ŧ

LEFT END STATION ACCEPTANCE TEST REPORT

CONTRACT NO:	PC 175730
PSI DOCUMENT NO:	V049-1-168
PROGRAM I.D.:	LIGO VACUUM EQUIPMENT
CDRL NO:	06-1
APPROVAL STATUS:	Α

Process Systems International, Inc. 20 Walkup Drive Westborough, MA 01581

<u>California institute of technology</u> \sim LIGO project massachusetts institute of technology

v049-1-168.doc LIGO-C981625-00-V

ĺ

LEFT END STATION ACCEPTANCE TEST REPORT

PC 175730

CONTRACT NO:	
PSI DOCUMENT NO:	V049-1-168, Rev. 0
PROGRAM I.D.:	LIGO VACUUM EQUIPMENT
ISSUE DATE:	May 28, 1998
CDRL NO: 06-1	
APPROVAL STATUS:	Α

SUBMITTED TO:

CONTRACT NO.

California Institute of Technology 391 South Holliston Avenue Pasadena, CA 91125

SUBMITTED BY:

Process Systems International, Inc. 20 Walkup Drive Westborough, MA 01581

Technical Director:

D. Ce. McW llema David McWilliams

Project Manager:

Richard Bagley, P.E.

These data are submitted with limited rights under Caltech Firm-Fixed-Price-Contract PC175730. These data may be reproduced and used by Caltech and the Government with the express limitation that they will not, without written permission of PSI, be used for purposes of manufacture nor disclosed outside Caltech or the Government, except as provided for in the Phase B contract award to Process Systems International, Inc.

ť

LEFT END STATION ACCEPTANCE TEST REPORT

TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. SCOPE
- 3. ACCEPTANCE TEST CRITERIA
- 4. ACCEPTANCE TEST RESULTS SUMMARY
- 5. ACCEPTANCE TEST RESULTS
 - 5.1 Interface to CDS
 - 5.2 Clean Air System Test
 - 5.3 Class 100 Cleanroom Test
 - 5.4 System Leak Check
 - 5.5 System Bake-out
 - 5.6 Ultimate Pressure Test (After Bake-out)
 - 5.7 Backfill/100 Hr. Pumpdown Test
 - 5.8 LN₂ Consumption Test
 - 5.9 Noise/Shock/Vibration Field Test
 - 5.10 Station Acceptance Test Summary and Signoff Sheet

ATTACHMENTS

Component Acceptance Test Procedures $(\mathcal{R} \in \mathcal{F} \mathcal{O} \mathcal{W} \mathcal{L} \mathcal{F})$	Document No.
80K Pumps	V049-2-102
Roughing Pumps	V049-2-104
Turbomolecular Pumps	V049-2-105
Ion Pumps	V049-2-106
Large Gate Valves	V049-2-107
6, 10, 14" Gate Valves	V049-2-108
Clean Air Supplies	V049-2-109
Portable Soft Wall Cleanrooms	V049-2-110
Small Valves	V049-2-111
Bakeout System Blankets and Carts	V049-2-112

System Acceptance Test Procedures

v049-1-168.doc

4

. .. .

· -

1. INTRODUCTION

.

This report summarizes the field acceptance testing conducted by Process Systems International (PSI) at Washington Site Left End Station. The station was tested in accordance with Acceptance Test Procedure V049-2-115 Rev 3.

The test report is intended to meet the requirements of CDRL No. 6 for the Vacuum Equipment Contract (PC 175730).

2. SCOPE

This report addresses acceptance testing only those components/subsystems that are included in the Field Acceptance Test Procedure. Other components that have been previously tested and accepted have individual Acceptance Test Reports that are included in the Station End Data Package V049-1-170.

Figure 1 summarizes the point of acceptance of the components that comprise the station.

ACCEPTANCE TESTS PLAN

3. ACCEPTANCE TEST CRITERIA

2 1 -

Item	Acceptance Criteria	Acceptance Results
Interface to CDS	Functional Checkout per V049-2-163	Checkout completed on 1/27/98
Clean Air System	Functional Checkout per V049-2-109	
Test	Dewpoint:<-60 C	Dewpoint: -75. C
	Particle Count: Class 100 @ .5	Particle Count: 0
	micrometer.	Hydrocarbon Check: 0 PPM
	Hydrocarbon Check:	
Class 100	Functional Checkout per V049-2-110	
Cleanroom Test	Particle Count: <100	Particle Count: <17.1
System Leak Check	Individual leaks greater than 1×10^{-9} torr-L/s will be repaired.	All components comprising the isolatable volume were helium leak checked via evacuation and spray prior to bakeout.
	Annulus: P<3x10 ⁻⁴ torr 60 min for vessels and 30 min for spools and ate valves.	All flange annuli checked and passed. Data recorded in site test logs.
	Main Volume: by RGA air signature. Maximum rate to be consistent with system requirements and RGA sensitivity.	The volume is leak tight to <6x10 ⁻⁹ torr-L/s
System Bake-out	Functional Checkout per V049-2-112	The station was ramped from 18
	Revl	hours (1.4 C/hr) and held for 49
	Bakeout:	hours at 150C. Temperature data
	Ramp Rate:<1C/hour	recorded in the bakeout cart data
	Uniformity: 150 C+/-20C	sequently overwritten; therefore no temperature uniformity data is available. After the 48-hour hold, the temperature was ramped to 48 C over 48.5 hours (2.1C/hr) prior to shutting off the power.

Item	Acceptance Criteria	Acceptance Results		
Ultimate Pressure	Total Pressure:<2x10 ⁻⁸ torr	Total Pressure:5.5x10 ⁻⁹ torr		
Test (After Bake-	Partial Pressure Measurements:	Partial Pressure Measurements:		
	Sum of all gasses other than H_2 and H_2O :< 3×10^{-9} torr	Sum of all gasses other than H_2 and $H_2O:1.1\times10^{-9}$ torr		
Backfill/100 Hr.	Roughing to < 0.2 torr in 15 hours	Roughing to 0.5 torr in 4 hours		
Pumpdown Test	Roughing to 5×10^{-6} torr in 24 hours	Roughing to 8×10^{-7} torr in 18.75		
	RGA scan after 100 hours for	hours		
	information only	Partial pressures:		
		AMU torr		
		2 3x10 ⁻⁹		
		16 9x10 ⁻¹¹		
		18 9x10 ⁻¹¹		
		28 7x10 ⁻⁹		
		44 $4x10^{-10}$		
		all others 1×10^{-9}		
		Total 1.4x10 ⁻⁸		
LN ₂ Consumption	LN2 consumption per V049-2-208			
Test	90 days without refill.	119 days without refill.		
Noise/Shock/Vibrat ion Field Test	Per CAA Test Plan	See CAA Test Report		

4. ACCEPTANCE TEST RESULTS SUMMARY

As shown in Section 3 the WA Left End Station has been successfully tested to meet the Acceptance Test Criteria with the following comments:

System Leak Check

The system is believed to be leak tight to a level of $6x10^{-9}$ Torr-L/s Air. The minimum detectable leak from the RGA scan with the sensitivity obtained during the scan for the Left End Station is about $6x10^{-9}$ Torr-L/s Air. This was deduced based on mass 32 ion current. The Argon signal is not used because the pumping speed of the ion pump is not known accurately for Argon.

The RGA scans of just the calibration chamber isolated from the main volume, indicates that there is a leak in the calibration chamber. The observed signal for mass 32 was almost 5×10^{-13} A with the RGA chamber by itself. With a calibrated sensitivity of 3 Torr/Amp the partial pressure is 1.5×10^{-12} Torr. With a calibration chamber speed of 3.7 liter/s the leak in the RGA chamber the minimal detectable leak would be 6×10^{-9} Torr-L/s Air. Bagging the entire chamber with helium did not lead to a helium signal on the RGA scan.

System Bakeout

The bakeout ramp up and ramp down rates exceeded the specified rate. The design ramp rates were selected to minimize thermal stress and to keep input power requirements at reasonable levels. The actual ramp rates, although in excess of the acceptance criteria are still low and are not considered to be sufficient to cause thermal stresses, and are therefore acceptable.

The loss of the temperature data is unfortunate, but the subsequent excellent RGA scans after bakeout indicate that the system is clean and the bakeout was therefore effective.

8

Ultimate Pressure Test

The partial pressure measurements after bakeout readily exceeded the acceptance criteria and match very well with the LIGO goals indicating that the volume is clean and leak tight. A comparison table of the actual results vs. the LIGO is included for information.

AMU	LIGO Goals	Acceptance Test	
	Partial Pressure	Partial Pressure	
(Torr)	(Torr)	(Torr)	
2	5x10 ⁻⁹	4.4 x 10 ⁻⁹	
16	2x10 ⁻¹⁰	2.2 x 10 ⁻¹¹	
18	5x10 ⁻⁹	1.7 x 10 ⁻¹¹	
28	1x10 ⁻⁹	8.9 x 10 ⁻¹⁰	
44	2x10 ⁻¹⁰	2.5 x 10 ⁻¹¹	
Other	1.9x10 ⁻⁹	1.3 x 10 ⁻¹⁰	

Backfill/100 Hour Pumpdown Test

A comparison of the partial pressures before and after the backfill is shown below. As expected an approximate one-decade increase in N_2 and CO_2 pressures are observed. This is consistent with the prototype test program. There is also a factor of 4-5 increase for H₂0, CH₄, and a one decade increase for the other gasses that did not occur in the Left Mid Station. The resulting partial pressures for all gasses are still below the LIGO goals.

	After Bakeout	After Backfill &
		100 hr Pumpdown
AMU	Partial Pressure	Partial Pressure
	(Torr)	(Torr)
2	4.4 x 10 ⁻⁹	3.3 x 10 ⁻⁹
16	2.2 x 10 ⁻¹¹	8.8 x 10 ⁻¹¹
18	1.7 x 10 ⁻¹¹	9.4 x 10 ⁻¹¹
28	8.9 x 10 ⁻¹⁰	7.7x 10 ⁻⁹
44	2.5 x 10 ⁻¹¹	3.8×10^{-10}
Other	1.3 x 10 ⁻¹⁰	9.7 x 10 ⁻¹⁰

LN2 Consumption

Results of the Left End Station Cryopump indicates a full tank capacity of more than 100 days.

. ..

5. ACCEPTANCE TEST RESULTS

This section contains signed data sheets for each component or subsystem.

ACCEPTANCE TEST REPORT

5.1 Interface To CDS

The interface to LIGO's CDS computer system was tested by point to point wiring checks using the following documentation:

V049-1-163

Control functions (displays, interlocks, etc.) were checked by monitoring CDS display screens and actual equipment control.

ACCEPTANCE TEST REPORT

5.2 Clean Air System Test

The clean air system (class 100) was tested per Acceptance Test V049-2-109.

All test results met or exceeded the requirements.

WA LEFT MID STATION Bquip. Tag S/N 09/697/4-05450/ LIGO VACUUM EQUIPMENT ACCEPTANCE TEST DATA/TEST VERIFICATION

(

JF 2/8/98 JF 2/8/48 Sign./date · JF 2/8/98 JF/SM 2/8/98 515/5M 218/98 PSI Sign./date Witness LIGO **1**7 14 · · · · Comments O PART/F13 Wod O'O ATP Req'ment, Actual Data -75 C のべ べ 2.6 5.2 Para. 5.2 ATP 5.1 NA AA NA RA HV70Recive Clobal Type of Test Verification DEWPOINT CONTENT Factory Speed Test Functional Test Inspection Endurance Test Labelling Leak rate Particle Bakeout Factory Count Visual

. **.**. .

ACCEPTANCE TEST REPORT

5.3 Class 100 Cleanroom Test

The class 100 cleanrooms were tested per Acceptance Test V049-2-110.

All test results met or exceeded the requirements.

	PSI Sign./date	
EAN ROOM	LIGO Witness Sign,/date	
LE CL quip. Tag		

VERIFICATION
/TEST/
DATA
TE 31
ACCE PTANCE
ROUIPMENT
VACUM
LIGO

Type of Test	ATP	ATP Req'ment/	Comments	L1G0	lsd
	Para.	Actual Data		Witness Sign./date	Sign./date
Visual Inspection					
Labelling Verification					·
Bakeout	NA		•		
Leak rate	NA				
Factory Endurance Test	NA				
Factory Speed Test	AN				
Functional Test	5.1	DECATIONAL			NR 7.2.
RGA Test	NA				
Particle Count	5.2	FINAL COUNT= 17.1	CQUIPMENT: METONE LASER PARTICLE COUNTR CALIBRATEDI STIPPIN SNIGTOSCO275 DUC : 5/19/98 MODEL 2278	86-SI-1 "44444.7	012-112-198
Pumpdown	NA		4		-

TOTAL P.10

ن قلو

15

CLEAN ROOM: Left End		DATE: 1/12/98 BY: John Fi LIGO Witne		BY: John Flinn LIGO Witness: Kyle	n TEST NO.: 3 s: Kyle Ryan		
	MET ONE MODE NO. LOC.=43	L 227	FLOWRAT SAMP/LOC	E=0.1CFM	PERIOD=2.0 MIN. HOLD=1.0 MIN.	START TIME: 14 STOP TIME: 154	15 5
	Samples=	21					
	READING	CONCE (PART/	NTRATION		(A-MEAN)^2	MEAN = SD= SE=	17.1 39.7 8.9
	0	A1:	= 0		293.88		
	0	A2:	= 0		293.88		
	0	A3:	= 0		293.88		
	2	A4:	= 10		51.02		
	4	A5:	= 20		8.16		
	10	A6:	= 50		1079.59	• •	• • • • •
	3	A7:	= 15		4.59		
	0	A8:	= 0		293.88		
	2	A9:	= 10		51.02		
	0	A10:	= 0		293.88		
	0	A11:	= 0		293.88		
	0	A12:	= 0		293.88		
	0	A13	= 0		293.88		
	0	A14:	= 0		293.88		
	0	A15	= 0		293.88		
	2	A16	= 10		51.02		
	0	A17	= 0		293.88		
	12	A18	= 60		1836.73		
	35	A19	= 175		24918.88		
	2	A20	= 10		51.02		
	. 0	A21	= 0		293.88		

.

.

.

۰.

٠.

. 💊

16

Title: ACCEPTANCE TEST PROCEDURE FOR PORTABLE SOFT-WALL CLEANROOMS

TABLE II - SAMPLE LOCATION GRID BSC TYPE 1,2,3

1. 1. 10

LE CLEARDOM 400 BUILDING LOCATION - 43 SAMPLES - 21 PERIOD - 2 min. HOLD - 2 min.

- vessels have been blown down, floor has been wepped.

- ATTACHMENT / V049-2-110

Page 4 of 5

LEFT	624 5	TATION		DATE = $01/12/98$ TIME = $15:04:17$ PERIOD = $00:02:00$ LOCATION NUM. 43 0.3u = 2 $0.5u$ = 0 /2
10				DATE = $01/12/98$ TIME = $15:08:17$ PERIOD = $00:02:00$ LOCATION NUM. 43 0.3u = 2 0.5u = 0 /3
				DATE = 01/12/98 TIME = 15:12:17 PERIOD = 00:02:00 LOCATION NUM. 43 0.3u = 0 0.5u = 0 /4
PRINTING	021 RECOR	0(5)		DATE = 01/12/98 TIME = 15:16:17 PERIOD = 00:02:00 LOCATION NUM. 43 0.3u = 1 0.5u = 0 (5
DATA WILL DATE = PERIOD =	. BE REMOVI	TIME = 14:20:17	LOC	DATE = $01/12/98$ TIME = $15:20:17$ PERIOD = $00:02:00$ LOCATION NUM. 43 0.3u = 6 $0.5u$ = 2
DATE =	01/12/98	0.5u = 0 TIME = 14:24:17	1	DATE = 01/12/98 TIME = 15:24:17 PERIOD = 00:02:00 LOCATION NUM. 43 0.3u = 0 0.5u = 0 /7
DATE =	01/12/98	Location NOM. 43 0.5u = 0 TIME = 14:28:17	Z	DATE = 01/12/98 TIME = 15:28:17 PERIOD = 00:02:00 LOCATION NUM. 43 0.3u = 29 0.5u = 12
DATE =	00:02:00 0 01/12/98	LOCATION NUM. 43 0.5u = 0 TIME = 14:32:17	3	DATE = $01/12/98$ TIME = $15:32:17$ PERIOD = $00:02:00$ LOCATION NUM. 43 0.3u = 70 $0.5u$ = 35 19
PERIOD = 3u = DATE =	00:02:00 9 01/12/98	LOCATION NUM. 43 0.5u = 2 TIME = 14:36:17	Ч	DATE = $01/12/98$ TIME = $15:36:17$ PERIOD = $00:02:00$ LOCATION NUM. 43 0.3u = 3 0.5u = 2 20
PERIOD = 0.3u = DATE =	00:02:00 6	LOCATION NUM. 43 D.5u = 4 TIME = 14:40:17	5	DATE = 01/12/98 TIME = 15:40:17 PERIOD = 00:02:00 LOCATION NUM. 43
PERIOD = 0.3u =	00:02:00	LOCATION NUM. 43 0.5u = 10	6	
DATE = PERIOD = 0.3u =	01/12/98 00:02:00 9	TIME = 14:44:17 LOCATION NUM. 43 0.5u = 3	-7	NOTE A DE ATTALL (B) : CONVERSE ZE LUAS
DATE = PERIOD = 0.3u =	01/12/98 00:02:00 0	TIME = 14:48:17 LOCATION NUM. 43 0.5u = 0	8	HIGH DUE TO THE PARTICLE
DATE = PERIOD = 0.3u =	01/12/98 00:02:00 4	TIME = 14:52:17 LOCATION NUM. 43 0.5u = 2	9	COUNTER SLIPPING ON TEST STAND (0->30).
DATE = PERIOD = 0.3u =	01/12/98 00:02:00 0	TIME = 14:56:17 LOCATION NUM. 43 0.5u = 0	10	
Έ = РеRIOD = 0.3u =	01/12/98 00:02:00 0	TIME = 15:00:17 LOCATION NUM. 43 0.5u = 0	11	
			,	18

i I

ACCEPTANCE TEST REPORT

5.4 System Leak Check

Leak testing was conducted in stages with individual components being leak checked and baked at PSI's Westborough facility. Each building system was then leaked as a system in the field per the system Acceptance Test Procedure (End Stations V049-2-115).

