/H2/BSC2/Data/Static\_Tests/

LHO\_ISI\_BSC2\_Offset\_Local\_Drive\_20121018.mat

The table below shows the main and the cross-coupling when the actuators are driven in the local basis:

|      |          | Sensors  |          |          |          |          |          |
|------|----------|----------|----------|----------|----------|----------|----------|
|      |          | ST1 - H1 | ST1 - H2 | ST1 - H3 | ST1 - V1 | ST1 - V2 | ST1 - V3 |
|      | ST1 - H1 | 3786     | 1522     | 1522     | -22      | 8        | -6       |
| ş    | ST1 - H2 | 1521     | 3754     | 1515     | -11      | 22       | -9       |
| atoi | ST1 - H3 | 1534     | 1521     | 3781     | -16      | -14      | 23       |
| ctu  | ST1 - V1 | 55       | -128     | 88       | 3012     | -561     | -544     |
| Ă    | ST1 - V2 | 94       | 20       | -145     | -522     | 3013     | -560     |
|      | ST1 - V3 | -151     | 86       | 49       | -545     | -534     | 3000     |

 Table 14 - Static test - Local to local - Stage 1

|     |          |          |          | Sens     | sors     |          |          |
|-----|----------|----------|----------|----------|----------|----------|----------|
|     |          | ST2 - H1 | ST2 - H2 | ST2 - H3 | ST2 - V1 | ST2 - V2 | ST2 - V3 |
|     | ST2 - H1 | 2211     | 320      | 344      | 1        | 8        | 9        |
| ś   | ST2 - H2 | 337      | 2112     | 330      | 1        | 47       | -5       |
| ato | ST2 - H3 | 346      | 324      | 2202     | -25      | 17       | -2       |
| ctu | ST2 - V1 | 88       | 124      | -185     | 2663     | 287      | -36      |
| 4   | ST2 - V2 | -182     | 88       | 117      | -61      | 2615     | 274      |
|     | ST2 - V3 | 119      | -198     | 77       | 286      | -23      | 2702     |

 Table 15 - Static test - Local to local - Stage 2

#### Acceptance criteria:

- Main couplings readout must be positive
- Comparison with the reference tables:
  - Main coupling differences mustn't exceed 200 counts
  - o Cross coupling differences mustn't exceed 50 counts

#### **Test result:**

Passed: X

Failed: \_\_\_\_



# Step 11- Static Testing - In the general coordinate basis (Static test - CPS) Step 11.1 – Change of basis matrices from Cartesian to Local

The static tests results are reported in the SVN at : /seismic/BSC-ISI/H2/BSC2/Data/Static\_Tests/ LHO\_ISI\_BSC2\_Offset\_Cartesian\_Drive\_20121018.mat

|      |          | Sensors  |          |          |          |          |          |
|------|----------|----------|----------|----------|----------|----------|----------|
|      |          | ST1 - H1 | ST1 - H2 | ST1 - H3 | ST1 - V1 | ST1 - V2 | ST1 - V3 |
|      | ST1 - X  | -1503    | 746      | 745      | 14       | -7       | 11       |
| Ś    | ST1 - Y  | 5        | -1294    | 1310     | -1       | -12      | 12       |
| ato  | ST1 - Z  | 0        | -11      | -8       | 637      | 631      | 633      |
| ctri | ST1 - RX | 7        | 113      | -148     | -2489    | 2124     | 370      |
| 4    | ST1 - RY | -166     | 94       | 80       | -991     | -1656    | 2643     |
|      | ST1 - RZ | -2753    | -2754    | -2762    | 14       | -25      | -6       |

|      |          |          | Sensors  |          |          |          |          |  |
|------|----------|----------|----------|----------|----------|----------|----------|--|
|      |          | ST2 - H1 | ST2 - H2 | ST2 - H3 | ST2 - V1 | ST2 - V2 | ST2 - V3 |  |
|      | ST2 - X  | 626      | -1211    | 620      | -24      | -42      | 1        |  |
| ខ    | ST2 - Y  | 1073     | 1        | -1068    | -19      | -36      | 8        |  |
| ato  | ST2 - Z  | 6        | 7        | 3        | 966      | 938      | 986      |  |
| ctri | ST2 - RX | -258     | 14       | 254      | -2295    | 2265     | -54      |  |
| 4    | ST2 - RY | 136      | -291     | 146      | -1373    | -1275    | 2680     |  |
|      | ST2 - RZ | 1642     | 1568     | 1639     | -12      | 11       | -14      |  |

