REPORT OF GEOTECHNICAL SURVEY LIGO PROJECT HANFORD, WASHINGTON PURCHASE ORDER NO. PP066327

For

016\REPORT\LIGOHAND.RWP

CALIFORNIA INSTITUTE OF TECHNOLOGY JOB NO. 177-004-016 February 10, 1993

LIGO-C930032-00-D

DAMES & MOORE

DAMES & MOORE

TABLE OF CONTENTS

<u>Sec</u>	<u>tion</u> <u>P</u>	age
1.0	INTRODUCTION	1
2.0	DESCRIPTION OF PROJECT	1
3.0	SCOPE OF SERVICES	1
4.0	SITE CHARACTERIZATION 4.1 GEOLOGIC SETTING 4.2 SITE SPECIFIC SUBSURFACE CONDITIONS 4.3 FIELD TESTING 4.3.1 Plate Bearing Tests 4.3.2 Percolation Tests 4.3.3 Geophysical Testing 4.4 LABORATORY TESTING	4 4 6 6 6 7
	CONCLUSIONS AND RECOMMENDATIONS 5.1 GENERAL 5.2 FOUNDATIONS 5.2.1 Beam Tube 5.2.2 Corner, Mid and End Stations 5.3 COEFFICIENT OF SUBGRADE REACTION 5.4 LATERAL EARTH PRESSURES 5.5 SEISMIC DESIGN CONSIDERATIONS 5.6 VIBRATORY FOUNDATION LOADS 5.7 CORROSION AND CHEMICAL DETERIORATION 5.8 PAVING 5.9 LEACH FIELD 5.10 EARTHWORK AND SITE PREPARATION 5.11 UNDERGROUND UTILITIES	
6.0	LIMITATIONS	19
7.0	REFERENCES	20

E Dames & Moore

FIGURES

LIST OF APPENDICES

Appendix A - Field Investigation Appendix B - In-Situ Testing Appendix C - Laboratory Testing Appendix D - Report of Geophysical Testing Appendix E - Logs of Previous Borings

ii

REPORT OF GEOTECHNICAL SURVEY LIGO PROJECT HANFORD, WASHINGTON for CALIFORNIA INSTITUTE OF TECHNOLOGY

1.0 INTRODUCTION

This report presents the results of the geotechnical survey for the proposed Laser Interferometer Gravitational Observation (LIGO) Project to be constructed near the Wye Barricade on the Hanford site near Richland, Washington. The location of the project with respect to the Hanford Reservation is shown on the Area Map, Plate 1. The purpose of this survey was to investigate subsurface conditions at the site and provide recommendations regarding the design and construction of foundations for the LIGO facility.

2.0 DESCRIPTION OF PROJECT

Information regarding the nature of the facilities to be constructed was obtained from discussions with Caltech and from the Caltech publication "Summary of the Concepts and Reference Design For a Laser Interferometer Gravitational Wave Observatory" dated February 1992. The facility will include an L-shaped structure with 4 Km (13,000-foot) long arms which enclose a 4-foot diameter steel tube for the laser beam. The beam tube will be supported on steel frames spaced at 40 to 60 feet on centers and attached to a 20-foot wide reinforced concrete foundation slab. The beam tube will also be enclosed in a 16-foot diameter reinforced concrete (sprayed-on shotcrete) arch enclosure which exerts a load of 2 kips per lineal foot on each side of the arch. The corner station will consist of an 80,000 square foot steel frame structure roughly 35 to 55 feet high. Foundations will consist of a continuous mat or a combination of shallow footings with mats supporting selected equipment. Column loads of approximately 40 to 100 kips are anticipated. The building will house a variety of overhead cranes.

The end and mid-stations along each leg of the L-shaped structure will have an area dimension of approximately 8000 square feet, and will be supported on a mat with foundation pressures possibly reaching 3000 pounds per square foot (psf).

The finished floor throughout the facility will be Elevation 528.

3.0 SCOPE OF SERVICES

The original scope of work for this project as requested by Caltech in the May 14, 1992 "Statement of Work For a Geotechnical Survey" is presented in Appendix G. Because of technical difficulties anticipated by Dames & Moore with the portion of work relating to geophysical testing, we prepared an alternative scope of services that was accepted by Caltech. Details of the revised scope are presented below:

1. Information Review

We will conduct a reconnaissance of the site to evaluate surface features and conditions that could be important to the development of the site. We will review geologic, geohydrologic and seismic information that currently exists for the Hanford site, including documents found in the files of Hanford site contractors and Dames & Moore. Information from the Fast Flux Test Facility, the Central Landfill, the Skagit Hanford Power Plant (never constructed) and the Basalt Waste Isolation Project will be especially important.