The leak testing philosophy and data sheets are attached.

Philosophy of Leak Testing at PSI-Westboro

The leak test specification for the LIGO vessels is to find, and repair, all 1×10^{-9} Torr-l/s of helium and greater leaks in accordance to ASTM E498 Standard Test Methods for Leaks. In order to optimize the leak testing process, we have bagged the first vessels of each type: WBSC10, WHAM1, and WCP4. Additionally, three spool sections were bagged: A15 (01), A1 (01)-A7B (01), and A6 (01)-B6 (01). Bagging these vessels consisted of enclosing the chambers with tarp and filling the bag with helium again in accordance to ASTM E498 specification. This creates a concentrated helium environment enabling the leak detector to find small leaks. A total leak rate can then be quantified. All six vessels registered a *total* leak rate of $< 1.5 \times 10^{-9}$ Torr-l/s per vessel. Bagging was performed to try to qualify our evacuate-and-spray techniques developed during the prototype program. The results of the bag tests verified the evacuate-andspray techniques implemented to attain the 1×10^{-9} Torr-l/s leak rate specification per joint. The history at PSI has shown that the smallest leaks our stainless steel welding techniques yield are 1×10^{-7} Torr-l/s for the worst case scenario. This statement is also confirmed in High Vacuum Technology by Hablanian (See Attached Reference). This size weld leak is easily found using our evacuate-and-spray technique. Mechanical joints and aluminum welding are therefore the only other source of 1×10^{-9} Torr-l/s leaks. All aluminum cryopump reservoirs were bagged for the leak testing technique prior to and after final assembly. Mechanical joints were targeted as the probable source for very small leaks $(1 \times 10^{-7} \rightarrow 1 \times 10^{-9} \text{ Torr-l/s})$. Very few leaks of this size were found on the vessels.

Philosophy of Leak Testing in the Field

The philosophy of leak testing the assembled LIGO vessels in the field is to verify the integrity of the leak test performed at PSI and to test new or remade conflat assemblies. The RGA air signature is an additional confirmation as to the tightness of the complete assembly. Taking the extra step to leak check each isolatable volume reduces the risk of getting a large, and therefore unacceptable, air signature. We field leak test every joint that has been changed since the initial leak test at PSI. This is confirmed by our conflat torque tags. Any missing or newly tagged joint is rechecked, and often all joints are rechecked if time permits.

PSI Leak Testing Summary

.1

Following all of the steps listed above helps to ensure meeting the leak test specification. As of this writing, the air signature has been demonstrated in the Left Mid, Left End, and Left Beam Manifold. The air signature method was used to identify a gate valve bellows leak in the Right Mid Station. A new test has been developed for the large gate valve bellows.

362

Chapter 11

Table 11.1 Examples of Leak Rate Specifications for Various Products and Industries

	Leak rate specification	
Product or system	(atm • cm ³ /s)	Comment
Chemical process equipment	10 ⁻¹ to 1	Iligh process flow rates
Torque converter	10^{-3} to 10^{-4}	Retention of liquid
Beverage can end	10 ⁻⁵ to 10 ⁻⁷	Smaller leaks, if present have negligible effect
IC package	10 ⁻⁷ to 10 ⁻⁸	۱
Pacemaker	10 ⁻⁹ to 10 ⁻¹⁰	Long life, implanted in body

11.2.3 Distribution of Leaks by Size

There are two regions because there are two means of gas transfer: commonly encountered leaks based on observations over many years The curve in Figure 11.1 shows the general distribution by size of for many products. Knowedge of this distribution is helpful in establishing reasonable leak rate specifications for a given product. through holes and by permeation.

smaller by a factor of 1,000,000. Leaks larger than 10^{-1} atm \cdot cm³/s 1 atm \cdot cm³/s, the majority of products have leak rate specifications The helium method can detect leaks 10^{-4} std cm³/s. Other methods overlap the bubble method and ex-Although industrial leak rate specifications range from 10-9 to lying in a narrower range, from 10^{-6} to 10^{-1} atm \cdot cm³/s. The upper part of this range is covered by bubble testing, down to can usually be spotted visually. tend well below its lower limit.

seals, and so on, usually does not extend below 10^{-7} atm $\cdot \, {
m cm^3/s}$. sphere. Baking, when feasible, can reopen these leaks by evapo-The large class of leaks caused by incomplete welds, brazes, Smaller leaks are usually plugged by water vapor from the atmorating the water vapor.

tivity (10⁻⁸ to 10⁻⁹ atm \cdot cm³/s) for the reassurance of having conperiod-say 5 years or more-may warrant testing at higher sensiservative test results. An example is the pacemaker, which must Some products, which have to be reliable for an extended function for years in a difficult environment.

HIGH UACUUM TECHNOLOGY HAN LAN 1911

21

0 9

Leak Detection

Figure 11.1 Typical distribution of leaks encountered in industrial products.

smaller than the acceptable limit will incur unnecessary additional test For most products, however, looking for leaks 100 or 1000 times pull-tab beverage can ends at 10^{-8} or 10^{-9} atm \cdot cm³/s; in fact, it make economic sense to test automotive torque converters or ring expense without improving reliability. For example, it would not would lead to costly rejection of perfectly serviceable products.

11.3 METHODS OF LEAK DETECTION

11.3.1 Leak Location and Measurement

the use of a tracer gas (or liquid) passing through a leak and being standard leak test techniques, which are usually selected according ment of leaks. These functions are carried out through the use of The basic functions of leak detection are the location and measureto the configuration of the part to be tested, the economics of the detected on the other side, and are applicable to most of the leak test, and the nature of the system. These techniques depend on detection methods, including the helium method.

Leak Location

Leak location is the testing approach used to find the precise location of individual jeaks. It is usually a qualitative procedure only. The techniques used are very dependent on the skill and alertness of an

36.3

WASHINGTON LEFT END STATION

TAG NO.		SER. NO.
WBSC10		01
WBE4C	•	03
WCP7		02
WA1B		02
WA7B		02
WGV17 WGV ? ¹⁸	GNB GATE VALVES	008 009

 \bigcirc

p.2

Title: SPECIFICATION FOR LEAK CHECK PLAN LIGO VACUUM EQUIPMENT Ø LEAK TEST DATA SHEET EQUIP 2 Component Name LEFT - END STRUCK-ANALULAS PIPE WRSLID SNOL Model Number WATBZ JAN CZ Serial Number WA13 SA 02 Drawing Number 1049-5-007 W6-11 3N 09 WLP7 SNOZ Detector Name BALZERS WEV17 5408 Model Number HIT 160 DRY 1) 2500 4/5 IP Serial Number A 14" GV SYSTEM Calibration \$ 10" 6V HLT 3 ANAVILAS IDA PUMPS **Expiration Date** 1-12-98 INT, CAL. ONLY ALL AMAJULAS PIPE 4.53×10-9 Standard Leak Rate Background NA Standard Response 5410-9 Leak Test Data Location /Date WASH SITE WASH Tracer Gas HE HE Pressure/CC G-H1 X10-6 TORR LESS THAC 1X105 PER AMAVILAS SPACE ALA EVACUATE I STRAY NIA EVACUATE + SRAY Duration Response VIC-9sedie NDL XIO-9 SCALE NDL Leak Rate Measured × 10-9 E+SPAT NDL XID9 SLALE EVACE + SPRAY Calculated Allowable. Performed By : D. H. Date : 2-24-98 2-74.48 Witnessed By : Date : Signature (fall 1 Mun / Date : Title PROD TECH ITT Remarks : **SPECIFICATION** Number: V049-2-014 Rev. Α 2

Page _5__ of _ 11__

•

LEAK TEST DATA SHEET

	1	2	3
Component Name	CRYORUMP	SPOOL	
Model Number	INCE7	BEYC	
Serial Number	56-5	03	
Drawing Number			
Detector Name	BAZZERS		
Model Number	117160		
Serial Number	#2	· · · · · · · · · · · · · · · · · · ·	
•	-		· •
Detector Calibration	07128-2-9		
Expiration Date	•		
Standard Leak Rate	imax'		
Background			
Standard Response			
Leak Test Data			
Location /Date	Cryo room		
Tracer Gas	He		
Pressure		· · · · · · · · · · · · · · · · · · ·	
Duration	1:06 hr		
Response	4.0×10-7	1	
	· · · · · · · · · · · · · · · · · · ·		
Leak Rate		 	· · · · · · · · · · · · · · · · · · ·
Measured			
Calculated		I	
Allowable		· · · · · · · · · · · · · · · · · · ·	
Performed By : DH	Date: 9-2-71		
Witnessed By :	Date :		
Signature :	Date :	 	
Title :	1 1 9		
Remarks :	UL ON 10-1	inge (Int. de	xt.
		<u> </u>	

SPECIFICATION Number: V049-2-014 A 2

Page _5__ of _ <u>11</u> 24

SPOOL SECTION LEAK TEST SUMMARY SHEET

Marra	10010	I SO mi	1	- <u></u>			
Name Model No	1/100	DECOL					
Serial No.	WCP /	<u>BEAC</u>	1				
Drwg No	56-5						-
D1005.110.							
Location	Category	Leak Rate	Allowable	Pass	Fail	Signature	Date
		Torr	Топ				
Annulus-1	IV		1x10 ⁻⁵	12		Did	8-1-9
Annulus-2	IV		1x10 ⁻⁵			DU	8-1-9
							··
					· · · · ·		
Annulus-1	v		1x10 ⁻⁵				
Annulus-2	V V		1x10 ⁻⁵				
		Torr-L/s	Torr-L/s				
Weld Joint	Ι		1x10 ⁻⁹	-1/		DH	8-1-47
Weld Joint	II		1x10 ⁻⁹			DH_	8-1-97
Conflat	TTT		1×10.9				
Comments	111		IXIU			· .	<u> </u>
Witnessed	+				·····	<u> </u>	<u> </u>
Signature	H						
Date (6.7.67						
	8-2-11					-	
	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	•				
					SF	PECIFICA	TION
					Number:	V049-2-014	Rev. Z
<u> </u>			<u></u>			Page	8 of //

LEAK TEST DATA SHEET

1. .*

		2	
Component Name	AI-A713		
Model Number			
Serial Number	07		
Drawing Number	•		
	<u> </u>		
Detector Name	BAZERS		
Model Number	HCT 160		
Serial Number	31.37944-002		
Detector Calib Date	6-7-97	<u></u>	
Detector Calib Factor	1.0		
			······································
Standard Leak Rate	4.4×109		
Std.Leak Expir.Date	6-27-97		
Standard Response	6.7×10-9		
Leak Test Data			
Location /Date			
Tracer Gas	HE		
Pressure @ Turbo Inlet			
Duration	20 00	-	
Response	1×10-9		······································
Leak Rate			
Measured			·
Calculated			
Allowable			
Performed By: D4	Date: 6-6-97	· · · · · · · · · · · · · · · · · · ·	
Witnessed By :	Date :		
Signature The Maller	Date: 6-6-47		
Title :			
Remarks: LEAL	RATE LESS +A	42 1×10-4	20mm BAG TEST

SPECIFICATION					
Number:	V049-2-014	p2			
ŀ	A				

26

VESSEL(BSC/HAM) LEAK TEST SUMMARY SHEET

Name	AL-ANZ						1
Model No			-				1
Serial No.	121						
Drivg No							
D1wg.110.				1			
Location	Category	Leak Rate	Allowable	Pass	Fail	Signature	Date
Annulus		Torr	Топ				
•	IV-V	-	$4x10^{-5}$	10		_ Cortrill	6-79
-	п		NDL (10 ⁻⁹ Scale)	C	-		679
Vessel		Torr-L/s	Torr-L/s				
Weld Joint	I		1x10 ⁻⁹				
Weld Joint	П		1x10 ⁻⁹				
<u> </u>							\rightarrow
Conflat	Ш		1x10 ⁻⁹				
				_			
Comments	LEAK K	RATE L	GS THA	<u>2 X</u>	109 20	ma 1396-7	EST_
Witnessed	7 . 84						
Signature	MUllis	n					
Title							
Date: 6	-1-919				<u></u>		
						SPECIFICA	TION
					Number:	A	p2

LEAK TEST DATA SHEET

Component NameModel NumberSerial NumberDrawing NumberDatector NameModel NumberModel NumberDetector Calib.DateDetector Calib.DateDetector Calib.FactorStandard Leak RateStandard Leak RateStandard Leak RateStandard Response $\frac{1}{2}$ Leak Test DataLocation /DateTracer GasPressure @ Turbo InletDurationResponseLeak RateMeasuredCalculatedAllowablePerformed By:DateTitle:Remarks:Leak RateRemarks:Leak Rate	BSC 10 BSC 10 201 ALZFES LT 160 #2 1.1 1.1 1.4 × 10-9 L.1×10-9				
Model Number Image: Constraint of the series of the se	BSC 10 201 ALZEES LT 160 #2 L-10-97 1.1 .4 × 10-9 L-12-97 L.1 .4 × 10-9 L.1 × 10-9				
Serial NumberImage: Constraint of the series o	$\frac{261}{42425}$ $\frac{10-97}{1.1}$ $\frac{1.4 \times 10^{-9}}{27.97}$				
Drawing Number	ALZYES LT 160 #2 -10-97 1.1 .4 × 10-9 				
Detector Name f_2 Model Number f_2 Serial NumberDetector Calib.DateDetector Calib.Date f_2 Detector Calib.Factor f_2 Standard Leak Rate f_2 Standard Leak Rate f_2 Standard Response $5 y f_2$ f_2 Leak Test Data f_2 Location /Date f_2 Tracer Gas f_2 Pressure @ Turbo Inlet f_2 Duration f_2 Leak Rate f_2 Measured f_2 Calculated f_2 Allowable f_2 Performed By: f_2 Signature f_2 Remarks: f_2 Leak Rate f_3	AL2425 LT 160 #2 -10-97 1.1 				
Detector Name 17 Model Number 17 Serial Number 17 Detector Calib.Date 17 Detector Calib.Factor 17 Standard Leak Rate 17 Standard Response 575 17 Leak Test Data 17 Location /Date 17 Tracer Gas 17 Pressure @ Turbo Inlet 17 Duration 17 Response 17 Leak Rate 17 Measured 17 Calculated 17 Allowable 17 Performed By 17 17 Signature 17 Mitnessed By : 17 Signature 17 Remarks : 12 Allowable 10 Signature 10 Mitnessed By : 10 Signature 17 Remarks : 17	$ \begin{array}{c} A 2465 \\ CT 160 = 2 \\ \hline \hline \hline $				
Model NumberHSerial NumberImage: Constraint of the sector of	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Serial Number Detector Calib.Date Detector Calib.Factor Standard Leak Rate Std.Leak Expir.Date Standard Response 575 Leak Test Data Location /Date Tracer Gas Pressure @ Turbo Inlet Duration Response Leak Rate Measured Calculated Allowable Performed By: 1.4. Da Witnessed By: Signature milling Remarks: LEAK Rate	1.1-10-97 1.1- 1.4×10-9 5-27-97 1.1×10-9	· · · · · · · · · · · · · · · · · · ·			
Detector Calib.Date 4 Detector Calib.Factor $-$ Standard Leak Rate 4 Std.Leak Expir.Date 4 Standard Response 575 4 Leak Test Data $-$ Location /Date $-$ Tracer Gas $-$ Pressure @ Turbo Inlet $-$ Duration $-$ Response $-$ Leak Rate $-$ Measured $-$ Calculated $-$ Allowable $-$ Performed By: $ -$ Signature $-$ Mitnessed By: $-$ Title: $-$ Remarks: $\angle EAK$ R	1.1 1.1 1.4 × 10-9 2-27.97 1.1×10-9				
Detector Calib Factor Standard Leak Rate Std.Leak Expir.Date Standard Response 575 Leak Test Data Location /Date Tracer Gas Pressure @ Turbo Inlet Duration Response Leak Rate Measured Calculated Allowable Performed By: Date Signature Remarks: Leak Rate	1.1- 1.4×10-9 2-27-97 4.1×10-9				
Standard Leak Rate 4 Std.Leak Expir Date 4 Standard Response 575 4 Leak Test Data 1 Location /Date 1 Tracer Gas 4 Pressure @ Turbo Inlet 1 Duration 4 Response 1 Leak Rate 1 Measured 1 Calculated 1 Allowable 1 Performed By 1 1 Mitnessed By : 1 Signature 1 Remarks : 1 Leak Rate 1	1.4×10-9 2-27.97 1.1×10-9				
Std. Leak Expir Date Image: Standard Response 575 Image: Standard Response 575 Leak Test Data Image: Standard Response 575 Image: Standard Response 575 Image: Duration /Date Image: Standard Response 575 Image: Standard Response 575 Image: Duration /Date Image: Standard Response 575 Image: Standard Response 575 Image: Duration /Date Image: Standard Response 575 Image: Standard Response 575 Image: Leak Rate Image: Standard Response 575 Image: Standard Response 575 Image: Leak Rate Image: Standard Response 575 Image: Standard Response 575 Image: Leak Rate Image: Standard Response 575 Image: Standard Response 575 Image: Leak Rate Image: Standard Response 575 Image: Standard Response 575 Image: Leak Rate Image: Standard Response 575 Image: Standard Response 575 Image: Leak Rate Image: Standard Response 575 Image: Standard Response 575 Image: Leak Rate Image: Standard Response 575 Image: Standard Response 575 Image: Leak Rate Image: Standard Response 575 Image: Standard Response 575 Image: Leak Rate Image: Standard Response 575 Image: Standard Response 575 Image: Standard Response 575 Image: S	-27:97 (1×10-9				
Standard Response 5×5 LLeak Test DataILocation /DateITracer GasIPressure @ Turbo InletIDurationIResponseIIILeak RateIMeasuredICalculatedIAllowableIPerformed By IISignatureIRemarks :LEAK Rate	1.1×10-9				
Leak Test Data Image: Constraint of the second	-				
Location /Date Tracer Gas Pressure @ Turbo Inlet Duration Response Leak Rate Measured Calculated Allowable Performed By: 1.4. Da Witnessed By: Da Signature milling Remarks: LEAK Ra					
Tracer Gas H Pressure @ Turbo Inlet Duration 4 Response Leak Rate Measured Calculated Allowable Performed By Signature Measure Data Performed By Data Signature Measure Data Performed By Data Signature Performed By Data Data Remarks Leak Allowable Data Data Performed By Data Allowable Data Data Data Data <		· · · ·		<u></u>	
Pressure @ Turbo Inlet Duration 4 Response 5 Leak Rate 6 Measured 7 Calculated 7 Allowable 7 Performed By 1.4. Date 7 Witnessed By 7 Signature 7 Mither 10 Remarks 1. LEAK Rate 7 Calculated 7 Calculat	6			<u> </u>	
Duration Image: Constraint of the second					
Response Image: Constraint of the second	OMA			. <u> </u>	
Leak Rate Measured Calculated Allowable Performed By 1.4. Da Witnessed By Da Signature Multin Da Title : Remarks : LEAK Ra	1×10-9			<u></u>	
Measured Calculated Allowable Performed By: 1.4. Da Witnessed By: Da Signature millium Da Title: Remarks: LEAK Ra					
Calculated Allowable Performed By: Date Witnessed By: Date Signature Date Title: Remarks:		<u></u>			
Allowable Performed By 1.4. Da Witnessed By Da Signature millium Da Title : Remarks : LEAK Ra					
Performed By D. 4. Da Witnessed By : Da Signature Millin Da Title : Remarks : LEAK RA					
Witnessed By : Da Signature Da Ulun Da Title : Remarks : LEAK R	te: 4.10.97				
Signature Dall Un Da Title : Remarks : LEAK R	te			<u></u>	
Title : Remarks : LEAK R	te: 4-10-97				
Remarks: LEAK R					<u> </u>
, <u></u> , <u></u>	TE LEGS+441	- 1×10-9	AFTER	50 MIA	126-14
		Γ-	SPE	CIFICAT	ION
				(040-2-014	02
			Luma Internet V	1049-2-014	

....