Table 16 - Static test - Local to local - Stage 1 - Stage 2

#### Acceptance criteria:

- Comparison with the reference tables:
  - o Differences mustn't exceed 100 counts

**Test result:** 

Passed: X

Failed: \_\_\_\_

Waived : \_\_\_\_



## • Step 11.2 – Base change matrices from Cartesian to Cartesian

The static tests results are reported in the SVN at : /seismic/BSC-ISI/H2/BSC2/Data/Static\_Tests/ LHO\_ISI\_BSC2\_Offset\_Cartesian\_Drive\_20121018.mat

|      |          | Sensors |         |         |          |          |          |
|------|----------|---------|---------|---------|----------|----------|----------|
|      |          | ST1 - X | ST1 - Y | ST1 - Z | ST1 - RY | ST1 - RY | ST1 - RZ |
|      | ST1 - X  | 1501    | 5       | 5       | -4       | 2        | 5        |
| S    | ST1 - Y  | -3      | 1500    | 2       | -6       | 21       | -8       |
| ator | ST1 - Z  | -4      | 7       | 641     | 5        | -9       | 9        |
| ctu  | ST1 - RX | 27      | 415     | 8       | 2645     | -174     | 9        |
| Ā    | ST1 - RY | -386    | 29      | 2       | 164      | 2641     | -3       |
|      | ST1 - RZ | 4       | -5      | -2      | -21      | -2       | 2870     |

Table 17 - Static test Cartesian drive - Cartesian to local - Stage 1

|      |          | Sensors |         |         |          |          |          |
|------|----------|---------|---------|---------|----------|----------|----------|
|      |          | ST2 - X | ST2 - Y | ST2 - Z | ST2 - RY | ST2 - RY | ST2 - RZ |
|      | ST2 - X  | 1218    | -5      | -4      | 3        | 15       | 28       |
| Ś    | ST2 - Y  | 0       | 1242    | 6       | -17      | 5        | 3        |
| ato  | ST2 - Z  | -4      | 1       | 966     | -19      | 11       | 6        |
| ctri | ST2 - RX | -57     | 263     | -22     | 3459     | 292      | 7        |
| ∢    | ST2 - RY | -263    | -46     | 3       | -282     | 3488     | -7       |
|      | ST2 - RZ | 57      | 16      | -8      | 32       | -17      | 2249     |

 Table 18 - Static test Cartesian drive – Cartesian to local – Stage 2

#### Acceptance criteria:

- Main couplings readout must be positive
- Comparison with the reference tables:
  - Main coupling differences mustn't exceed 200 counts
  - Cross coupling differences mustn't exceed 50 counts

**Test result:** 

Passed: X

Failed: \_\_\_\_

Waived : \_\_\_\_



# Step 12 - Linearity test

The "Linearity test" was performed twice (rearranging the cables). The second time, all corners seemed to respond similarly.

The linearity test data can be found in the SVN at: /seismic/BSC-ISI/H2/BSC2/Data/Linearity Test/

- LHO ISI BSC2 Linearity Test 2012 10 11.mat
- LHO\_ISI\_BSC2\_Linearity\_test\_20121018.mat

The linearity test figures can be found in the SVN at: /seismic/BSC-ISI/H2/BSC2/Data/Figures/Linearity\_Test/

- LHO ISI BSC2 Linearity test 20121011.fig
- LHO\_ISI\_BSC2\_Linearity\_test\_20121018.fig