2. Drilling Program

We will obtain a subcontractor to drill the 41 borings shown on the May 14, 1992 Proposed Boring Layout by California Institute of Technology. The deepest boring will be approximately 60 feet deep and the shallowest will be 30 feet deep. The total drilling footage will be approximately 1860 feet. We will drill the borings using the hollow stem auger technique in order to minimize the cost of the drilling program. The drill rig will be capable of drilling by the mud rotary technique with minimal switch-over time in the event that especially difficult conditions are occasionally encountered. Soil samples and penetration resistance values will be obtained at 5-foot intervals in these holes. Soil samples will be collected for laboratory testing. Approximately one half of the samples will be collected using the Dames & Moore sampler, which provides a relatively undisturbed sample suitable for laboratory testing.

In addition to the above primary borings, we will drill 32 secondary borings to an average depth of about 20 feet each to investigate the nature of the near-surface soil most critical to the performance of the structure. Twenty eight (28) of these borings will be located midway between the primary borings, thereby reducing the overall spacing of borings to about 470 feet. The final 4 borings are discretionary, to be used to better define soil conditions at possible problem locations.

As part of the drilling (or field exploration) program, we will conduct in situ plate loading tests at a minimum of 2 locations along the beam tube alignment to measure the deformation modulus of the foundation material. The tests will be conducted in the near-surface dune sands at a depth of about 2 feet. The drill rig will be used as the reaction for the tests. If boring information for these sands indicates that they are obviously too loose for direct use as foundation support, we will delete the in situ plate loading tests and substitute laboratory triaxial shear tests on recompacted samples in order to measure the deformation modulus. As a further part of the drilling (field exploration) program, we will conduct percolation tests using U.S. Department of Health, Education and Welfare recommended methods for use in leach field design. Tests will be conducted at two locations.

3. Geophysical Survey

We propose to obtain shear wave velocity data by conducting downhole seismic tests in a minimum of 3 boreholes at key locations along the beam tube alignment. One hole (60-foot depth to Elevation 470) will be located at the corner station, and two others will be located at the end stations. This test also provides both shear and compressional wave velocity measurements over the entire depth of the hole. The data will be used to estimate dynamic characteristics of the subsoils. The downhole seismic tests will be conducted by our subcontractor Geo Recon International.

4. Laboratory Testing

We will measure physical, engineering, corrosion potential and thermal resistivity of soils at the site. Tests will be conducted for moisture content, density, and grain size distribution. Because of the windblown nature of near-surface soils, we will conduct collapse potential tests. We may also conduct triaxial compression tests to measure the deformation modulus of soils that will be important to the settlement performance of the structure. Because of the need for compacted fill over portions of the site below Elevation 528, we will perform compaction tests using soils that will be excavated and available for borrow.

We will conduct tests for pH, redox potential, electrical resistivity, and for sulfate, sulfide and chloride content of selected soils for estimation of corrosion potential. The full suite of these tests will be conducted on three soil samples from distributed locations along the beam tube alignment.

We will conduct thermal resistivity tests on at least two samples.

5. Foundation Recommendations - Static and Dynamic

We will provide recommendations for allowable bearing pressures for footings and mats, estimated settlements, lateral earth pressures, soil strength and frictional characteristics for resisting lateral load, and parameters for use in designing vibrating foundations. For the case of vibrating foundations we will recommend values of shear modulus and damping ratio, and will evaluate the potential for settlements induced by vibratory densification of foundation sands.

6. Seismic Recommendations

We will evaluate seismic conditions at the site and provide recommendations on static and, where appropriate, dynamic values of density, Poisson's Ratio, modulus of elasticity, shear modulus, coefficient of subgrade reaction and permeability. We will also provide guidance on selection of damping ratios for the soils encountered. We will evaluate the potential for surface faulting, liquefaction, settlements induced by seismic shaking, and will recommend an appropriate value of "site coefficient" as identified in the 1991 Uniform Building Code.

7. Corrosion Evaluation

We will evaluate the corrosion potential of the soils, including their possible impact on subsurface metallic and concrete structures, and recommend appropriate methods of mitigating any adverse impacts from corrosive conditions.

8. Site Preparation and Construction Measures

We will evaluate measures required to prepare the site and construct the facilities, and accordingly provide recommendations on cut and fill slope stability, excavation support, compacted fill placement, subgrade support and preparation for footings, floor slabs, mats, pavements and surface and subsurface drainage facilities.

Tes Dames & Moore

The deliverable product for this project will be 20 copies of our geotechnical report delivered within 90 days following your written authorization to proceed.