VESSEL(BSC/HAM) LEAK TEST SUMMARY SHEET

					¥	т	
Name	BSC					Ļ	
Model No.							
Serial No.	no1						
Drwg.No.							
			· ·				
Location	Category	Leak Rate	Allowable	Pass	Fail	Signature	Date
Location	Category						
Annulus		Torr	Тотт				
Ailliulus	IV V		$4x10^{-5}$	1		DAVIN	4-4-47
•			NDL (10-9			<u>POUR PERC</u>	
	11			11		DUM	4-497
	ļ		Scale)	+			
				+		+	
Vessel	<u> </u>	1 OTT-L/S	1017-L/S	\rightarrow			
			1 1 0 1 0		\sim	>	
Weld Joint	I		1x10 ⁻⁵				
Weld Joint	II		1x10-9	<u> </u>	\vdash		
Conflat	III		1x10 ⁻⁹				
han							
					<u> </u>		
					ALIR	Fania	BAL Fact
Comments	LEAK	KATE L	655 THAI	7 14/04	AFTER	70710	THAN 1821
Witnessed		8.					
Signature	In Part Ra	Yeller					
Title							
Date 4-	447						
		<u></u>	<u></u>				
					SF	ECIFICA	ΓΙΟΝ
					Number	V049-2-014	1 n2
					Indunnet.	VU7J-Z-VI7	1 22
					Δ		

ACCEPTANCE TEST REPORT

5.5 System Bake-Out

.

The completed station was baked-out per Acceptance Test Procedure V049-2-112.

The bakeout passed the requirements since the ultimate pressure test was successfully completed.

LEFT END STATTON 3-19-98 1520 START 1843 SHUTDOWN HIGH MAT CARETZ 2025 RESTART SP=18C PRESSURE @ TURBO 5.1 X10-7 3-20-98 0800 SP= 42°C PRESS. 2.0 × 10-6 1100 SP=47°C PRESS. 2.8 × 10-6 K10 57=53°C PRESS. 4. 3 × 10-6 1830 SP - 62°C PRESS. 7.0 × 10-6 3-21-98 PRESS. 1.6 × 10-5 1000 SP= 93

START GN, TO CRYD. 1030 1430 SP= 102 PRESS. 1.4 × 10-5 PRESS. 2.2 × 10-5 SP=110 1830 CR40 68°C

3-22-98

0930 SP=140 PRESS. 1.4 × 10-5 CRYD SO°C 1100 SP = 143 1.6×10-5 CRYO 52°C PRESS. 1415 58 - 150 1.8 ×10-5 PRESS CRY0 92°C PRESS 2.0 X10-5 CRYD 104°C 1530 SP = 150 1800 58= 150 PRESS 1.8 × 10-5 CRY0 150°C

3-23-90	<i>Q</i>		
0630	SP=150	PRESS. 1,5x105	CR40 1115
0930	5P=150	PRESS. 1.5 X10-5	- CRY0 110:
1130	5P=150	PRESS. 1.5 ×10-5	CR40 1175
1330	SPEIST	PRESS. 1.6 ×10-5	CR40 122:
1515	SP=150	PRESS. 1.6 ×10-5-	CR40 126
1800	SP=150	PRESS. 1.5 × 10-5	CR40 127":
3-24-98 0945-	6700 SP=150 SP=150	PRESS. 1.1 × 10-5 PRESS 1.2 × 10-5	CRY0 39°C CRY0 82°C
1100	51=150	PRESS 1.2 ×10-5	Caro 96°C
1200	5P=150	PRESS 1.1 × 10-5-	CRY0 107°:
1300	5P=150	PRESS 1.1 × 10-5	CRY0 116°C
1400	5P=150	PRESS 1.1 × 10-5	CR10 118°C
1515	DP = 140	PRESS 1.1 × 10=5	CRY0 93°C

3-25-98 0800 SP-114 0830 5P- 112 50=110 1030 1130 SP-108 1230 SP=106 SP= 164 1330 SP=102 1430 56= 100 1530

PRESS. 4.0 x 10-6 CRYO 90°C PRESS. 3.7 ×10-6 PRESS 3,5 × 10-6 PRESS 3.2 X10-6 PRESS 2-9 ×10-6 PRESS 2.7 X10-6 PRESS 2.5 × 10-6 PRESS 2.4 ×10-6

3-26	-98		
1130	SP=64	PRESS.	5.8 × 10-7
1230	SP=62_	PRESS.	5.3×10-7
1400	5p = 56	PRESS	4.8 × 10-7
1500	SP=53	PRESS	4.1 × 10-7
	SYSTE	IN OFF	

3-27-98

PRESS @ TURBO 9.1 ×10-8

÷.

ACCEPTANCE TEST REPORT

5.6 Ultimate Pressure Test (After Bake-Out)

The ultimate pressure test was conducted per Acceptance Test Procedure V049-2-114.

All test results met or exceeded the requirements.

v049-1-168.doc
Partial Pressure Calculation

Acceptance of the Bakeout with respect to Air Signature and Partial Pressures

	Date: Test ID: PSI Engineer	03/29/98 WLERGA 		• • • • • • • • • • • • • • • • • • •		•	
	AMU	F (amu) transmission efficiency wrt N2	E (amu) ionization efficiency	S (p_emu) sensitivity	ion current	PP (emu)	
		1				(1011)	
ہ ۔ ۔ سربیہ ۲۰۰۲	2		·	2.47	1.80E-09	4.45E-09	
		0.57	1.60	· · · · · · · · · · · · · · · · · · ·	1.50E-11	2.18E-11	
•••	- 18	0.64	1.12	анан алан алан алан алан алан алан алан	7.90E-12	1.73E-11	
;	28	.	-	3.08	2.90E-10	8.93E-10	
	44	1.57	1.42		9.20E-12	2.50E-11	
	all others	• • • • • • •	•	3.08	4.30E-11	1.32E-10	
				· · · · · · · · · · · · · · · · · · ·		······································	
	Primary -	L Total	IGO Contra	ict Limits	Actual		Pass
	Criteria -	Pressure:	2.00E-08	Топ	5.54E-09	Torr	Yes
	Secondary	Others except	a	a ang a ang a sa ang a sa s			
	Criteria -	H2 & H2O:	3.00E-09	Топ	1.07E-09	Топ	N/A

LIGO:

Moula

. . .

.....

35

PSI: _--~

Title: PROCEDURE FOR RGA FIELD CALIBRATION ON AN ISOLATABLE SECTION

TITLI	2		RGA CAL. CI	HAMBER PA	ARTIAL PR	ESSURE DATA	A SHEET		
DATE	: 3/2 4	7/98							
TIME	•								
TEST	I.D.: e.g. V	VBSC1_1	WLERGA_1.	WLERGA_I.SAC RGA CHAMBER CALIB. BASELINE					
PSI TI	EST ENGI	NEER:	Sm w	LERGA-2	,sac c,	AL, LEAK C	PEN		
AMU	Iamu	Qamu_leak	Famu	Eamu	Ileak	Sp_amu	Pamu		
	WLERGA_1	Leak rate	Transmission	Ionization	WLERGA-2				
	(Amp)	(Torr-L/s)	Factor	efficiency	(Amp)	(Torr/A)	(Torr)		
	CYCLE4		wrt N ₂	wrt N ₂ *	CYCLE6				
H ₂	7.4E-10	4.8x10 ⁻⁶		0.46	1.4E-7	2,47	1.8 E-9		
He	1E-13			0.18	15-13			-	
12	1.0E-11		0.42		<u> </u>				
14	3.0E-12		0.5						
15	3.3E-12		0.54	:					
CH ₄	2,95-11		0.57	1.60					
17	5.0E-11		0.6						
H ₂ O	1.6E-10		0.64	1.12	7.0E-10				
19	6,5E-12		0.67						
26	4.4E-12		0.71						
28	1.35-10	9.5x10 ⁻⁷		1.00	8.4E-8	3.08	4.0 E-10		
32	4,45-13		1.14	1.01					
38	4.1E-13		1.36						
40	5.95-13	9.4x10 ⁻⁸		1.29	7,9E-9	3,82	2,2 E-12		
43	7,45-13		1.53						
44	9,0E-11		1.57	1.42					
					,				
129	15-13	2.2x10 ⁻⁸	· · · · · ·	2.87	2,0E-9	6.34	6.3E-13		
131	1E-13	1.8x10 ⁻⁸		2.87	1,56-9				
132	1E-13	2.2x10 ⁻⁸		2.87	1,9E-9				
134	1E-13	9.0x10 ⁻⁹	_	2.87	7,4E-10				
136	1E-13	8.0x10 ⁻⁹	·	2.87	6,3E-10				
Other				1.00					
* Valu	es used fror	n Granville-F	Phillips for their	B-A ion gau	ges (CH₄ fro	m Leybold)			
6.	- Qn	mu leak							
SP2	$amu = \frac{3}{c}$				Г				
	Jor	fice-ana (Ilegt - Inm.)			SPEC	IFICATION	1	
· ۲	0					Number: V049-2	-186	Rev.	
Jor	" ticemu =	3,673/2	8,78			Α			
		' G	'тц				·	<u> </u>	

Page ____21__ of ___22___

Title: PROCEDURE FOR RGA FIELD CALIBRATION ON AN ISOLATABLE SECTION

TITLI	TITLE RGA CAL. CHAMBER PARTIAL PRESSURE DATA SHEET							
DATE	: 3/2	9/98						
TIME	•						·····	
TEST	1.D.: e.g. V	VBSC1_1	LEFT EN	D STATIC	ON (WA	SH.) WIEr	99-6.59C,CY	ele 2
PSI TI	EST ENGI	NEER:	Sm				· · · · · · · · · · · · · · · · · · ·	
		- · · · · · · · · · · · · · · · · · · ·						
AMU	Iamu	Qamu leak	Famu	Eamu	I _{leak}	$S_{p amu}$	Pamu	
		Leak rate	Transmission	Ionization		1 -		
	(Amp)	(Torr-L/s)	Factor	efficiency	(Amp)	(Torr/A)	(Torr)	
			wrt N ₂	wrt N ₂ *				
II ₂	1.8E-9	4.8x10 ⁻⁶		0.46		Z,47	4.4 E-9	
Ile	1,4E-13			0.18				
							····	
12	7,9E-12		0.42		· · · · · · · · · · · · · · · · · · ·	3,08	4,5E-12	
14	6,2E-12		0.5			3,08	1.4 E-11	
15	6,2E-12		0.54			3,08	1.4E-11	
CH ₄	1.5 E-11		0.57	1.60		3.08	Z.2 E-11	1945
17	4.7E-12		0.6			3,08	1.1E-11	
II ₂ O	7,9E-12		0.64	1.12		3,08	175-11	ي جي ا
19	7.0E-12		0.67			3.08	1.8E-11	\`
26	2.3E-12		0.71	1		3,08	5.2 E-12	
28 -	2,95-10	9.5x10 ⁻⁷		1.00		3.08	8.9E-10	Pai
32	7,45-13		1.14	1.01		3.08	2,4E-12	
38	1,7E-13		1.36			3,08	611 E-13	
40	7,6E-12	9.4x10 ⁻⁸		1.29	1	3.82	2.9E-11	
43	1.5E-13		1.53			3,08	5,7E-13	
44	9,2E-12		1.57	1.42		3,08	2,5E-11	- 75-
·								```\
129	1E-13	2.2x10 ⁻⁸		2.87		6,34	6.E-13	
131		1.8x10 ⁻⁸		2.87				
132		2.2x10 ⁻⁸		2.87				
134	1	9.0x10 ⁻⁹		2.87				
136	1	8.0x10 ⁻⁹		2.87				
	1							
Other	1.1E-11			1.00		3,08	3,4E-11	Pas
* Valu	es used fron	n Granville-I	hillips for their	B-A ion gaug	es (CH ₄ fro	om Leybold)	\sim	\sim
TATAL DELES 55 XID-9 TATA (Pasc)								
			/	UTTL PR	съ <u>5</u> - ` Г			
						SPEC	IFICATION	I
					-	Number: V049-2	-186	Rev.0
ſ						Α		
								L

Page ____21__ of ___22___

$$\frac{W45M}{LEFT EWD} \frac{3/29/48 \text{ Ar}}{3}$$

$$\frac{R_{GAT} CALIB}{R_{GAT} CALIB} WLERGA_15GC cycle4, WLERGA_2 cycle4}
\frac{1}{12} Sortfice. dm4 = 3,673 / \frac{2.575}{2.0} = 13,93$$

$$5H_2 = \frac{4.8 \times 10^{-6}}{(13.93)(14 \times 10^{-7} - 7.4 \times 10^{-10})} \frac{10000}{\frac{4}{5} (CMP)} \frac{1}{1000}$$

$$= 2.47 \frac{10000}{AMP}$$

$$M_2 S_{H_2} = \frac{9.5 \times 10^{-7}}{(3.673)(8.4 \times 10^{-9} - 1.3 \times 10^{-10})}$$

$$= 3.08 \frac{1000}{AmP}$$

$$Ar S_{AR} = \frac{9.4 \times 10^{-8}}{(3.673)(\sqrt[3]{2108})(7.9, \times 10^{-9} - 5.9 \times 10^{-3})}$$

$$= 3.82 \frac{1000}{AmP}$$

$$Xe_{12.9} S_{Ye_{12.9}} = \frac{2.2 \times 10^{-8}}{(3.673)(\sqrt[3]{2108})(2.0 \times 10^{-1} - 1.0 \times 10^{-13})}$$

$$= 6.34 \frac{10000}{MMP}$$

$$41$$

WASH LEFT END Z 3/29/98 Sm ISOLATED SECTION WLERGAL6.SAL Cycle 2 CH4 Pama = Jama Fama SpN2 28 METHANE Eamy (AMPS)(Torr) $P_{CH4} = (1.5E-11)(0.57)(3.08) \sqrt{\frac{28}{16}}$ = 2.2 ×10-11 Torr 0 2 0 0 2 2 0 COZ 22-141 22-142 22-142 $P_{co_2} = \left(\frac{9.2 \ E-12}{1.57}\right)\left(\frac{1.57}{308}\right)\left(\frac{28}{44}\right)$ Greenve = 2,5 ×10-11 Torr $O_2 P_{O_2} = (7, 4E - 13) (1, 14) (3, 08) \sqrt{\frac{28}{32}}$ 1.01 = Z,4 × 10-12 Torr 1720 $P_{H_{20}}^{2} = (7,9E-12)(.64)(3,08) \sqrt{\frac{28}{18}}$ 1,12 = 1.7 X10-11 Torr

3/29/98 Sm 3 WASH. LEFT END AMU. $P_{12} = (7,9E-12)(.42)(3,08) \left(\sqrt{\frac{28}{12}} \right)$ 12 = 4,5 ×10-12 Torr 14 6,2 E-12 (.5) (3,08) 128 = 1,4 ×10-11 15 612 E-12 (.54) (3,08) 28 = 1,4 ×10-11 17 $4.7E - 12(.6)(3.08) \int_{17}^{28}$ = 1,1×10-11 $19 \quad 7.0E-12(.67)(3.08) \left| \int \frac{28}{16} \right|^{28}$ = 1,8 ×10-11 26 2,3E-12 (.71) (3,08) 28 = 5,2 ×10-12 $38 (1,7E-13 (1,36) (3,08) \sqrt{\frac{28}{38}}$ = 6.1 ×10-13 43 1,5E-13 (1,53) (3,08) 28 = 5,7×10-13

22-141 22-142 22-144

1. $C_{2.5"_Valve} = 80l/s$ from published data 2. 2.5" tube path = 4" + 8" = 12" $P_{tube} = \left(1 + \frac{3}{8} \cdot \frac{L}{r}\right)^{-1} = \left(1 + \frac{3}{8} \cdot \frac{12}{1.25}\right)^{-1} = (4.6)^{-1} = 21.7\%$ $S_{2.5"_orifice} = (2.5in)^2 \frac{\pi}{4} \times \frac{(0.0254 m)^2}{in^2} \times 117,000 \frac{l}{s - m^2} = 370.5l/s$ $C_{2.5"_tube} = P_{2.5"_tube} \cdot S_{2.5"_orifice} = (0.217) \cdot (370.5l/s) = 80.4l/s$

Conductance from Chamber to RGA:

$$C_{total} = \frac{1}{\frac{1}{80.4l/s} + \frac{1}{80l/s}} = 40.1l/s$$

{this applies to the RGA on the cross at any location (*l*=8")}

The pumping speed to the chamber is almost 11 times greater with the 0.25" orifice (S=3.7 l/s).

This test configuration should provide better results than the Left Mid Station configuration.