**Figure 6 - Linearity Test** 



## Slope – Offset:

|          |          | Slope | Offset | Average slope | Variation<br>from<br>average(%) |
|----------|----------|-------|--------|---------------|---------------------------------|
|          | ST1 - H1 | 0.538 | -374   |               | 0.19                            |
|          | ST1 - H2 | 0.535 | -752   | 0.5370        | -0.37                           |
| ge 1     | ST1 - H3 | 0.538 | -1695  |               | 0.19                            |
| Sta      | ST1 - V1 | 0.425 | -1281  |               | -0.62                           |
| -        | ST1 - V2 | 0.430 | -160   | 0.4277        | 0.55                            |
|          | ST1 - V3 | 0.428 | -374   |               | 0.08                            |
|          | ST2 - H1 | 0.313 | 1048   |               | 1.62                            |
|          | ST2 - H2 | 0.298 | -862   | 0.3080        | -3.25                           |
| ge 2     | ST2 - H3 | 0.313 | -366   |               | 1.62                            |
| Sta{     | ST2 - V1 | 0.382 | 1416   |               | 0.61                            |
| <u>у</u> | ST2 - V2 | 0.373 | 1303   | 0.3797        | -1.76                           |
|          | ST2 - V3 | 0.384 | 370    |               | 1.14                            |

Table 19 - Slopes and offset of the triplet Actuators - BSC-ISI - Sensors

|      |          | Slope | Offset | Average slope | Variation from average(%) |
|------|----------|-------|--------|---------------|---------------------------|
|      | ST1 - H1 | 0.539 | -177   |               | 0.44                      |
|      | ST1 - H2 | 0.536 | -856   | 0.5380        | -0.24                     |
| ge 1 | ST1 - H3 | 0.539 | -1667  |               | 0.37                      |
| Sta  | ST1 - V1 | 0.428 | 1225   |               | 0.17                      |
|      | ST1 - V2 | 0.430 | -595   | 0.4289        | 0.56                      |
|      | ST1 - V3 | 0.428 | -2601  |               | 0.11                      |
|      | ST2 - H1 | 0.315 | 1230   |               | 2.25                      |
|      | ST2 - H2 | 0.301 | 942    | 0.3095        | -2.29                     |
| 3e 2 | ST2 - H3 | 0.313 | -1643  |               | 1.51                      |
| Sta§ | ST2 - V1 | 0.382 | 11842  |               | 0.71                      |
|      | ST2 - V2 | 0.373 | 4597   | 0.3797        | -1.65                     |
| ŀ    | ST2 - V3 | 0.383 | -6160  |               | 0.98                      |

Table 20 - Slopes and offset of the triplet Actuators - BSC-ISI – Sensors

## Acceptance criteria:

- Horizontal and vertical slopes of the triplet actuators x BSC-ISI x sensors: Average slope +/- 2.5%

**Test result:** 

```
  Passed: X
  Failed: Waived : _____
```



## • Step 13 – Transfer functions – Local to Local

**Note:** two vibration absorbers were installed in corner 1 and 2 vibration absorbers were installed in corner 3. No TMDs were installed on the stage 0-1 blades.

#### Data files measurement of local to local transfer functions in SVN at:

seismic/BSC-ISI/H2/BSC2/Data/Transfer\_Functions/Measurements/Undamped/

- LHO\_ISI\_BSC2\_Data\_L2L\_10mHz\_100mHz\_ST1\_ST2\_20121016-203156.mat
- LHO\_ISI\_BSC2\_Data\_L2L\_100mHz\_700mHz\_ST1\_ST2\_20121015-233530.mat
- LHO\_ISI\_BSC2\_Data\_L2L\_700mHz\_10Hz\_ST1\_ST2\_20121016-045827.mat
- LHO\_ISI\_BSC2\_Data\_L2L\_10Hz\_100Hz\_ST1\_ST2\_20121015-200821.mat
- LHO\_ISI\_BSC2\_Data\_L2L\_100Hz\_500Hz\_ST1\_ST2\_20121016-184636.mat
- LHO\_ISI\_BSC2\_Data\_L2L\_500Hz\_1000Hz\_ST1\_ST2\_20121016-172146.mat