LIGO VACUUM EQUIPMENT

ACCEPTANCE TEST REPORT

5.7 Backfill/100 Hr. Pumpdown Test

LIGO VACUUM EQUIPMENT

ACCEPTANCE TEST REPORT

5.7 Backfill/100 Hr. Pumpdown Test

The backfill and 100 hr. pumpdown test was conducted per Acceptance Test Procedure V049-2-114.

The roughing and turbo pumping requirements met or exceeded the requirements.

The ultimate pressure and partial pressure results are detailed herein. This test was for demonstration purposes only.

Partial Pressure Calculation

Demonstration of the Back-to-Air 100 hour pumpdown with respect to Partial Pressures

Date:	04/14/98	
Test ID:	WLEBTA	(100 hr)
PSI Engineer:	J. Flinn	

AMU	<i>F (amu)</i> transmission	<i>E _(amu)</i> ionization	S (p_amu) sensitivity	<i>l _(amu)</i> ion current	PP (amu)
	efficiency wrt N2	efficiency wrt N2	(Torr/A)	(A)	(Torr)
2	_	_	2.87	1.14E-09	3.27E-09
	0.57	1.60		4.85E-11	8.85E-11
18	0.64	1.12		3.40E-11	9.38E-11
28	_		3.87	1.98E-09	7.66E-09
	1 57	1.42		1.11E-10	3.79E-10
all others			3.87	2.50E-10	9.68E-10

Total Pressure = 1.25E-08

LIGO:

P\$I:

Left End Station Back-to-Air 100 Hour Pumpdown

04/02/98	1300	Start clean air purge with cryopum	o isolated by GV18		
04/03/98	1300	End clean air purge			
		Start rough pumping system with C	DP80		
	1700	P=0.49 Torr		Graphical D	ata
		Start turbo pumping system with S	TP2000C	Time (hr)	Press (torr)
04/04/98	745	P=8.0E-8 Torr			
		P(cryo)=4.0e-6 Torr		0	760
		Fill Cryopump		4	0.49
	830	Start 2500 I/s ion pump and close	4" gate valve	18.75	8.00E-08
	1000	Open GV18 (44" gate vaive)		21.5	5.00E-08
	1030	P=5.0E-8 Torr		26.5	3.00E-08
	1530	Ion Pump (Voltage=3000V, Amperation	age=2.5E-4A)	26.52	2.50E-08
		P=3.0E-8 Torr		26.58	3.50E-08
		Open 14" gate valve		42	1.50E-08
	1531	P=2.5E-8 Torr		66	9.00E-09
		Close 10" gate valve to isolate STR	2000C	96	7.00E-09
	1535	P=3.5E-8 Torr		100	6.80E-09
		Ion Pump (Voltage=3000V, Amper-	age=5.2E-4A)		
4/5/98	700	P=1.5E-8 Torr			
4/6/98	700	P=9.0E-9 Torr			
4/7/98	1300	P=7.0E-9 Torr			
	1700	PT410=6.84E-9 Torr End of 10	0 hour test		
		PT424=6.69E-9 Torr			

Save all RGA data to WLEbta_1.***

100 hr purpdown LEFT END back-to-air 4/2-4/3 24 hr purge (cryo isolated) 1300 start QDP80 4/3 1700 P= 0.49 forr Start turbo 4/4 0745 Fill cryo Pturbo = 8.0 × 10-8 Paryo = 4.0x10-6 0830 START ION PUMP & CLOSE NH" GATE VALVE 1000 OPEN GV18 (44") 1030 P= 5.0 × 108 1530 IP = 3000V, 2.5×104 OPEN 14"G.V. P= 3.0 K 10-8 1531 P=2.5x10-8 close 10" G.V. to turbo 1535 P-> 3.5×10-8 IP. = 3000 V, 5.2 × 10-4A 4/5 P=1.5×10-8 52

16 P= 9.0 × 10-9 4/17 1300 (P=7:0×10-9 1700 PT 410 = 6.84×109 PT 424 = 6.69×109 Save RGA data to WLEbta-1. sac

Partial Pressure Calculation

Demonstration of the Back-to-Air 100 hour pumpdown with respect to Partial Pressures

Date:	04/14/98	
Test ID:	WLEBTA	(115 hr)
PSI Engineer:	J. Flinn	

AMU	F (amu) transmission	E (amu)	S (p_amu) sensitivity	<i>l _(amu)</i> ion current	PP (amu)
	efficiency wrt N2	efficiency wrt N2	(Torr/A)	(A)	(Torr)
2	-	-	2.87	9.61E-10	2.76E-09
16	0.57	1.60		3.88E-11	7.08E-11
18	0.64	1.12		2.61E-11	7.20E-11
28	_	.	3.87	1.59E-09	6.15E-09
	1 57	1.42		9.49E-11	3.24E-10
all others	-	-	3.87	1.94E-10	7.51E-10

Total Pressure = 1.01E-08

LIGO:

PSI:

Title:RGA Sensitivity CalibrationDate:4/6/98Test ID:WLEcal_2PSI Engineer:John Flinn

AMU	l(amu)	l(leak)	F(amu)	E(amu)	Q(amu_leak)	S(orifice_amu)	S(p_amu)
	(A)	(A)	(-)	(-)	(Torr-l/s)	(l/s)	(Torr/A)
2	6.91E-10	1.21E-07			4.80E-06	13.9	2.87
16	-		0.57	1.6			1.82
18	_		0.64	1.12			2.76
28	1.28E-10	6.65E-08			9.50E-07	3.7	3.87
							•
40	2.69E-13	6.56E-09			9.40E-08	3.1	4.62
44	-		1.57	1.42		1	3.41
							-
129	1.00E-13	1.63E-09			2.20E-08	1.7	7.94
131	1.00E-13	1.28E-09			1.80E-08	1.7	8.27
132	1.00E-13	1.58E-09			2.20E-08	1.7	8.19
134	1.00E-13	6.14E-10			9.00E-09	1.7	8.62
136	1.00E-13	5.34E-10			8.00E-09	1.7	8.81

WLE PITA "OTHERS" (115hr) $\times 10$ 7.0 City 1,5 + 1013 × 10-13 1,4 × 10 1.7 5L 24 2 10-13 3.8× 10 12 57 2.0 75 x 10⁻¹³ 1.9 × 10-11 39 1.4 16 1.0 × 10 '' × 10⁻¹³ 27 (4 60 1.6×10" 29 2.8×10-" 30 TOTAL = 1.94×10-10 2,8×10-13 31 4.3×10" 32 1.5×10-13 3.1×10-13 33 34 total others 100hr 1.5×10^{-13} 35 3.3 × 10 4.15 × 10 " 1.820 2.77 3-5 × 10" 7.4×10-13 10 16.1 + 10 12 i i 6.2 . 10 5,7×10-13 23.6×10 13 7.11 × 10 39 26 1.21 × 10 4.3×10-1 ; il ; y (0 40 77 K 10 Sig x 10-13 1.88 29 3.40 × 10' 41 -12 30 -13 161×10-12 assume all others the same 33×10 42 5.2,10 -12 7.3×10-13 add 4 x 10" out 1.94 x 10 2.36 . 10 . 12 43 25,0 4 10 1-3×10-12 45 >total = 2.3×100 193,56 210 4.7×.10-13 46 1.9356 × 10 $= 2.5 \times 10^{-10}$ 1.4×10-13 γŚ 1.4.10-13 1.9 50 1.8 × 10-13 Ì 2.6×10-13 32 61

LIGO - Specific AMU - LE

AMU	Calibration	Measurement Chamber	Left End Station Main Volume	Left End Station Back to Air Test 115 hr
			1 905 00	9 745-10
2	1.22E-07	6.90E-10	1.002-09	0.742.10
12	1.50E-11	9.06E-12	7.90E-12	3.40E-11
14	5.46E-09	2.20E-12	6.20E-12	6.40E-11
	8.10E-11	2.87E-11	4.70E-12	1.43E-11
18	2.85E-10	8.77E-11	7.90E-12	2.58E-11

		and the second state of the se		
27	6.50E-11	4.25E-12	2.61E-12	1.04E-11
28	6.80E-08	1.30E-10	2.90E-10	1.56E-09
	5.70E-10	2 60F-12	3.06E-12	1.60E-11
29	5.700-10	2.001 12		
32	2.60E-12	6.30E-13	7.40E-13	4.30E-11
40	6 70F-09	3.27E-13	7.60E-12	4.30E-11
	2 15E-12	7.44E-13	3.00E-13	9.00E-13
	2.101 12			
43	5.04E-11	7.68E-13	1.50E-13	6.80E-13
44	2.00E-10	1.00E-10	9.20E-12	9.49E-11
and the second s				

....

Conductance Calculation for RGA Calibration Chamber at Left End Station

1. 2. $C_{2.5"_Valve} = 80l/s$ from published data 2.5" tube path = 4" + 8" = 12"

$$P_{tube} = \left(1 + \frac{3}{8} \cdot \frac{L}{r}\right)^{-1} = \left(1 + \frac{3}{8} \cdot \frac{12}{1.25}\right)^{-1} = (4.6)^{-1} = 21.7\%$$

$$S_{2.5"_orifice} = (2.5in)^2 \frac{\pi}{4} \times \frac{(0.0254 \ m)^2}{in^2} \times 117,000 \ \frac{l}{s - m^2} = 370.5l/s$$

$$C_{2.5"_tube} = P_{2.5"_tube} \cdot S_{2.5"_orifice} = (0.217) \cdot (370.5l/s) = 80.4l/s$$

Conductance from Chamber to RGA:

$$C_{total} = \frac{1}{\frac{1}{80.4l/s} + \frac{1}{80l/s}} = 40.1l/s$$

{this applies to the RGA on the cross at any location (l=8")}

The pumping speed to the chamber is almost 11 times greater with the 0.25" orifice (S=3.7 l/s).

This test configuration should provide better results than the Left Mid Station configuration.

LIGO VACUUM EQUIPMENT

ACCEPTANCE TEST REPORT

5.8 LN2 Consumption Test

The LN2 consumption test has been conducted per Acceptance Test Procedure V049-2-114. The duration between refills exceeded 100 days.

• • •

LIQUID NITROGEN CONSUMPTION TEST Ref. Spec. V049-2-208

Station

WA. Left End

Cryopump WCP7

Test	Start	Finish
Date	5/6/98	5/16/98
Time	7:00	11:00

Storage Tank	WDW7
14400	gallons total volume
13700	gallons at full trycock
13700 x 0.9 =	12330 usable gallons
300	in.H2O level indication at full trycock
45.67	gallons / in.H2O

Results

Starting level=	154	in.H2O		
Ending level=	131	in.H2O		
Duration=	244	Hours		
Liquid consumed=	1050.3	gallons		
Tank pressure=	15	psig		
Ave.consumption fo	4.30	gal/hour		
Projected duration f	<u>119.3</u>	days		

PSI 📈 98 LIGO

Г

Title: PROCEDURE FOR BACKFILL/PUMPDOWN DEMONSTRATION AND LN2 CONSUMPTION TEST							
	DA TA SHEFT				page 1		
STATION	LE	ISO. SECT		[
OPER.							
DATE	516*	577	58	519	5/11	5/12	5/13
TIME	700	730	705	815	815	745	110
LN2				:			
PI	15 psig	15psig	15 prig	15 prig	15 prig	15psig	15psig
PI				- 1 5			1
LI	154 "	150'A	148" 40	147"	143"	140"	138"
LI							
PT 401	0.3 psig	O.3 pig	0.3 psic	O.Z. paig	012psig	0.2 psig	Biz prig
PT					• •		
LIC	39.8%	39.4%	38.6%	38.2%	37.1%	36.4%	35.8%
LIC				t	, <u> </u>		
LCV OP	60	60	60	60	60	60	60
LCV OP							
LCV CL	15	20	20	20	20	20	20
LCV CL	ļ						
MADIN							
MAIN V.	0.0	109	126.1.29	1.65.59	LICO A	110 - 4	1.10 1.08
PI 424	dilk107	1.9 ×10 1	1.15×101	1.62×101	1.57×10	1.48 ×10	1.4/ × 10
PI 910		· · · · · · · · · · · · · · · · · · ·	1. 14 x 10 '	1.59 × 101	1.53×10-7	1.42×107	1.42×10 T
PI Dr		{				<u> </u>	ļ
ri CH1				1		}	<u> </u>
CH2	ļ						
GH3				•	,.		
0115							
IONP				·			
EI	ZAMAY	ZODDY	ZMON	30001/	ZONDV	Zami	20001
EI	2000 1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,	7400	
II CHI		25×10-54	3.2210-54	7.8×105A	2 6× 10-54	7.4×10-54	2.9 4/051
11 112		3.54.551	31 + 10-54	2. 8 × 1054	26×155A	24.1051	2.2×0°A
- UNC	<u> </u>		1.1 - 10 27	<u> </u>	MONUL!!!	C.TALO 14	C JAN A
		1		»	· · · · · · · · · · · · · · · · · · ·		
* 5	TART OF	240 hours	e TeST			· · · · · · · · · · · · · · · · · · ·	· · ·
					SPECIFICATION		
					Number: V049-2-208 Rev.0		
						Page	oor

p.3

Title: PROCEDURE FOR BACKFILL/PUMPDOWN DEMONSTRATION AND LN2 CONSUMPTION TEST

			<u> </u>			Dage 2	
: `			DAT	A SHEET		VJ	
STATION	TET	ISO. SECT					
OPER.			1				
DATE	5/14	5/15	5/16/98*				
TIME	905	914	11:11	. <u></u>			
LN2						i	
PI	15 psig	15 psig	14 10519	· • • • • • • • • • • • • • • • • • • •			
PI	- v /		10 2 11				
LI	136"	盘134"	13/2	•			
LI			<u> </u>				
PT 401	0.3	0.3	0.5	·			
PT		21.1.01	237-243	· · · · · · · · · · · · · · · · · · ·			
LIC	35.5%	34.4 10	02 1 %.	•			
LIC		94 70	92.1 10				
LCV OP	60	40	60				
LCV OP	2.0	20	20				
LCV CL	- 20	20					
LUV UL							
(MATN V				-			
DI UTAIN V.	1 47 = 10-9	1.40E-9	1,3 ×10-9				
PI HID	124/10-9	1.34E-9	1,24 ×10-9				
PI	1.5 (X(U)						
PI	1						
GH1				·			
GH2					· · · · · · · · · · · · · · · · · · ·		
GH3							ļ
ION P.							
EI Cutl.Z	3000V	3000V	30000				
EI			2015-15	 			
II CHI	2.2×105A	2.1E-5	2,02-5			·	
II CHZ	2.2×10-5A	2.1E-5	2,00-5			+	
			+				+
			<u></u>	1			

** 240 hour test finished

Number: V049-2-208

SPECIFICATION

Rev.0

LIGO VACUUM EQUIPMENT

ACCEPTANCE TEST REPORT

5.9 Noise/Shock/Vibration Field Test

E. S. W. D. S. S. S.

t di Arken

The Noise/Shock/Vibration Field Testing was conducted by Cambridge Acoustical Associates (approximately .03g Vs. .01g specification requirements.

10 STATION

VIBRATION, NOISE, SHOCK MEASUREMENTS OF THE PSI VACUUM EQUIPMENT AT THE LIGO END AND MID STATION

HANFORD, WA

Prepared By: Kyle Martini

June 1998

Test Report

U-2379-8001

Prepared for:

Process Systems International, Inc.

20 Walkup Drive

Westborough, MA 01581-5003

PSI Purchase Order 554-386-00

A Department of ETC Division Engineering Technologies Group/A&T, Inc. 84 Sherman St., Cambridge, MA 02140

VIBRATION, NOISE, SHOCK MEASUREMENTS OF THE PSI VACUUM EQUIPMENT AT THE LIGO END AND MID STATION HANFORD, WA

Prepared By: Kyle Martini

June 1998

Test Report U-2379-8001

Prepared for:

Process Systems International, Inc. 20 Walkup Drive

Westborough, MA 01581-5003

PSI Purchase Order 554-386-00

Cambridge Acoustical Associates, Inc. A Department of Engineering Technologies 84 Sherman Street Cambridge, MA 02140-3261
TABLE OF CONTENTS

. ,

I.	INTR	ODUCTION AND SUMMARY	1
II.	MEAS	SUREMENT DESCRIPTION	2
.,	А.	Vibration Measurements	2
B.	Noise	Measurements	6
	C.	Shock Measurements	7
III.	MEA	SUREMENT RESULTS	8
	Α.	Vibration Results	8
	B.	Noise Results	12
	р. С	Valve Shock Results	12
13 7	C. Defi	FDENCES	13
1.	KEFI		14
ТАВ	LES	· · · · · · · · · · · · · · · · · · ·	
- APP	ENDIX	A PSI-EQUIPMENT VIBRATION MEASUREMENTS	^
	-	AT LIGO END STATION	1 1 • 1
APP	ENDIX	X B PSI EQUIPMENT VIBRATION MEASUREMENTS	D 1
		AT LIGO MID STATION	B.1
APP	ENDLX	C PSI VALVE SHOCK MEASUREMENTS AT	X
		-LIGO END STATION	C:1
ΑΡΡ	FNDI	A D PSI VALVE SHOCK MEASUREMENTS AT	
AI 1		AT LIGO MID STATION	D.1
		A THE FEETHER DEPORT MAY	-1-168
	- X	ESEE END STATION RETONT VOIL	

2

I. INTRODUCTION AND SUMMARY

The first phase of the LIGO commission test for vibration, noise, and shock has been completed at the Hanford, WA end- and mid- stations. Acoustic and vibration measurements were recorded on or near the chambers in these facilities with individual PSI vacuum equipment operating and the facility in a "quiet mode". Background measurements were also recorded. In addition manual and motorized valves were open and closed while shock measurements were recorded on the valve and on the chambers.

The results of the measurements are summarized as follows:

A. The background vibration levels, "quiet mode" (see Section II.A.2), are significantly higher than the LIGO vacuum equipment specification, and typically fluctuates about the higher LIGO building vibration specification. When measuring the vibration levels due to the operation of the vacuum equipment, the background vibration dominates much of the frequency range.

B. Operating the ion pump does not measurably increase the vibration levels.

C. Excitation frequencies of the molecular turbopump are 48 and 54 Hz due to the pump's controller, 280 Hz of unknown origin, and its spin frequency of 450 Hz and higher harmonics. A broadband resonance of the beamsplitter at 300 Hz amplified the 280 Hz excitation frequency. The vibration isolation system designed for the turbopump was short circuited during measurements to prevent the bellows from collapsing. This transmitted higher vibration than expected.

D. The excitation caused by boiling in the cryopump is broadband and tends to increase the overall level of vibration. Controlling the boil process is essential in minimizing vibration. During our measurements, we varied the operation of the cryopump (see Sections II.A.4.d and III.A.5) and significantly changed the levels of vibration. At the lower frequencies there is a 10 dB reduction in level across the beam manifold bellows between the cryopump and the beamsplitter. Overall reduction in the

resonance response to the broadband excitation of cryopump as well as the background noise could be achieved by increasing the effective loss factor of the structure.

E. The noise measured during the operation of the turbopump did not meet the LIGO's noise specification above 125 Hz, as expected. A properly installed noise enclosure around the pump and its controller would reduce the noise level to the rooms background level, which also does not meet specification above 125 Hz.

F. Shock measurements on the beamsplitter chamber, when the manual valves were opened or closed, met or slightly exceeded LIGO's revised shock specification, with the exception of the 14" ion pump valve in the mid station. When the spring loaded mechanism released during opening of this valve, the specification was exceeded by a factor of 2.7. Levels on the valve body were significantly higher for all valves.

G. When operating the large gate valves, the levels on the chamber were 3-4 times greater than the specification. Levels on the large gate valve's body were not as high as for the manual valves.

H. The results at the mid-station overall are similar to the end-station, with narrow band variation.

II. MEASUREMENT DESCRIPTION

A. Vibration Measurements

1. <u>General Test Conditions</u>

The PSI equipment was under a high vacuum for all tests. To highlight sources of energy originating in the vacuum equipment, tests were conducted with a minimum of facility-induced background noise and vibration, "quiet mode". At each observation location, measurements were recorded with each piece of vacuum equipment (ion pump, turbopump and cryopump) operated alone. Background measurements, without any vacuum equipment operating, were recorded for comparison.

A typical measurement, at an observation or receiver location on a chamber, recorded vibration in three mutually perpendicular directions. To span the full frequency range of the LIGO specification, two high-sensitivity ultra low-noise accelerometers were utilized. A total of six measurements was recorded at each chamber receiver location. For floor measurements, a single vertical low frequency measurement was performed.

2. Instrumentation

The two vibration sensors were a Wilcoxon Research model 731A accelerometer (10V/g, 600 gm.), for frequencies from 0.1-300 Hz, and a model 916BTO-1 (7.5 V/g, 700 gm), which provided low noise capabilities above 300 Hz. Manufacturer's specifications for the two accelerometers are shown in Figure 1. The equivalent acceleration spectral densities corresponding to the electronic noise floors of the sensors are shown Figure 2. Recommended manufacturer's battery power units were used with the accelerometers.

To perform the tri-axial vibration measurements, a Wilcoxon Research Model TC1 triax cube with a non-conductive coating was utilized. The cube was designed for the Model 731 seismic sensor and can accommodate the Model 916 sensor but with a frequency limitation. Based on information from the manufacturer, it is estimated that the cube may influence measurements above 1-2 kHz. In addition, due to the mass of the accelerometers and the cube, a massive mounting location is required to measure the higher frequencies.

A digital PC based data acquisition system with a dynamic range of 72 dB recorded the vibration signals. Gain control in both the accelerometer's power unit and the data acquisition system optimized the dynamic range of the recorded signal. SIGNAL¹ software controlled the acquisition and processing of the data.

For the low frequency measurements, the data were acquired at 1250 samples per second for 98.3 seconds using a 450 Hz anti-aliasing filter. Averaged power spectral

density (PSD) spectra (4096 lines and 30 averages) were created from the data using a Hanning window. Similarly, the high frequency measurements were acquired at 12,500 samples per second for 9.83 seconds using a 4,500 Hz anti-aliasing filter. Time histories were saved for all measurements, in the event that additional post-processing is required

3. <u>Measurement locations</u>

Measurement locations (receivers) were selected by Michael Zucker from the LIGO/MIT team². Figures 3a and 3b indicate the locations of all vibration, noise, and shock measurements in the end- and mid-station respectively. Vibration measurement locations are indicated by the symbol 731/916, which relate to the sensor used. Photographs of the locations are shown in Figure 4. In this report, the locations shown in Figure 3, going from left to right, will be designated as follows:

End-Station Vibration Locations:

Position 1-	Beamsplitter Nozzle G	Circumferential Direction
		Vertical Direction
		Radial Direction
Position 2-	Beamsplitter Flange	Axial Direction
		Radial Direction
Position 3-	Cryopump Stiffener	Axial Direction
		Vertical Direction
		Radial Direction
Position 4-	(Tie Rod) Bracket Near	Axial Direction
	Beam Tube	Vertical Direction
		Radial Direction
Position 5-	Floor (near Beamsplitter)	Vertical Direction

Mid-Station Vibration Locations:

Position 1-	Beamsplitter Nozzle G	Circumferential Direction
		Vertical Direction
		Radial Direction
Position 2-	Beamsplitter Flange	Axial Direction
		Vertical Direction*
		Radial Direction
Position 5-	Floor (near Beamsplitter)	Vertical Direction

*High frequency accelerometer only

Surface normals and space restriction did not allow a global orientation of sensors and the directions listed above are slightly rotated. At position 2 on the beamsplitter flange, the flange bolts interfered with performing measurements in the vertical direction.

4. **Operating Conditions During Measurements**

Vibration measurements were recorded for four different operating conditions:

a. Quiet Mode - Background vibration of the quiet mode was measured at all receiver locations. During the quiet mode, all facility equipment was shut off except lights, a transformer, and several electronic racks located in the area. With the exception of the background measurements at position 3 and 4 in the end station, the data acquisition system was located in a separate room behind closed doors. At a later time, the background measurement was repeated at location 3 and showed no significant difference.

A reference accelerometer, located on the floor of the building away from the equipment, was used to monitor changes in background levels during the measurements. Wind, traffic, and other source of external vibration could be observed.

b. <u>Ion Pump Source</u> - In the end station, vibration measurements were recorded at position 2 while the ion pump nearest the beamsplitter, was operating. It was determined that the ion pump was not a significant sources, and therefore no further measurements were performed.

c. <u>Turbo Source</u> - In both the end- and mid-stations, the turbo pump at beam manifold section WA-7 was operating. Because the mechanical room was not totally closed-off, the turbo-pump was operated without its backing pump. During the test, the bellows connecting the pump to the manifold was structurally short circuited to prevent it from collapsing under the vacuum load. This eliminated the vibration mitigation expected from the bellows. Measurements were recorded at positions 1,2 and 5 in both stations.

d. <u>Cryo Source</u> - Cryopump measurements were performed only in the end station at receiver positions 1,2,3 and 4. Measurements were recorded on two separate days. During both days, the pump was filled and ready to test in approximately two hours. There was some question whether the pump and/or fill line reached steady state conditions? On the first day, the pump was overfilled to 94% capacity, with the LN_2 liquid level in the vessel above the inlet line. Vibration measurements were recorded at positions 2 and 3. On the second day the LN_2 liquid level was set at the normal operating level, below the fill line, and two series of tests were performed. First, operating set points were varied while the vibration response was measured at position 3, the nearest location. Three flow rates were tested, M1, M2, and M3. M1 is the slowest, and M3 is the fastest flow speed. These flow rates were set using the $\frac{1}{2}$ manual bypass valve (automatic control was not operational). Next, measurements were recorded at positions 1,2,3 and 4 for the "same" operating conditions to determine the flow of vibration energy.

e. <u>HVAC Source</u> - An additional measurement was recorded at position 2 with the HVAC on, and all other equipment in its quiet mode.

B. <u>Noise Measurements</u>

Background and turbo source noise measurements (see previous section) were recorded in both the end- and mid- stations. A Bruel and Kjaer Model 2236 Precision Sound Level Meter measured the overall sound pressure level at the microphone locations shown in Figures 3a and 3b. Octave band measurements were read directly from the sound level meter and compared with the LIGO noise specification. Narrowband measurements, recorded at 12,500 samples per second, were processed as described in the previous section for diagnostic purposes.

C. Shock Measurements

Shock measurements were recorded on sample valves, opening and closing, in both the end and mid station. Valves tested include the 10" manual turbopump valves, the 14" manual ion pump valves, the main gate valve WGV-18 in the end station, and the main gate valves WGV10 and WGV11 in the mid station.

General purpose PCB Model 338A35 accelerometers measured the shock levels. A single accelerometer was mounted on the valve body for diagnostic purposes, and a triaxial arrangement of accelerometers was mounted on the upper "G" nozzle of the beamsplitter nearest the valve. Locations of the accelerometers are indicated in Figures 3a and 3b by the symbol 338. Photographs of the locations are shown in Figure 4.

Measurements were recorded by our data acquisition system at 1250 samples per second using a 500 Hz anti-aliasing filter. A 100 Hz low passed filter was applied to the data, and maximum and minimum shock levels were measured. These values are compared to LIGO's revised shock specification: "shock levels should be less than 0.01 g's peak to peak" (note: the absolute sum of the min-max measurements is an upper bound estimate of the peak to peak level). For diagnostic purposes, the min-max measured levels are listed from the 500 Hz filtered data.

For the manual valves, two sets of opening and closing measurements were recorded, while only one set of data was recorded for the large gate valves. Per PSI request, additional shock measurements of the large gate valves at various operating speeds were recorded.

III. MEASUREMENT RESULTS

A. <u>Vibration Results</u>

Some 110 different vibration measurements were recorded and analyzed. Acceleration power spectral density curves are plotted in Appendix A and B for the endand mid-station respectively. For reference, the LIGO equipment and building vibration specifications are shown on each plot. For easy comparison between measurements, the dynamic range and number of frequency decades are the same on each plot and therefore can be overlaid.

Our comments are as follows:

1. <u>Structural Resonances</u>

Structural resonances can be inferred from the measurements by observing spectrum peaks that cannot be attributed to the known narrowband sources. From our previous analyses³, we can include additional insights into the identification of the resonant modes.

The resonant frequencies identified are:

a. Below 12 Hz, the peaks are primarily due to the six isolation frequencies of the inner cryopump vessel. The analysis also predicts a lateral beam mode of the cryopump section between the two manifold bellows. Resonant responses are greatest at Position 3, located on the cryopump (see Figs E3-14&18).

b. At 15 Hz, the manifold section between the beamsplitter and the first bellows resonates in a lateral beam mode(see Fig. E2-17,22).

c. Additional beam manifold modes occur at 20 Hz and 50 Hz, (see Fig. E2-17,22 and E3-14,18).

d. At 52 Hz, an axial mode involving the mass of the large diameter manifold and the local stiffness of its neck down section is resonant (see Fig. E2-7,15).

e. At 90 Hz, there is an apparent resonance of unknown origin.

f. The cryopump vessel has a shell resonance at approximately 200 Hz. (See Fig. E3-15&19). A similar mode was evident in our previous measurement of the cryopump's inner vessel (see Fig. 3f of Ref. 3).

g. Around 300 Hz there is a broad build up owing to a beamsplitter ... resonance (see Fig. E1-8,10,etc.).

2. <u>Quiet Mode</u>

Background vibration measurements are significantly higher than the LIGO vacuum equipment specification (see Figs. E1-7 thru 12,E2-7 thru 11, E3-7 thru 12,21&22, E4-7 thru 12, EM-7, Mid-7 thru 12, Mid-19,21,22,&23 and Mid-29). They typically fluctuate around the higher LIGO building specification shown on the plot. Below 1 Hz, the levels are typical of background ground vibration, decreasing with increasing frequencies. Between 5 and 60 Hz, the cryopump isolation frequencies and the beam manifold resonances described above amplify the floor vibration. Narrow band line and fan blade excitations and their harmonics, evident above 29 Hz, are mixed in with additional structural resonances.

As mentioned previously, the data acquisition system was inside the vacuum equipment room when the background measurements were recorded at position 3 and 4. A repeat of measurements at position 3 (compare Figs. E3-21&22 with E3-11&10), showed no significant difference with the system in another room.

3. Ionpump Excitation

Measurements with the ion pump operating are shown in Figs. EM-11 thru 14. There was no significant difference in the levels with the ion pump on or off.

4. <u>Turbopump Excitation</u>

The turbo source measurements are shown in Figs. E1-14 thru 19, E2-15 thru 18, EM-9, and Mid-13 thru 18. Our comments are as follows:

a. Below 48 Hz, the measured levels are approximately the same as the background.

b. At 48 and 54 Hz, there are sharp peaks due to the turbopump's

controller.

c. At approximately 280 Hz there is a sharp peak that is amplified by the beamsplitter's broad resonance at 300 Hz (see Fig. E1-15,17). It is not as dominant at the other locations, and its source is not known. It was measured previously, but not investigated, during characterization of the turbopump's vibrations (see Fig. 4c of Ref. 3).

d. The spin frequency of the turbopump at 450 Hz and harmonics at 900 Hz and above are quite evident in all the measurements. There are variations in the measured levels between the end and mid station at the same position, as much as 10 dB. This is not unusual for lightly damped systems with narrow band excitations.

e. The turbo's bellows, designed to reduce vibration, was short circuited during the measurements. If properly installed, we would expect the bellows to reduce the vibration levels by 10-20 dB.

f. Because the source consists of primarily narrow band frequencies, a dynamic absorber tuned to a structural resonance frequency that is coincident with the source will reduce the vibration response.

5. <u>Cryopump Excitation</u>

The cryopump source measurements are shown in Figs. E1-21, E2-20 thru 25, E3-14 thru 40, E4-13. Our comments are as follows:

a. The cryopump excitation is broadband and tends to excite the system's resonances.

b. The response to the cryopump source varied with operating conditions. In the first set of tests (see Figs. E3-14 thru 20 and E2-20 thru 24) the pump was over filled to 94% capacity, and the measured levels were higher across the frequency range than for subsequent tests.

In the second set of tests, the pump was filled to correct operating level, and an accelerometer was placed on the fill pipe away from the pump to monitor the variation of its vibrations with flow. Just prior to the first test, the fill line was open to a flow rate of M3 and measurements were recorded (E3-23&24). These measurements, although not as high as for the case when the pump was overfilled, were higher in the lower frequencies than for subsequent tests. Rich Bagley of PSI thought this occurred because the fill pipe was initially warm and additional boiling occurred inside the fill line.

In subsequent tests, the flow rate was varied (Figs. E3-25 thru 39). There was no significant change in vibration level with flow, except for the vibration on the fill line when there was no flow. Although this is puzzling, it is consistent with early measurements (see Fig. 3f of Ref. 3). In a final test, a one psi back pressure was applied to the fill line (see Fig. E3-40). This increased the level of vibration.

c. For approximately the same operating conditions, vibration measurements were recorded at all four positions in the radial direction (see Fig. E1-21,E2-25, E3-39, and E4-13). In the low frequencies, there is approximately a 10 dB reduction across the manifold bellows.

5. <u>HVAC Excitation</u>

A test was performed to determine the impact the HVAC has on the equipment response (see Figs. E2-12 thru 14). The levels on average are 10 dB above the background levels. They are also 10 dB above the turbopump and cryopump excited levels between 10-50 Hz.

6. <u>Mid Station</u>

The results at the mid-station overall are similar to the end station. Because the equipment have slightly different vibration signatures, there are narrow band variations.

B. <u>Noise Results</u>

Figures 5 and 6 compare the background and turbopump noise measurements in the end- and mid-stations, respectively, with the LIGO noise specification, NC-20. Below the 125 Hz octave band, the background noise dominates, but the levels are below the specification. Above 125 Hz, the turbopump noise as well as the background noise is above the specification. The background noise in the mid station is slightly lower than in the end station, but the octave band noise at 250 Hz and 1000 Hz is significantly higher. This is due to higher narrow band peaks at 270 and 900 Hz (see Figs. EM-16 and Mid-33). A properly designed noise enclosure around the turbopump would drastically reduce these levels.

C. Valve Shock Results

A tri-axial accelerometer was located on the upper "G" nozzle of the beamsplitter, nearest the valve, to monitor the shock during opening and closing of the valve. Accelerometer #1 sensed the shock in the circumferential direction of the beamsplitter, #2 sensed the vertical direction, and #3 the radial direction. In addition a fourth accelerometer, #4, was located on the valve body for diagnostic purposes.

A 500 Hz anti-aliasing filter was utilized when recording the data. Subsequently, a digital 100 Hz low pass filtering operation was performed on the data in order to compare it with the LIGO specification. In Appendix C and D are the plots of the acceleration time histories of each event for the end- and mid station respectively. Corresponding maximum and minimum acceleration shock levels recorded when the valves open and closed are listed in Tables I and II for both sets of filtered data.

IV. REFERENCES

1 - Engineering Design, SIGNAL User's Guide, Ver. 3.0, July, 1996.

- 2 MEZ 4/10/98 Rev-01, Test points for Hanford Y mid- and end-station vacuum equipment acceptance vibration and acoustic testing, Personal Communication from Michael Zucker of MIT to Kyle Martini of CAA, dated 10 April, 1998.
- 3 Kyle Martini, Klaus Kleinschmidt, Joel Garrelick, Carina Ting, <u>Measurement and</u> <u>Analysis of LIGO Vacuum System Shock Vibration and Acoustic Noise</u>, Rev2, CAA Report U-2379-2041, dated 10 January, 1997.

. ..