#### Script file for processing and plotting local to local transfer functions in SVN at:

/seisvn/seismic/BSC-ISI/H2/BSC2/Scripts/Control\_Scripts

- Step\_1\_TF\_L2L\_10mHz\_1000Hz\_LLO\_ISI\_BSC2.m

#### Figures of local to local transfer functions (Main couplings) in SVN at:

/seismic/BSC-ISI/H2/BSC2/Data/Figures/Transfer\_Functions/Measurements/Undamped/

- LHO\_ISI\_BSC2\_TF\_L2L\_Raw\_from\_ST1\_ACT\_to\_ST1\_CPS\_2012\_10\_16.fig
- <u>LHO\_ISI\_BSC2\_TF\_L2L\_Raw\_from\_ST1\_ACT\_to\_ST1\_L4C\_2012\_10\_16.fig</u>
- LHO\_ISI\_BSC2\_TF\_L2L\_Raw\_from\_ST1\_ACT\_to\_ST1\_T240\_2012\_10\_16.fig
- LHO\_ISI\_BSC2\_TF\_L2L\_Raw\_from\_ST1\_ACT\_to\_ST2\_CPS\_2012\_10\_16.fig
- LHO\_ISI\_BSC2\_TF\_L2L\_Raw\_from\_ST1\_ACT\_to\_ST2\_GS13\_2012\_10\_16.fig
- LHO ISI BSC2 TF L2L Raw from ST2 ACT to ST1 L4C 2012 10 16.fig
- LHO\_ISI\_BSC2\_TF\_L2L\_Raw\_from\_ST2\_ACT\_to\_ST1\_T240\_2012\_10\_16.fig
- LHO ISI BSC2 TF L2L Raw from ST2 ACT to ST2 CPS 2012 10 16.fig
- LHO\_ISI\_BSC2\_TF\_L2L\_Raw\_from\_ST2\_ACT\_to\_ST2\_GS13\_2012\_10\_16.fig

#### Measured of local to local transfer functions in the SVN at:

/svncommon/seisvn/seismic/BSC-ISI/H2/BSC2/Data/Transfer\_Functions/Simulations/Undamped LHO\_ISI\_BSC2\_TF\_L2L\_Raw\_2012\_10\_16.mat

**Note 1:** The transfer functions are measured from the Output filter bank (excitation variable) to the input (IN1) of the input filter bank. The transfer functions presented below are raw transfer functions without any electronic compensation of the sensor electronic. The actuator and the coil driver electronic compensation are introduced in these transfer functions.

**Note 2:** The L4Cs are out of phase (should be -90 before 1Hz). A minus sign is added in the calibration filters that convert count to nm/s.

Note 3: The first resonance of the test stand can be seen at 19.6Hz on Stage 1 CPS.

Note 4: The first resonance of the structure observed on stage 1 by the L4C is around 220Hz.



**Note 5:** There is a poor coherence on the GS13 transfer functions. It can be explained by the weak drive of the fine actuators. Moreover, the stage 2 of the ISI is strongly excited by the fans of the clean rooms. These two factors strongly affect the quality of the measurements.

**Note 6:** Some saturation of the T240s during the measurements explains the "wobbles" in the transfer function in the [700mHz; 10Hz] frequency band.

**Note 7:** On the ST1 CPS transfer functions, resonances seen by V1 and V3 seem to be slightly higher than resonances in the V2 direction ([100Hz; 200Hz] frequency band).

**Note 8:** On the ST1 L4C transfer functions, resonances seen by V2 seem to be slightly higher than resonances in the other vertical directions.



Figure 7: TF L2L Raw - ST1 Act to ST1 CPS









Figure 9: TF L2L Raw - ST2 Act to ST2 CPS





#### **Comparison between the BSC2 and BSC8**

BSC2 and BSC8 transfer functions are compared in similar conditions.

- BSC2: High test stand 4 Vibration absorbers on stage 1 No TMDs Stage 2 dummy payload resting on Viton pads
- BSC8: High test stand No Vibration absorbers on stage 1 No TMDs Stage 2 dummy payload not resting on Viton pads

Comparison between the transfer functions of BSC8 and BSC2 can be found in the SVN at: seismic/BSC-ISI/H2/BSC2/Data/Figures/Transfer\_Functions/Comparisons/L2L/

- LHO\_ISI\_BSC8\_vs\_BSC2\_Comparison\_TF\_L2L\_ST1\_ACT\_H\_to\_ST1\_CPS\_H\_20110722\_vs\_20121016.fig
- LHO ISI BSC8 vs BSC2 Comparison TF L2L ST1 ACT H to ST1 L4C H 20110722 vs 20121016.fig
- LHO ISI BSC8 vs BSC2 Comparison TF L2L ST1 ACT V to ST1 CPS V 20110722 vs 20121016.fig
- LHO\_ISI\_BSC8\_vs\_BSC2\_Comparison\_TF\_L2L\_ST1\_ACT\_V\_to\_ST1\_L4C\_V\_20110722\_vs\_20121016.fig
- LHO ISI BSC8 vs BSC2 Comparison TF L2L ST2 ACT H to ST2 CPS H 20110722 vs 20121016.fig
- LHO ISI BSC8 vs BSC2 Comparison TF L2L ST2 ACT H to ST2 GS13 H 20110722 vs 20121016.fig
- LHO\_ISI\_BSC8\_vs\_BSC2\_Comparison\_TF\_L2L\_ST2\_ACT\_V\_to\_ST2\_CPS\_V\_20110722\_vs\_20121016.fig
- LHO ISI BSC8 vs BSC2 Comparison TF L2L ST2 ACT V to ST2 GS13 V 20110722 vs 20121016.fig

Note 1: The rigid body mode of BSC2 and BSC8 are at the same frequencies

Note 2: BSC2 and BSC8 transfer functions were measured with two different sample rates

#### Note 3:

- Stage 1 L4C TF Horizontal are similar
- Difference in the Stage 1 L4C TF Vertical are visible in the [200;300]Hz frequency band



- Most of the stage 2 resonances are reduced by the addition of Viton pads under the keel masses
- Stage 2 GS12 Horizontal TFs are similar except for H2. The resonances seen between [700;800]Hz will be less visible in the Cartesian basis

**Note 4:** The phase difference in the ST2-GS13 transfer functions is probably coming from the masses installed on Viton on the top of stage 2.



Figure 11 - Comparison BSC6 vs BSC2 - ST1 ACT Horizontal - ST1 L4C Horizontal



TEST REPORT – LVEA – ISI-BSC2 – UNIT 3



Figure 12 - Comparison BSC6 vs BSC2 - ST1 ACT Vertical - ST1 L4C Vertical

LHO ISI BSC8<sub>v</sub>s<sub>B</sub>SC2 - Comparison transfer functions 20110722 vs 20121016



Figure 13 -- Comparison BSC6 vs BSC2 - ST2 ACT Horizontal - ST2 GS13 Horizontal



#### TEST REPORT – LVEA – ISI-BSC2 – UNIT 3



Figure 14 - Comparison BSC6 vs BSC2 - ST2 ACT Vertical - ST2 GS13 Vertical

**Test result:** 

Passed: X Failed: Waived :



#### Step 14 - Symmetrization – Calibration

Not performed

Test result:

Passed: \_\_\_\_ Failed: \_\_\_\_

Waived : X

### Step 15 – Change of base – Cartesian to Cartesian - Simulations

seismic/BSC-ISI/H2/BSC2/Data/Figures/Transfer\_Functions/Simulations/Undamped/

- <u>LHO ISI BSC2 TF C2C Reconstructed Sym from ST1 ACT to ST1 CPS 2012 10 16.fig</u>
   <u>LHO ISI BSC2 TF C2C Reconstructed Sym from ST1 ACT to ST1 L4C 2012 10 16.fig</u>
- <u>LHO\_ISI\_BSC2\_IF\_C2C\_Reconstructed\_Sym\_from\_ST1\_ACT\_to\_ST1\_L4C\_2012\_10\_10.fig</u>
   <u>LHO\_ISI\_BSC2\_TF\_C2C\_Reconstructed\_Sym\_from\_ST1\_ACT\_to\_ST1\_T240\_2012\_10\_16.fig</u>
- LHO ISI BSC2 TF C2C Reconstructed Sym from ST1 ACT to ST2 CPS 2012 10 16.fig
- LHO\_ISI\_BSC2\_TF\_C2C\_Reconstructed\_Sym\_from\_ST1\_ACT\_to\_ST2\_GS13\_2012\_10\_16.fig
- LHO\_ISI\_BSC2\_TF\_C2C\_Reconstructed\_Sym\_from\_ST2\_ACT\_to\_ST1\_L4C\_2012\_10\_16.fig
- LHO ISI BSC2 TF C2C Reconstructed Sym from ST2 ACT to ST2 CPS 2012 10 16.fig
- LHO\_ISI\_BSC2\_TF\_C2C\_Reconstructed\_Sym\_from\_ST2\_ACT\_to\_ST2\_GS13\_2012\_10\_16.fig