	500 Hz Filter		100 Hz F	100 Hz Filter	
<u>Accel #</u>	<u>Max(g)</u>	<u>Min(g)</u>	<u>Max(g)</u>	<u>Min(g)</u>	
	1 End Station 1)" turbopump v	valve opening		
1	0.0165	-0.0269	0.0071	-0.0062	
2	0.0278	-0.0387	0.0038	-0.0048	
3	0.0150	-0.0167	0.0066	-0.0062	
4	0.2692	-0.2039	0.1133	-0.0409	
	2 End Station	l0" turbopump	valve closing		
1	0.0158	-0.0130	0.0043	-0.0060	
2	0.0196	-0.0165	0.0039	-0.0048	
3	0.0100	-0.0090	0.0040	-0.0039	
4	0.1773	-0.1093	0.0274	-0.0287	
	3 End Station	10" turbopum	p valve opening		
1	0.0216	-0.0272	0.0064	-0.0073	
2	0.0349	-0.0403	0.0039	-0.0039	
3	0.0240	-0.0165	0.0058	-0.0056	
4	0.2523	-0.2116	0.1542	-0.0332	
4 End Station 10" turbopump valve opening					
1	0.0104	-0.0106	0.0059	-0.0070	
2	0.0151	-0.0117	0.0051	-0.0046	
3	0.0125	-0.0119	0.0066	-0.0067	
4	0.2005	-0.1130	0.0567	-0.0638	

Table I - LIGO END STATION VALVE MEASUREMENT RESULTS

- - -

	5 End Station 10" turbopump valve closing						
1	0.0081	-0.0115	0.0038	-0.0039			
2	0.0114	-0.0086	0.0042	-0.0036			
3	0.0071	-0.0061	0.0042	-0.0039			
4	0.1066	-0.0624	0.0090	-0.0082			
	500 Hz I	Filter	100 Hz F	ilter			
Accel #	<u>Max(g)</u>	<u>Min(g)</u>	<u>Max(g)</u>	Min(g)			
	6 End Station	14" ionpump v	valve opening				
1	0.0276	-0.0286	0.0046	-0.0063			
2	0.0324	-0.0389	0.0049	-0.0079			
3	0.0166	-0.0171	0.0100	-0.0100			
4	0.3636	-0.2224	0.3430	-0.1865			
	7 End Station	14" ionpump	valve closing				
1	0.0296	-0.0290	0.0043	-0.0041			
2	0.0186	-0.0205	0.0041	-0.0043			
3	0.0117	-0.0128	0.0048	-0.0045			
4	0.0299	-0.0389	0.0106	-0.0096			
	8 End Statio	n 14" ionpumj	p valve opening				
1	0.0111	-0.0113	0.0050	-0.0059			
2	0.0128	-0.0151	0.0048	-0.0051			
3	0.0096	-0.0075	0.0080	-0.0060			
4	0.3689	-0.3157	0.3565	-0.3054			
	9 End Statio	on 14" ionpum	np valve closing				
1	0.0195	-0.0186	0.0043	-0.0046			
2	0.0133	-0.0146	0.0048	-0.0043			
3	0.0113	-0.0107	0.0047	-0.0045			

15

4	0.0158	-0.0247	0.0063	-0.0072
500 Hz Filter			100 Hz Filter	
Accel #	<u>Max(g)</u>	Min(g)	Max(g)	<u>Min(g)</u>
10 End	l Station 42" n	notor valve near	beamsplitter op	ening
1	0.0388	-0.0452	0.0231	-0.0207
2	0.0623	-0.0636	0.0095	-0.0128
3	0.0298	-0.0308	0.0214	-0.0235
4	0.1139	-0.1244	0.0585	-0.0680
11 En	d Station 42"	motor valve near	r beamsplitter clo	osing
1	0.0144	-0.0158	0.0091	-0.0081
2	0.0218	-0.0168	0.0080	-0.0091
3	0.0122	-0.0117	0.0091	-0.0098
4	0.0464	-0.0684	0.0434	-0.0519

	50	0 Hz Filter		100 Hz Filter	
	<u>Accel #</u>	Max(g)	Min(g)	<u>Max(g)</u>	<u>Min(g)</u>
12 Mid Station Background levels					
	1	0.0054	-0.0056	0.0050	-0.0049
	2	0.0052	-0.0057	0.0050	-0.0047
	3	0.0057	-0.0056	0.0051	-0.0049
	4	0.0051	-0.0051	0.0044	-0.0042
		500 Hz	Filter	100 Hz F	ilter
	Accel #	Max(g)	<u>Min(g)</u>	<u>Max(g)</u>	<u>Min(g)</u>
		13 Mid Station	10" turbopun	ap valve opening	
	1	0.0083	-0.0059	0.0049	-0.0040
	2	0.0057	-0.0055	0.0042	-0.0042
	3	0.0059	-0.0049	0.0052	-0.0044
	4	0.0314	-0.0267	0.0102	-0.0133
		14 Mid Statio	n 10" turbopu	mp valve closing	
	1	0.0261	-0.0198	0.0036	-0.0038
	2	0.0175	-0.0162	0.0038	-0.0041
	3	0.0157	-0.0194	0.0044	-0.0046
	4	0.1638	-0.1487	0.0058	-0.0058
		15 Mid Station	n 10" turbopur	np valve opening	
	1	0.0109	-0.0155	0.0045	-0.0053
	2	0.0103	-0.0102	0.0039	-0.0050
	3	0.0083	-0.0093	0.0061	-0.0063
	4	0.0491	-0.0335	0.0133	-0.0106

Table II - LIGO END AND MID STATION VALVE MEASUREMENT RESULTS

16 Mid Station 10" turbopump valve closing						
1	0.0062	-0.0084	0.0050	-0.0043		
2	0.0084	-0.0067	0.0039	-0.0043		
3	0.0053	-0.0079	0.0043	-0.0055		
4	0.0483	-0.0416	0.0048	-0.0050		
	500 Hz I	Filter	100 Hz F	ilter		
<u>Accel #</u>	<u>Max(g)</u>	<u>Min(g)</u>	<u>Max(g)</u>	<u>Min(g)</u>		
	17 Mid Statio	n 14" ionpumj	o valve opening			
1	0.0718	-0.0791	0.0081	-0.0061		
2	0.0684	-0.0918	0.0058	-0.0069		
3	0.0506	-0.0363	0.0095	-0.0140		
4	0.5475	-0.1126	0.4695	-0.0210		
	18 Mid Station	14" ionpump	valve closing			
1	0.0130	-0.0129	0.0065	-0.0067		
2	0.0084	-0.0062	0.0051	-0.0043		
3	0.0090	-0.0081	0.0061	-0.0062		
4	0.0154	-0.0109	0.0106	-0.0068		
19 Mid Station 14" ionpump valve opening						
1	0.0825	-0.0815	0.0079	-0.0071		
2	0.0739	-0.0760	0.0063	-0.0054		
3	0.0420	-0.0303	0.0145	-0.0131		
4	0.5465	-0.1078	0.4609	-0.0266		

. .. .

20 Mid Station 14" ionpump valve closing					
1	0.0163	-0.0140	0.0048	-0.0055	
2	0.0091	-0.0075	0.0041	-0.0055	
3	0.0091	-0.0100	0.0050	-0.0056	
4	0.0124	-0.0130	0.0070	-0.0083	
	500 Hz I	Filter	100 Hz Fi	lter	
<u>Accel #</u>	Max(g)	Min(g)	<u>Max(g)</u>	Min(g)	
21 Mid Sta	tion 42" moto	r valve WGV1	0 partial opening 17	/00 rpm	
1	0.1163	-0.1137	0.0119	-0.0160	
2	0.0332	-0.0244	0.0117	-0.0117	
3	0.0329	-0.0321	0.0171	-0.0178	
4	0.0886	-0.0710	0.0551	-0.0588	
22 Mid Sta	ation 42" moto	or valve WGV	10 partial closing 17	00 rpm	
1	0.1324	-0.1151	0.0166	-0.0130	
2	0.0430	-0.0424	0.0130	-0.0122	
3	0.0395	-0.0367	0.0199	-0.0207	
4	0.2717	-0.1160	0.1554	-0.0631	
23 Mid Station 42"	motor valve V	VGV10 partial	l opening and closing	g at 1700 rpm	
1	0.1106	-0.1081	0.0141	-0.0177	
2	0.0391	-0.0522	0.0157	-0.0184	
3	0.0343	-0.0413	0.0242	-0.0239	
4	0.2156	-0.1189	0.1385	-0.0608	

1.1

19

ł

24 Mid Station 42" motor valve WGV10 partial opening and closing					
at 850 rpi 1	n 0.1263	-0.1330	0.0152	-0.0139	
2	0.0749	-0.0692	0.0123	-0.0123	
3	0.0377	-0.0345	0.0186	-0.0174	
4	0.1642	-0.1048	0.0870	-0.0644	
	500 Hz	Filter	100 Hz F	ilter	
Accel #	<u>Max(g)</u>	Min(g)	<u>Max(g)</u>	<u>Min(g)</u>	
25 Mid	Station 42" m	otor valve WGV	V11 opening 1700	rpm	
1	0.0243	-0.0270	0.0154	- 0.0196 ⁻	. •
2	0.0205	-0.0092	0.0194	-0.0083	
3	0.0316	-0.0313	0.0263	-0.0293	
4	0.0639	-0.0499	0.0180	-0.0248	
26 Mid Station 42" motor valve WGV11 closing 1700 rpm					
1	0.0226	-0.0243	0.0117	-0.0112	
2	0.0104	-0.0111	0.0074	-0.0070	
3	0.0182	-0.0204	0.0159	-0.0165	
4	0.0360	-0.0377	0.0155	-0.0152	
27 Mid Station 42	2" motor valve	e WGV11 partia	al opening and clos	sing at 850 rj	pm
1	0.0156	-0.0113	0.0101	-0.0075	
4	0.0403	-0.0398	0.0099	-0.0104	
28 Mid Station	42" motor va	lve WGV11 par	rtial opening and o	closing at	
425 rpm	0.0169	-0.0153	0.0051	-0.0065	
- 4	0.0828	-0.1227	0.0069	-0.0072	

WILCOXON SEARCH

WR

FEATURES:

- Compact construction to fit in tight spaces
- Ultra-high sensitivity
- Ultra low-noise electronics for clear
- signals at very low vibration levels
- **Miswiring protection**

Model 731-201 Ultra Low Frequency Seismic Accelerometer Fig. la

SPECIFICATIONS

DYNAMIC Sensitivity, ±10%, 25°C 10 V/g 0.5 g peak Acceleration Range 1% Amplitude Nonlinearity Frequency Response: 0.6 - 650 Hz ±5% 0.5 - 850 Hz ±10% 0.2 - 1,300 Hz ±3 dB Resonance Frequency, mounted, nominal 2.4 kHz 1% of axial Transverse Sensitivity, max. Temperature Response see graph ELECTRICAL Power Requirement: 18 - 30 VDC voltage source 2 - 10 mA current regulating diode Electrical Noise, equiv. g, nominal: 2µg Broadband 2.5 Hz to 25 kHz 2 Hz 0.12 µg/√Hz Spectral 10 Hz 0.06 µg/√Hz 0.03 µg/√Hz 100 Hz Output Impedance, max. 500 Ω 10 VDC Bias Output Voltage, nominal Grounding case grounded ENVIRONMENTAL 0 to 80°C Temperature Range 50 g peak Vibration Limit Shock Limit 250 g peak 20 µg/gauss Electromagnetic Sensitivity, equiv. g. Base Strain Sensitivity 0.0005 g/ustrain PHYSICAL 30.5 grams Weight nickel plated aluminumm Case Material adhesive Mounting microdot Connections

OPTIONS: Customer specified sensitivity, filtering, connectors.

ACCESSORIES AVAILABLE: Cementing studs, power supplies, amplifiers, signal conditioners, cable assemblies.

3.44" 3/8-16 threads 4 full threads -1.98*

DYNAMIC	75 V/a. +/ 2 dB
Sensitivity	1.0 119, 11 2 00
Frequency Response:	< 30 Hz
-3 dB	
+3 dB	> 15 KH7
Resonance	> 13 KHZ
Maximum Acceleration:	01004
Vibration	
Shock	200 g pk
FIECTRICAL	
Power Bernirement	
Voltage Source (low noise)	15 - 20 VDC
Current Regulating Diode	4 - 10 mA
Electrical Noise in 1Hz bandwidth at 25°C, nominal:	
100 Hz	30 nano g ms
1 447	3 nano g ms 👘
	1 nano g ms
Out it impedance may	500 Ω
Output Impedatice, max	10 VDC
Blas Ouiput voltage, typical	case grounded (to
Grounding	common wire)
ENVIRUNMENTAL	50°C
Operating Temperature, maximum	100°C
Storage Temperature, maximum	
PHYSICAL	700 a
Weight	A COL die w 2 51 hoight
Size	1.98° dia x 3.5° neight
Case Material	
Mounting	
Output Connector	MIL-C-5015, 2 pin
Pin A signal, power	
Pin B common, case	
Cabling	J1 PVC coaxial cable,
Arnu â munumunu	30 pF/ft, 0.080
·	> 3* 1
	1

Model 916BTO-1

Superquiet High Frequency Accelerometer

¹ The equivalent input noise of the following electronics should be less than 2 nanovolt/root Hz at 10 KHz and should be > 20 Hz high pass filtered to avoid degrading the signal. NOTES:

ACCESSORIES SUPPLIED: calibration data; SF7 mounting stud

ACCESSORIES AVAILABLE: Magnetic mounting bases; cementing stud; power supplies; amplifiers, signal conditioners

Fig. 1b

PRELIMINARY SPECIFICATIONS

Due to continued research and development, Wilcoxon Research reserves the right to amend this specification without notice.

Rev. 2 11/94

WILCOXON RESEARCH, Inc. • 21 FIRSTFIELD ROAD, GAITHERSBURG, MD 20878 USA • 1-800-WILCOXON • 301-330-8811 • FAX 301-330-8873

Fig. 4b Vibration Measurement Position 2 and Shock Measurement Postion

Fig. 4a Vibration Measurement Position 1

Fig. 4c Vibration Measurement Position 3

Fig. 4d Vibration Measurement on Fill Line

Fig. 4f Floor Vibration Measurement

Fig. 4e Vibration Measurement Position 4

Fig. 4h Valve Schok Measurement

Fig. 4g Acoustic Measurement

.

Cambridge Acoustical Associates

APPENDIX B PSI EQUIPMENT VIBRATION MEASUREMENTS AT LIGO MID STATION HANFORD, WA

LIGO/PSI VIBRATION MEASUREMENT LOG

Mid Station at Hanford, WA

VI. MEASUREMENT AT MID STATION-LOWER NOZZLE G ON BEAMSPLITTER

A. <u>Background Measurements 4/21/98</u>-everything shutoff except bld. transformer and one unknown electrical cabinet, vibration measurement equipment

behind door.

Mid-7 Circ. dir., Low freq. accelerometer

Mid-8 Circ. dir., High freq. accelerometer

Mid-9 Vertical dir., Low freq. accelerometer

Mid-10 Vertical dir., High freq. accelerometer

Mid-11Radial dir., Low freq. accelerometer

Mid-12Radial dir., High freq. accelerometer

B. <u>Turbopump 4/21/98</u>-Turbopump on near Beamsplitter, all other equipment

off, turbo backing pump not operating.

Mid-13 Circ. dir., Low freq. accelerometer

Mid-14 Circ. dir., High freq. accelerometer

Mid-15 Vertical dir., Low freq. accelerometer

Mid-16 Vertical dir., High freq. accelerometer

Mid-17 Radial dir., Low freq. accelerometer

Mid-17 Radial dir., High freq. accelerometer

B.1

Mid-18 Floor Ref., Zucker's accelerometer

VII. MEASUREMENT AT MID STATION-ON BEAMSPLITTER FLANGE

A. <u>Background Measurements 4/21/98</u> - everything shutoff except bld. transformer and one unknown electrical cabinet, vibration measurement equipment behind door.

Mid-19 Axial dir., Low freq. accelerometer

Mid-21 Vertical dir., High freq. accelerometer

Mid-22 Radial dir., Low freq. accelerometer

Mid-23 Radial dir., High freq. accelerometer

Turbopump 4/21/98-Turbopump on near Beamsplitter, all other equipment

off, turbo backing pump not operating

Mid-24 Axial dir., Low freq. accelerometer

Mid-25 Axial dir., High freq. accelerometer

Mid-26 Vertical dir., Low freq. accelerometer

Mid-27 Vertical dir., High freq. accelerometer

Mid-28 Radial dir., Low freq. accelerometer

C. <u>Floor Measurements 4/21/98</u> - everything shutoff except bld. transformer and one unknown electrical cabinet, vibration measurement equipment behind door for all other measurements.

Mid-29 Background, Vertical dir., Low freq. accelerometer

Mid-30 Background, Vertical dir., Zuckers accelerometer

Mid-31 Turbo Source, Vertical dir., Low freq. accelerometer

D. <u>Acoustic Measurement near Beamsplitter 4/20/98</u> - everything shutoff except bld. transformer and one unknown electrical cabinet, vibration measurement equipment behind door for all other measurements.

B.2

Mid-32 Background Measurement

Mid-33 Turbopump on Measurement

ab : zHhpa\g

ab : zHhpa/p

ab : zHhpa/g

][[

ab : zHhpa\p

gb : zHħpa/g

gb : zHhps/g

ab : zHħpe\g

gb : zHħpe\g

ab : zHhpa\p

gb : zHħpe\p

ab : zHhpa\p

ab : zHħpa\g

ab : zHhpe/p

gb : s/equm05

gp:s/ednwoz

APPENDIX D

PSI VALVE SHOCK MEASUREMENTS AT LIGO MID STATION HANFORD, WA

LIGO/PSI VALE SHOCK MEASUREMENT LOG

Mid Station at Hanford, WA

For each valve opening or closing test, eight curves are plotted. Plots 1-4 are shock measurements of accelerometers 1-4 with a 500 Hz low pass filter. Plots 5-8 are the same measurements using a 100 Hz low pass filter.