Note: The resonances of the structure seen at high frequencies are less visible in the Cartesian









Figure 16 - Transfer functions in the Cartesian basis – ST1 T240









Figure 18 - Transfer functions in the Cartesian basis - ST1 T240



**TEST REPORT – LVEA – ISI-BSC2 – UNIT 3** 



Figure 19 - Transfer functions in the Cartesian basis – ST2 GS13

**Test result:** 

Passed: X

Failed: \_\_\_\_

Waived : \_\_\_\_

Step 16- Transfer functions - Cartesian to Cartesian - Measurements

| Test result:                   | Passed:                                   | Failed: | Waived : X |
|--------------------------------|-------------------------------------------|---------|------------|
| ■ Step 17 - Lowe<br>○ Step 17. | er Zero Moment Plan<br>1 - Stage 1 - LZMP |         |            |
| Test result:                   | Passed:                                   | Failed: | Waived : X |
| • Step 17.                     | 2 - Stage 2 - LZMP                        |         |            |
| Test result:                   | Passed:                                   | Failed: | Waived : X |



Step 18- Damping Loops – Transfer function – Simulations
 Step 18.1 - Damping Loops – Stage 2

IGO

| Test result:                        | Passed:                   | Failed:    | Waived : X |
|-------------------------------------|---------------------------|------------|------------|
| • Step 18.                          | 2 - Damping Loops – Sta   | age 1      |            |
| Test result:                        | Passed:                   | Failed:    | Waived : X |
| <ul> <li>Step 19- Damp</li> </ul>   | oing Loops – Powerspect   | tra        |            |
| Test result:                        | Passed:                   | Failed:    | Waived : X |
| <ul> <li>Step 20- Isolat</li> </ul> | tion Loops – for one unit | t per site |            |
| Test result:                        | Passed:                   | Failed:    | Waived : X |



# IV. BSC-ISI testing Summary

This is the third "aLigo BSC-ISI" tested at LHO. The testing procedure document E1000483-v5 was used. Tests were done during in October 2012.

The LHO ISI-BSC2 is validated per the tests presented in this report. All results are posted on the SVN at:

https://svn.ligo.caltech.edu/svn/seismic/BSC-ISI/H2/BSC2/Data

# FAILED AND WAIVED TESTS

- 1- List of tests that failed/waived and won't be redone
  - Step II.10 Mass budget The mass of the payload is slightly lower than the design
  - Step III.9 Spring constant The blades are slightly softer than the design. However, the blade softness and the payload are in good agreements. It doesn't have any effect on the rigid body modes of the ISI.
- 2- List of tests that failed/waived, that need to be re-done during phase 2
- **3-** List of tests skipped that won't be performed because not feasible during phase II (i.e. stage 0 leveling)
  - **Step II.5** Check level of Stage 0 after top-bottom plate assembly
  - **Step II.8** Blade 0-1 Post Launch Angle No need for this test, the budget mass looks good and we already reposition the Blades after noticing a gap between the Blade and its Spacer on Stage 0-1 (see comment on Step 9 Vertical Spring Constant).
- 4- List of tests skipped that we won't do because they are not essential (i.e. redundant with another test)
  - **Step III.3 Measure the Sensor gap** This test was not performed. The sensor gaps have not been measured. These sensors have already been checked at LASTI. Moreover, risks of scratching the target are so high that we preferred not performing this test. In the future, this test will be removed from the testing procedure.
  - **Step III.8 Vertical sensor calibration** The test is not realized in a proper way to evaluate accurately the calibration of the vertical CPS.
- 5- Lists of tests skipped that needs to be done during phase II.
  - Step III.14 Symmetrization Calibration
  - Step III.16 Transfer functions Cartesian to Cartesian Simulations
  - Step III.17 Lower Zero Moment Plan
  - Step III.18.1 Damping Loops Stage 2
  - Step III.18.2 Damping Loops Stage 1
  - Step III.20 Isolation loops