- V12 Mid Station Background levels
- V13 Mid Station 10" turbopump valve opening
- V14 Mid Station 10" turbopump valve closing
- V15 Mid Station 10" turbopump valve opening
- V16 Mid Station 10" turbopump valve closing
- V17 Mid Station 14" ionpump valve opening
- V18 Mid Station 14" ionpump valve closing
- V19 Mid Station 14" ionpump valve opening
- V20 Mid Station 14" ionpump valve closing
- V21 Mid Station 42" motor valve WGV10 partial opening 1700 rpm
- V22 Mid Station 42" motor valve WGV10 partial closing 1700 rpm
- V23 Mid Station 42" motor valve WGV10 partial opening and closing at 1700 rpm
- V24 Mid Station 42" motor valve WGV10 partial opening and closing at 850 rpm

V25 Mid Station 42" motor valve WGV18 opening 1700 rpm

V26 Mid Station 42" motor valve WGV18 closing 1700 rpm

g's*10E-3

g's*10E-3

6,8_{*}10E-3

g's*10E-3

g's*10E-2

6,2_{*}10E-3

g's*10E-2

s,ɓ

g's*10E-2

g's*10E-2

g's*10E-2

g's*10E-2

6's*10E-3

g's*10E-2

g's*10E-2

s,ɓ

9's*10E-2

g's*10E-2

g's*10E-2

g's*10E-2

s,6

₫,≈**₊10E-**5

g's*10E-2

s,ɓ

g's*10E-2

g's*10E-2

g's*10E-2

g's*10E-2
		V	
		:	······································
		1 In	
33			
	::5::::	E.	
9		3 🕂 🖓 🤁 🖓 🕄 🖓	ĕ
		ы. 10	LO N
N .	، ۲		
	- £	8	
0	· · · · · · · · · · · · · · · · · · ·		o ver
			ļĒ : : : ∑ : : : E₽
:::) :::,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			F
승규는 물건 전문 문이 문		-	
	:: <u>\$</u> ::::	<u> </u>	
<u> </u>			
		₹ ::::	
	ŧ		
	É.		± : : ₹ : : : : : : :
	1 1 6 1 1 1	1	
	····		ີ ວຸພວພວພວພ
0400940 0	5		
g's*10E-2	g's*10E-2	g's*10E-2 ⊌	bening g's*10E-2
4 0	(7)	o	· · · · · · · · · · · · · · · · · · ·
			· :::+:: Ž
		- ・・・・	
	· · · · · · · · · · · · · · · · · · ·		n in s
line in the second s		92 · · · · • • • • • • • • • • • • • • •	35 35
32		35	35 3710 ve
35		35	30 35 35 WGV10 v
30 35		30 35	30 35 30 35
35		30 35	5 30 35 42" WGV10 v
35 30 35		25 30 35 C	sc 30 35 25 30 35 ec 25 30 35
25 30 35 Bec		25 30 35 sec	sec 30 33 sec 30 35 0 25 30 35 sec 42" WGV10 v
0 25 30 35 sec		20 25 30 35 e sec	20 23 30 33 e : sec 20 25 30 35 e : sec 1 Station 42" WGV10 va
20 25 30 35 me : sec		20 25 30 35 me:sec	ime : sec 20 25 30 35 20 25 30 35 7ime : sec
20 25 30 35 Time : sec		5 20 25 30 35 Time : sec	Time : sec 15 20 25 30 35 15 20 25 30 35 Time : sec Mid Station 42" WGV10 va
15 20 25 30 35 Time : sec		15 20 25 30 35 Time : sec	15 20 25 30 33 Time : sec 15 20 25 30 35 Time : sec Time : sec
15 20 25 30 35 Time : sec		15 20 25 30 35 Time : sec	Time: sec Time: sec 0 15 20 25 30 35 Time: sec
0 15 20 25 30 35 Time : sec		10 15 20 25 30 35 Time: sec	10 15 20 23 30 33 Time: sec 10 15 20 25 30 35 V21- Mid Station 42" WGV10 va
10 15 20 25 30 35 Time : sec		10 15 20 25 30 35 Time: sec	10 15 20 25 30 33 Time: sec 10 15 20 25 30 35 V21- Mid Station 42" WGV10 va
10 15 20 25 30 35 Time : sec		5 10 15 20 25 30 35 Time : sec	5 10 15 20 25 30 33 Time: sec 5 10 15 20 25 30 35 V21- Mid Station 42" WGV10 va
5 10 15 20 25 30 35 Time : sec		5 10 15 20 25 30 35 Time: sec	5 10 15 20 23 30 33 Time: sec 5 10 15 20 25 30 35 Time: sec
5 10 15 20 25 30 35 Time : sec		5 10 15 20 25 30 35 Time : sec	5 10 15 20 25 30 35 10 15 20 25 30 35 0 5 10 15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35 11me : sec. vzl- Mid Station 42" WGV10 va
0 5 10 15 20 25 30 35 Time : sec		0 5 10 15 20 25 30 35 Time: sec	0 5 10 15 20 23 30 33 5 7 7 7 15 20 23 30 35 6 7 7 7 15 20 25 30 35 15 0 5 10 15 20 25 30 35 7 10 15 20 25 30 35 7 10 15 20 25 30 35
10 08 0 5 10 15 20 25 30 35 Time : sec		0 5 10 15 20 25 30 35 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 5 10 15 20 23 30 33 15
-08 0 5 10 15 20 25 30 35 Time: sec		0 5 10 15 20 25 30 35 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 5 10 15 20 25 30 35 10

÷

s,ɓ

s,ɓ

s'g

d,e₊10E-5

146

(t

50 100 150 200 250 300	50 100 150 200 250 300 Time: sec	50 100 150 200 250 300 Time: sec	5 5 50 100 150 200 250 300 Hz data, 5-8 100 Hz data Time: sec
م اب م م ع د ع د ع د ا ک *10E-2	ф й т о т ю ю g's*10E-2	0 0 ¹ / ₂ ×10E-S	
00 250 300	200 250 30	200 250 30	200 250 3 200 250 3
00 150 2	Time : sec	100 150	100 150 Time: sec
20	50		0 50

g's*10E-2

٠.

.

g's*10E-2

g's*10E-2

g's*10E-2

g's*10E-2

g's*10E-2

g's*10E-2

LIGO VACUUM EQUIPMENT

ACCEPTANCE TEST REPORT

5.10 Station Acceptance Test Summary and Signoff Sheet

v049-1-168.doc

B arrier	END STATION ACCEPTA			
[N	A LEFT END STA.	By	Date Complete	Comments
1.	LN ₂ Tank Inspection Tank S/N ≤ 0.8696	Sim	11/10/97	75 mTorr @ 38°F
2.	(per V049-2-102) Regeneration Heater Inspection HTR # (per V049-2-102)	JF	2-19-98	need to reduce power input
3.	Cryopump Instrumentation Calibration & Functional Test	JF/.Sm	2-19-98	
4.	Vacuum Instrumentation Checkout	JF/DH RW	2-19-98	
5.	Fill LN ₂ Tank	Sim	1/16/98	52 mtorr, INITAL FILL 125", 6 PSIG
6.	Instrument/Electrical Wiring Checkout (per V049-1-163)	Alu	1-27-98	
7.	Clean Air Compressor Checkout (per V049-2-109)	Sim	2-13-98	Dew PT = -75.3C Panticulais = 0 Pant/ET3 HYDROCARDONS = 0.0 PPM
8.	Clean Room Testing (per V049-2-110)	JF	1-10-98	37 put, /CF
9.	Gate Valve Operational Test (per V049-2-107)	JF		
10	N/A			
11	Turbopump Skid Operational Test	Dim	2-17-98	QOP80 Operational 2-13-
12	2. 10 & 14 In. Manual Valves	JFIDH	z-18-98	OPENED,

Page 1 of 2

F:\HV\LIGO\CORRESPO\MISC\ENDACCEP.DOC

Apr 13 98 10:32a

ATTACHMENT II

✓ LIGO PROJECT – PROCESS SYSTEMS INTERNATIONAL

END STATION ACCEPTANCE TESTING AND INSPECTION SUMMARY (continued)

Γ		WA LEFT END STA.	By	Date Complete	Comments
	14.	Main Ion Pump Testing (per V049-2-106)	JF/Sim	z-14/20	PUMP OPERATED OUERNIGHT NORMATIN
	15.	Bake-out Cart/System (per V049-2-112)	Sun/RW	3 - 28 - 98	
	16.	Annulus Ion Pump Functional Test (per V049-2-106)	JF/DH	2-19-98	· · · · ·
	17.	Flange Annulus Leak Test (per V049-2-115)	D.H.	270-98	
	18.	Main Volume Leak Test (per V049-2-115)	D. 4	270-98	
	19.	Ultimate Pressure/RGA Test (per V049-2-115)	Sim	3-29-98	

Acceptance Testing Complete Signed Ζ Date

Backfill/Pumpdown Demonstration (One Demonstration per Station Type)

Signed

Date

Shock/Noise/Vibration Survey Complete (C.A.A.)

Signed

Date

Page 2 of 2

F:\HV\LIGO\CORRESPO\MISC\ENDACCEP.DOC

ATTACHMENTS

Component Acceptance Test Procedures (REF ONLY)	Document No.		
80K Pumps	V049-2-102		
Roughing Pumps	V049-2-104		
Turbomolecular Pumps	V049-2-105		
Ion Pumps	V049-2-106		
Large Gate Valves	V049-2-107		
6, 10, 14" Gate Valves	V049-2-108		
Clean Air Supplies	V049-2-109		
Portable Soft Wall Cleanrooms	V049-2-110		
Small Valves	V049-2-111		
Bakeout System Blankets and Carts	V049-2-112		

System Acceptance Test Procedures (ATTACHED) End Stations V049-2-115

SYSTEMS ACCEPTANCE TEST PROCEDURE

LIGO VACUUM EQUIPMENT

END STATIONS

Hanford, Washington and Livingston, Louisiana

JOB NO. V59049

PREPARED BY:

QUALITY ASSURANCE:

TECHNICAL DIRECTOR:

PROJECT MANAGER:

Roberto Than. alan & Brullowh

D. Ce. mill dering

		·				· · · · · · · · · · · · · · · · · · ·			····
									·····
						,			
3	RB 1	1/13/52	REA	11/3/50	Re	evised per DEO O	564		
2	Dmo	7/19/92	REG	9/22/57	Re	evised per DEO :	#0475		
	BM	5/7/96	バモハ	9/1/50	٢	Zevised per DEO	#0178		
Ø	R.T.	51.196	REB	5/2/96	IN	ITIAL RELEASE PERS	020 0157	FOR	2DQ2
REV LTR	BY-C	DATE	APPD	. DATE		DESCRIPTI	ON OF CHAN	NGE	
PROC	PROCESS SYSTEMS INTERNATIONAL, INC. SPECIFICATION								
INITIA	L	PREPAR	RED	DATE		Approved DATE	Number: V	049-2-115	Rev.
APPROV	/ALS	R.T.	5	11/96		K213 5/2/86			

TABLE OF CONTENTS

1.0	PURPOSE
2.0	GENERAL
3.0	REFERENCES
4.0	RESPONSIBILITIES
5.0	FIELD TEST PROCEDURES

ATTACHMENTS

.

.:

.

[.	CAA Test Plan for Vibration, Noise and Test
[].	End Station Acceptance Testing and Inspection Summary
III.	Authorization to Vacuum Test Form

Page ____2_ of _21 154

. : *

1.0 PURPOSE

The purpose of this Acceptance Test Procedure (ATP) is to define the overall plan for systems acceptance testing of the vacuum envelope and vacuum pumping system in order to demonstrate that it meets the requirements of the LIGO Vacuum Equipment Specification, LIGO-E940002-02-V, Revision 2, dated August 31, 1995.

This document will be part of the Acceptance Test Report as required by CDRL No.06.

2.0 GENERAL

2.1 The plan will generally apply to all the end stations.

2.2 Tests will be performed by PSI personnel, and will be witnessed by an agent designated by LIGO.

2.3 An Authorization to Vacuum Test Form shall be signed off by the Project Manager or his designated representative prior to any vacuum testing of systems or components (see Attachment III).

SPECIFICATION Number: V049-2-115 Rev.3 Α

Page ____3__ of _21

.

3.0 **REFERENCE DOCUMENTS**

The following documents shall be used in conjunction with this one for performing the ATP:

Description	Document No.
Leak Check Procedure	V049-2-014
Bakeout System Procedure	V049-2-116
80K Cryopump Operating Procedure	V049-2-143
Bakeout System Control Cart Operating Manual & Procedure	
RGA Calibration Procedure (Field)	V049-2-186=-
RGA Operating Manual	. 4 7
EDP200/EH2600 Roughing Pumps Operating Manuals	
STPH2000C Turbomolecular Pump Operating Manuals	-
Auxiliary Turbomolecular Pump Operating Manuals	
QDP80 Dry Backing Pump Operating Manuals	
Vacuum Gauges: Cold Cathode & Pirani Gauges Operating Manuals	
2500 L/s, 75L/s, 25L/s Ion Pumps Operating Manuals	
Acceptance Test Procedure for Clean Air Supplies	V049-2-109

4.0 **RESPONSIBILITY**

It shall be the responsibility of the project engineer assigned to this component or subsystem to ensure that all procedures required by this acceptance test procedure are performed, and that the LIGO designated witnessing agent, who has signoff authority, shall sign the data sheet/test certification attached to this procedure, verifying that the procedures have been performed. The data sheet shall also be signed by the project engineer or other designee as assigned by the PSI project manager. Any test listed in the data sheet which is not applicable to this component or subsystem shall be noted by writing "N/A" in the appropriate space. Any deviations from the test procedures or parameters shall be noted on this data sheet.

SPECIFICATION

Number: V049-2-115

Rev.3

Page 4 of 21

5.0 FIELD TEST PROCEDURES

5.1 Leakage Test

5.1.1 Chamber and Tube Section Leak Tests

The specification requires all component leaks greater than 1×10^{-9} torr-l/s of helium to be repaired in accordance with LIGO approved procedures. Leak checking shall conform to ASTM E498 "Standard Test Methods for Leaks using the Mass Spectrometer Leak Detector". (Ref. Specification V049-2-014, Leak Test Procedure). The following is a summary of the field leak testing plan.

5.1.1.1 Prerequisites

The individual vacuum enclosures have completed their manufacturing cycle and have been cleaned, baked, factory leak tested and sealed for shipment. The unit is then wrapped and packaged for shipment.

Upon arrival at the installation site, the unit will be visually inspected for any shipping damage.

5.1.1.2 Isolated Sections

Individual vacuum components are assembled into isolated sections which will be leak checked as an independent volume. The procedures used to leak check the isolated sections are similar to the procedures used for individual components and in general follow the guidelines of ASTM E498.

Each isolated section has basically two types of vacuum volumes; the main chamber volume and the annulus volume between the dual o-ring seals. When leak checking the main chamber volume, it is important to prevent permeation of tracer gas(es) through the Viton o-rings. To eliminate this potential source of high background readings, the o-ring flanges will be bagged and purged with pure nitrogen gas as required.

5.1.1.2.1 Annulus Leak Check

The annuli of each vessel will be leak checked by a simple pumpdown test. The annuli shall be considered tight if the pumpdown for each vessel or component to $3 \times 10 - 4$ torr is within the limits of Table 5.1.1.2.1.

SPECIFICATION

Number: V049-2-115

Table 5.1.1.2.1		
Component Max Allowable Pumpdown TimeMinu		
BSC	60	
Spools	30	
Gate valves	30	

5.1.1.2.2 Main Volume Leak Check

Each isolated section will be leak checked by the air signature method after bakeout using an RGA. The maximum acceptable leak rate shall be consistent with the system requirements as determined by isolated volume size and RGA sensitivity, as mutually agreed upon by LIGO and PSI. Method and leak rate to be consistent with the BSC prototype chamber test results.

This leak will be performed at the completion of bakeout in conjunction with the ultimate pressure test.

5.2 Bakeout and Ultimate Pressure Test: End Station

An ultimate pressure test is performed after bakeout to determine that the system is clean and leak tight. The ultimate pressure test is performed on the isolatable section with an 80K pump. Before a pumpdown and ultimate pressure test is performed, the sections that make up the isolatable section must be baked.

5.2.1 Annuli pumpdown

The annuli on the flanges will have been pumped during installation for leak checking. Any remaining flange annuli at atmosphere will be pumped prior to start of bakeout. Because of greatly increased outgassing from the O-rings during bakeout, the annulus ion pumps may be inadequate to maintain the annulus within the operating range of the ion pump with its standard Minivac controller. The use of an auxiliary turbo pump cart or a Multivac controller to operate the annulus ion pump is required during bakeout. Because of the limited quantity of auxiliary turbo pump carts available, these should be used on the components with the largest amount of O-ring area; i.e., the BSC's.

Note that the gate valve's gate seal annulus must also be evacuated during bakeout.

SPECIFICATION

Number: V049-2-115 **A**

Page 6 of 21

5.2.2 Vacuum equipment

The roughing carts, and main turbomolecular pumping system and main ion pump system will have been tested already. A functional test may be required prior to start of the bakeout to ensure proper operation of the equipment.

The main ion pumps will be evacuated and baked after installation onto the vacuum envelope. The main ion pumps will then started to ensure proper operation.

5.2.2.3 Deleted

5.2.2.4 System/Isolatable section bakeout.

The bakeout system will be installed on the isolatable section and baked out according to the bakeout procedures. Prior to the start of bakeout, the system will be evacuated using the roughing system.

The isolatable section will be heated to 150° C (at 1.0° C/hr maximum) and soaked for 48 hours at 150° C $\pm 20^{\circ}$ C.

Cooldown of the system will be carried out with the heating system operating to maintain temperature uniformity (logging rate = 1.0° C/hr maximum). This is done by ramping down the setpoints to ambient temperature.

Install bakeout blankets on the mid station, and ion pumps.

Install roughing and turbo pumps.

Evacuate volume to 0.1 torr using roughing pump prior to starting blankets or turbo pump. Bake section at 150°C for 48 hours.

Allow section to cool. When temperature is less than 100°C, the RGA electronics may be installed and the ion pumps may be started.

When the section reaches ambient temperature, the section is ready for the ultimate pressure test.

SPECIFICATION

Number: V049-2-115

Page ____7__ of __21

5.2.2.5 Residual gas analysis after bakeout and cooldown

With the system baked and cooled down, a residual gas analysis will be carried out to determine the presence of any air leaks and cleanliness of the system.

5.2.2.6 Ultimate Pressures after 100 hours

The isolatable section shall attain a total pressure of 2×10 –8 torr or less (N₂ equivalent), measured with a calibrated Granville-Phillips "stabil" ion gauge at a BSC RGA port after bakeout and cooldown to ambient temperature (approximately 100 hours after start of pumpdown for bakeout). The partial pressure shall be measured with an RGA at a BSC RGA Port. If the hydrogen content of the steel prevents the attainment of this value, then the total pressure of the gases, other than H₂ and H₂O, shall not exceed 3 x 10 –9 torr. Only the main ion pumps and 80K cryopumps are permitted to operate during this test.

SPECIFICATION			
Number: V049-2-115	Rev.3		
Α			

Table 5.2.2.6 shows the LIGO specification and partial pressure goals and the corresponding partial pressure acceptance criteria.

Gas Species	LIGO Partial Pressure	Acceptance Partial Pressures
	Goals	
	Torr	Torr
H ₂	5x10-9	
H_2O	5x10-9	
Total H ₂ O, H ₂	1x10-8	
N ₂	5x10-10	
СО	5x10-10	
CO ₂	2x10-10	
CH ₄	2x10-10	
All others	5x10-10	
Total other	1.9x10-9	3x10-9
Total	1.2x10-8	2x10-8*

14010 3.4.4.0	Table	5.2.2.6
---------------	-------	---------

*Exclusion for H2

Partial pressure of H_2O is expected to be higher at the BSC because the ultimate pressure calculation is based on pressure of water at the cryopump. The partial pressure of water will be measured near the inlet of the cryopump.

SPECIFICATION

Number: V049-2-115

Rev.3

Page ____9__ of _21 161

. . . .

. : -

5.3 Backfill and purge with dry air, and 100 hour pumpdown

The system will be back filled with dry air from the Class 100 air system, and purged for 24 hours. This test is for information only.

5.3.1 Pumpdown of isolatable section with 80K cryopump

End station:

Once the isolatable section has been baked and back filled, the vacuum pumpdown test can be initiated. The section shall be pumped for 100 hours. Pressure shall be measured throughout the pumpdown. Partial pressures shall be recorded at 100 hours.

5.3.2 Pumpdown from atmosphere to 0.2 Torr using the roughing system

End stations:

The isolatable section will be pumped using the backing pump of the main turbo pump to a pressure below 0.2 Torr. Acceptance will be when the pressure of 0.2 Torr is reached in less than 15 hours.

5.3.3 Pumpdown from 0.2 Torr to 10⁻⁶ Torr using the main turbomolecular system

End stations:

The isolatable section will be pumped using one main turbomolecular pump system to a pressure of less than 5×10^{-6} Torr. Acceptance will be when the pressure of less than 5×10^{-6} Torr is reached in 24 hours.

5.3.4 80K Cryopump

The cryopump will be turned on when a pressure of less than $5X10^{-6}$ Torr has been reached. To minimize cryotrapping of CO2, the cryopump should be cooled down as late as possible, (between t=16 and 24 hrs) during the turbomolecular pump roughing stage.

SPECIFICATION

Number: V049-2-115

Rev.3

Page ___10__ of _21 162

5.3.5 Main Ion Pumps

The main ion pumps will be turned on after the cryopump is cold and has been pumping for several hours. (between 24 hours to 30 hours into the pumpdown).

5.4 Noise, Shock, and Vibration

During the commissioning process, measurements of vibration, shock, and noise generated by vacuum system equipment will be conducted in accordance with the CAA test plan (Attachment 1). No tests will be conducted in Louisiana.

SPECIFICATION		N
	Number: V049-2-115 A	Rev.3
	Page11	of _21

5.5 Interface to the CDS

All CDS cabinets are supplied and installed by LIGO. PSI will terminate all VE instruments and other system interlocks as shown on PSI electrical drawings. CDS cabinet locations are shown on the following drawings:

V049-3-408 (2 sheets)

V049-3-508 (2 sheets)

V049-3-708 (2 sheets)

V049-3-808 (2 sheets)

Acceptance test for instrument loops and other wiring installed by PSI and terminated in the CDS's, will be performed as follows:

- a. Check point to point continuity of each conductor to insure that wiring is intact and terminated at the proper place at both ends.
- b. Verify wire connections are made in accordance with terminal wiring diagrams and schedules.
- c. Using highlighter (transparent marker), indicate on terminal wiring diagram sheets that each wire and connection has been verified. These sheets will be made available to the buyer.
- d. Replace defective wiring and retest.
- e. Additional testing requirements are listed in V049-2-022 (Electrical and Instruments Construction Work).

PSI will supply LIGO with sufficient information for set up of the monitoring of the pressure gauges, the monitoring of the ion pumps, and control loops for the 80K cryopump level control valves.

SPECIFICATION

Number: V049-2-115

Page ____12__ of __21

5.6 Liquid Nitrogen Consumption

Liquid nitrogen consumption during cryopump operation will be determined by monitoring and recording the liquid nitrogen storage tank level and pressure. Each LN2 storage tank is equipped with a local level indicator, pressure gauge, and a differential pressure level transmitter for remote level indication and low level alarm functions. The data will be taken over a time period sufficient to calculate a meaningful average consumption. Ten days of continuous operation with the tank level between 30-70% full should be adequate.

Acceptance Criteria:

Measurements are taken for data only. Acceptance was done based on calculations presented during the FDR review.

5.7 Clean Air System Commissioning

After installation and prior to admitting clean air into any vacuum component, the clean air supply, at the point of usage, will be sampled for particulates (class 100), hydrocarbons and dew point (< 60 C). The purpose of this testing is to verify compliance with LIGO specifications and preclude the introduction of contaminants into the vacuum equipment. The results of the sampling will be documented for future reference.

Hydrocarbons shall be monitored both at the inlet to the air compressor and at the point of usage to confirm that no hydrocarbons are being added to the system via the clean air system. The hydrocarbon analyzer shall be calibrated against both a zero gas and span gas to measure the absolute level.

Acceptance Criteria:

The hydrocarbon content of the air leaving the clean air system will not be higher than the air supplied to the clean air system. The dew point of the air leaving the system will be -60 C or less. Particulates in the air leaving the system will not exceed class 100 requirements for 0.5 micron particle size.

SPECIFICATION

Number: V049-2-115

Page ____13___ of __21

ACCEPTANCE TEST: LEAKAGE ISOLATED SECTION

STATION:	
SECTION:	
AFTER COOLDOWN	
RESULTS FROM THE RGA	Torr-L/-s
TEST INDICATE AN AIR LEAK	Helium equivalent
OF :	
AFTER 100 HR PUMPDOWN	
RESULTS FROM THE RGA	Torr-L/-s
TEST INDICATE AN AIR LEAK	Helium equivalent
OF :	
ACCEPTANCE	

	ENGINEER NAME & TITLE	SIGNATURE
PSI		
PSI		
LIGO		
LIGO		

INCLUDE ALL RAW DATA AND CALCULATION SHEETS

4

SP	EC	٦F		TI	0	N
----	----	----	--	----	---	---

Number: V049-2-115

Rev.3

Page ____14___ of _21 /66

ACCEPTANCE TEST: PUMPDOWN ISOLATED SECTION, END STATION

STATION: MID			
SECTION:		TIME	DATE
		24 hr clock	mm/dd/yy
		hour : min	
ROUGHING 760 Torr to 0.2 Torr			
PUMPS TURNED ON, ELAPSED TIME	HR, MIN		
at PRESSURE	Torr		
TURNED OFF, ELAPSED TIME	HR, MIN		
at PRESSURE	Torr		
ACCEPTANCE			
	·····		
PUMPDOWN from 0.2 Torr to < 5x10 ⁻⁶			ist ingi
PUMPS TURNED ON, ELAPSED TIME	HR, MIN		
at PRESSURE	Torr		
TURNED OFF, ELAPSED TIME	HR, MIN		
at PRESSURE	Torr	<u> </u>	
ACCEPTANCE			
80K CRYOPUMP			
PUMPS TURNED ON, ELAPSED TIME	HR, MIN		
at PRESSURE	Torr		
MAIN ION PUMPS			
PUMPS TURNED ON, ELAPSED TIME	HR, MIN		
at PRESSURE	Torr		

	ENGINEER NAME & TITLE	SIGNATURE
PSI		
PSI		
LIGO		
LIGO		

SPECIFICAT	ION
Number: V049-2-115 A	Rev.3

RGA DATA

RESULTS OF THE RGA TEST	
RGA TEST :	BEFORE BAKE / 100 HR PUMP
DATE:	
TIME:	
TEST I.D.:	
PSI TEST ENGINEER:	
LIGO SITE ENGINEER:	

SPECIES	ION CURRENT	Partial Pressure	
	Α	Torr	
2			
4			_
12			
13			_
14 ·			
15		· · · · · · · · · · · · · · · · · · ·	4
• 16			_
17			_
18			_
19			
20			_
21			_
22			
24			
25			
26			
27			
28			4
29			4
30			
31	· · · · · · · · · · · · · · · · · · ·		
32			

۰.

.....

.

SPECIFICATION		
Number: V049-2-115	Rev.3	
Α		

Page <u>16</u> of 21

	RGA DATA
RESULTS OF THE RGA TEST	
RGA TEST :	BEFORE BAKE / 100 HR PUMP
DATE:	
TIME:	
TEST I.D.:	
PSI TEST ENGINEER:	
LIGO SITE ENGINEER:	

SPECIES	ION CURRENT	Partial Pressure
	Α	Torr
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
55		
57		
58		
59		
60		
78		
95		

SPECIFICATION			
Number: V049-2-115 A			Rev.3
	Page	_17_	of21

169

. . . .

. : -

RGA DATA / ULTIMATE PRESSURES

RESULTS OF THE RGA TEST	
RGA TEST :	100 HR PUMPDOWN, ULTIMATE PRESSURES
LOCATION OF RGA:	MAIN ION PUMP
DATE:	
TIME:	
TEST I.D.:	
PSI TEST ENGINEER:	
LIGO SITE ENGINEER:	

.

SPECIES	Partial Pressure	ACCEPTANCE
	Torr	
H ₂		
H ₂ O		
СО		
CO ₂		
CH ₄		
N ₂		
Others		

	ENGINEER NAME & TITLE	SIGNATURE
PSI		
PSI		
LIGO		
LIGO		

SPEC	IFICAT	ION	•
Number: V049-2 A	-115		Rev.3
	Page	18	of_21

NOISE / VIBRATION MEASUREMENTS

RESULTS NOISE/VIBRATION	
DATE:	
TIME:	
TEST I.D.:	
PSI TEST ENGINEER:	
LIGO SITE ENGINEER:	

	VIBRATION MEASUREMENTS	COMPLETED
1	Tri-axis measurements, BSC (WBSC?) during	
	operation of 122 cm gate valves	
	At one End or Mid station only	· · · · ·
	NOISE MEASUREMENTS	
	Sound pressure levels measurements each	
	chamber	

	ENGINEER NAME & TITLE	SIGNATURE	
PSI			
PSI	-		
LIGO			
LIGO			

20

SPECIFICATION

Number: V049-2-115

----- ...

ELECTRICAL / INSTRUMENTS CHECK OUT & INTERFACE TO CDS

		COMPLETED
1	Wiring checkout	
2	Vacuum equipment instruments information for setup and scaling for control system.	
3		
4		
5		
6		
7		
8		
9		
10		

	ENGINEER NAME & TITLE	SIGNATURE
PSI		
PSI		
LIGO		
LIGO		

tarihi elitetar tari

SPECIFICATION

Number: V049-2-115

Page ____20___ of __21 172

Equipment summary End Stations

1

٠.

	Component	Quantity
Vacuum Envelope	BSC	1
_	Interconnecting Spools	various
	Short 80K Pump Chamber	1
Vacuum Dumps	Main Ion Pump	1
vacuum rumps	Main Turbo Pumpcart	1
	Aux Turbo Cart	1
	Annulus Pumps	3
Cryonumps	Short 80K Pump	1
Стубратра	LN2 Dewar	1
Valves	44" Gate Valves	2
	48" Gate Valves	
	14" Gate Valves	1
	10" Gate Valves	2
		1
Clean Air System	Clean Air Compressor System 50 CFM	1
· · · · · · · · · · · · · · · · · · ·	Back to Air Valve Systems	
	Back to Air Portable Controller Box	1
Bakeout System	Blankets	From Corner station
	Control Cart	>>
Vacuum Gauging	Cold Cathode / Pirani Gauge Pair	2

. . .

. . . .

Page ____21__ of __21 /73

CAMBRIDGE ACOUSTICAL ASSOCIATES, INC. CONSULTING IN ACOUSTICS . NOISE & VIBRATION . STRUCTURAL & FLUID DYNAMICS

ATTACHMENT I

200 Boston Avenue, Suite 2500

Medford, MA 02155-4243

Telephone (617) 396-1421

Fax (617) 396-1607

LIGO COMMISSION TEST PLAN FOR VIBRATION, NOISE, AND SHOCK

I. INTRODUCTION

During the commission process of the installations in Hanford, WA and Livingston, LA, measurements of shock, vibration, and noise generated by PSI's vacuum system will be conducted. Vibration measurements will be made on one each of the following chambers at each station where they exist: horizontal access module (HAM); beam splitter chamber (BSC); 80 k cryopump (CP); a substitute chamber for the test mass chamber. At each chamber, normal vibration (i.e., single axis) measurements will be made at one location on the floor within one meter of the chamber. Tri-axis measurements will be made at two locations on each chamber. Measurements will be made with and without operating auxiliary equipment for the purpose of establishing ambient levels. Additionally, sound pressure levels will be measured in the vicinity of each chamber with all vacuum systems components in normal operation.

Vibration measurements will be made on a representative chamber during the operation of 48,44,14,10 and 6 inch gate valves (GV). Tri-axis measurements will be made at two locations on the chamber.

II. TEST PROCEDURE

A. VIBRATION AND NOISE

Vibration and noise tests will be performed on or near the following chambers:

a. corner station- HAM5, HAM6, BSC7 and CP2

b. right mid-station- BSC5 and CP6

c. left mid-station- BSC6 and CP4

d. right end-station- BSC9 and CP8

e. left end-station- BSC10 and CP7

Measurements will be made with the Ion pumps, the cryogenic 80K pump, the purge and vent compressor (corner station only) and the turbomolecular pump(s) nearest the chamber operating. LIGO's equipment will be operating in a "quiet mode". For

174 V049-2-115 IOF3

comparison, a background measurement will be performed with PSI's equipment "turn off" and the LIGO equipment in its "quiet mode".

Tri-axis vibration measurement will be made at two locations on each chamber, one near the nozzle connecting the vacuum tubing and one near the attachment to the support leg. One vertical floor measurement will be made at the support to LIGO's equipment inside the chamber or in the case of the cryopump at one of its support legs. Power spectral density plots will be created from the measurements.

In order to span the full frequency range of the LIGO specification, two highsensitivity ultra low-noise accelerometers will be used. The Wilcoxon Research model 731A accelerometer (10V/g) will be used for the frequency bandwidth from 0.1-300 Hz and the Wilcoxon Research model 916BTO-1 (7.5V/g) will provide low noise capabilities above 300 Hz. The equivalent acceleration spectral densities corresponding to the electrical noise floor of these sensors are shown on Fig 1. Above 10 Hz, the noise floor ofthe model 731A is lower than the specified amplitude. Above 300 Hz, the noise floor ofthe 916BTO-1 is below the specified amplitude.

B. NOISE

Operating equipment noise will be measured using a Bruel and Kjaer type model Precision Sound Level Meter octave band analyzer. Sound pressure measurements will be measured in the vicinity of each chamber with equipment operating as described in Section A. Octave band levels will be recorded.

C. SHOCK

Shock measurements will be performed with the following valves opening and closing:

corner station-

- a. 48" electric operated gate valve GV2
- b. 44" pneumatic operated gate valve GV8
- c. 14" manual gate valve at IP3
- d. 10" manual gate valve at the turbomolecular pump near HAM6
- e. 6" manual gate valve near HAM5.

right mid-station-

- a .44" electric operated gate valve GV14
- b. 14" manual gate valve at IP10
- c. 10" manual gate valve at the turbomolecular pump near CP6

175 V049-2-115 2 OF 3

left mid-station-

a .44" electric operated gate valve GV11

b. 14" manual gate valve at IP9

c. 10" manual gate valve at the turbomolecular pump near CP4

right end-station-

a .44" electric operated gate valve GV20

c. 14" manual gate valve at IP12

d. 10" manual gate valve at the turbomolecular pump near BSC9

left end-station-

a .44" electric operated gate valve GV18

c. 14" manual gate valve at IP11

d. 10" manual gate valve at the turbomolecular pump near BSC10

Peak accelerations and power spectral density curves will be obtained from the measurements. Acceleration measurements will be made at two locations (described in Section A) at the chamber nearest the valve. General purpose PCB 338A35 accelerometers (100mv/g) will be used to perform the measurements. The broadband resolution of the accelerometer is +/- 0.002 g's peak.

176 V049-2-115 30F 3

✓ LIGO PROJECT – PROCESS SYSTEMS INTERNATIONAL

END STATION ACCEPTANCE TESTING AND INSPECTION SUMMARY

		Ву	Date Complete	Comments
1.	LN ₂ Tank Inspection Tank S/N (per V049-2-102)			
2.	Regeneration Heater Inspection HTR # (per V049-2-102)			
3.	Cryopump Instrumentation Calibration & Functional Test (per)			and a second
4.	Vacuum Instrumentation Checkout			
5.	Fill LN ₂ Tank			
6.	Instrument/Electrical Wiring Checkout (per V049-1-163)			
7.	Clean Air Compressor Checkout (per V049-2-109)			
8.	Clean Room Testing (per V049-2-110)			
9.	Gate Valve Operational Test (per V049-2-107)			
10.	N/A			
11.	Turbopump Skid Operational Test (per V049-2-105)			
12.	10 & 14 In. Manual Valves (per V049-2-108)			
13.	Auxiliary Turbopump Test (per V049-2-105)			

✓ LIGO PROJECT – PROCESS SYSTEMS INTERNATIONAL

END STATION ACCEPTANCE TESTING AND INSPECTION SUMMARY (continued)

		By	Date Complete	Comments
14.	Main Ion Pump Testing			
	(per V049-2-106)			
15.	Bake-out Cart/System			
	(per V049-2-112)			
16.	Annulus Ion Pump Functional			. 17
	Test		1	
	(per V049-2-106)			
17.	Flange Annulus Leak Test			
	(per V049-2-115)			
18.	Main Volume Leak Test			
	(per V049-2-115)			
19.	Ultimate Pressure/RGA Test			
	(per V049-2-115)			
1				

Acceptance Testing Complete

Signed

Date

ł

Backfill/Pumpdown Demonstration (One Demonstration per Station Type)

Signed

Date

Shock/Noise/Vibration Survey Complete (C.A.A.)

Signed

Date
ATTACHMENT III

✓ LIGO PROJECT – PROCESS SYSTEMS INTERNATIONAL

AUTHORIZATION TO VACUUM TEST

	·	
<u>System:</u>		
Test Procedure:		
100011000000.01		
D. Granda Mandada		
References Needed:		
/		
Cautions:		
Notes:		· · · · · · · · · · · · · · · · · · ·
Authorized By:		
Date:		
		AUTHORIZATION NO.
Test Performed By:		18/ 4
Date		VVA
Luiv.		