4.0 SITE CHARACTERIZATION

4.1 GEOLOGIC SETTING

The site of the proposed structure lies in the Central Plains Section of the Columbia Intermontane physiographic province, and is more specifically situated within the Pasco Basin topographic depression created by the Columbia River. The terrain is relatively flat with features created by glacial-related floods and subsequently by alluvial and aeolain (wind blown) deposition.

The bedrock at the site is a very thick sequence of Columbia River basalts which occur at a depth of approximately 750 feet below the ground surface, or roughly Elevation -220. Overlying the basalts are Pliocene age lacustrine and fluvial deposits of the Ringold Formation. This formation consists of cemented soils ranging in gradation from coarse sands and gravels to some interlaminations of fine sand, silt, and clays. Overlying the Ringold Formation is a Pleistocene age glaciofluvial deposit called the Hanford Formation. It may consist of coarse sand and gravels (Pasco Gravel) in areas where flows were highest or a finer gradation (Touchet Beds) in slackwater areas. More recent deposits of loess, dune sand, alluvium and colluvium are found near the surface throughout the Hanford area.

The LIGO site is currently unoccupied, with a slightly undulating ground surface supporting a moderately thick cover of sage brush, cheatgrass and other deciduous plants of the area. Ground surface elevations range from approximately Elevation 510 to 550.

4.2 SITE SPECIFIC SUBSURFACE CONDITIONS

Subsurface conditions were investigated by drilling a total of 73 borings ranging in depth from 8 to 64 feet at locations shown on the Site Plan, Plate 2. The deepest borings extended to Elevation 466. Geophysical testing was performed in three of the borings (DM-1-92, DM-20-92 and DM-41-92), plate bearing tests were conducted at two locations and percolation tests were conducted in shallow hand-augered holes. Locations of the plate bearing and percolation tests are shown on Plate 2. Details of the field investigation program are presented in Appendix A, which also contains logs of the borings. A further description of field testing is presented in Section 4.3 and in Appendix B. A separate report of the geophysical tests is contained in Appendix D.

Additional information regarding subsurface conditions at the site was obtained from the Final Safety Analysis Report for the Skagit Hanford Nuclear Project (1984) and from logs of borings previously drilled in the vicinity by U.S. Department of Energy (DOE) contractors. The report for the Skagit Hanford Nuclear Project contains the results of borings, test pits, field tests, geotechnical analysis and foundation recommendations for the canceled nuclear power plant. Locations of these other borings are also shown on Plate 2. Selected boring logs from the previous studies are presented in Appendix E.

The field exploration information indicates that subsurface conditions at depths of importance to the LIGO project consist of a surficial layer of loose to medium dense light brown silty fine sand overlying a medium dense

Tes Dames & Moore

to dense deposit of gray sand. An estimated profile of soil conditions along the entire length of the LIGO structure is presented on Plates 3 through 6. A further discussion of each soil layer encountered, from the surface downward, is presented below:

Brown Silty Fine Sand

The surficial silty sand is typically 2 to 22 feet thick, light brown in color and medium dense in character, as measured by sampler penetration resistance ("N") values measured during drilling. The average thickness of this layer was approximately 7 feet for all borings drilled during this investigation. Although the range of N-values from this layer extends from 4 to 58 blows per foot, the average value is approximately 14 blows per foot. This would suggest a relative density for the surficial silty sand of roughly 70 percent. The loose zones within this layer were typically encountered in the upper 6 feet, but could extend deeper at some locations. A few zones within the lower portion of this layer were found to be in a dense condition, for example in boring DM-68-92 below 8 feet deep. Laboratory tests have indicated that the deposit is poorly graded and contains approximately 5 to 25 percent fines, which are primarily in the silt size range. Moisture contents were generally less than 4 or 5 percent except for the upper 6 feet or so, the soil can be characterized as having moderate strength and compressibility, with a low to moderate potential for collapse upon wetting. In its undisturbed condition, the silty sand should also be considered slightly to moderately susceptible to settlement during shaking from earthquakes or vibrating equipment. Plate bearing tests conducted in the upper portion of this layer indicate an elastic modulus (E) value of 290 KSF to 370 KSF for the virgin loading curves.

Gray Fine to Medium Sand

The underlying gray sand layer is typically a moderately well graded fine to medium soil with small proportions of coarse sand, gravel and silt. However, in some areas this layer grades more narrowly, and is classified as a primarily fine sand (for example, see Boring DM-14-92) with up to 10 percent silt. At such locations, the gradation characteristics of the gray sand is essentially the same as for the overlying brown sand. Occasionally a thin layer of silt or gravel was encountered, as well as zones of light cementation. The range of N values measured in this deposit extends from 8 to greater than 100 blows per foot, with an average value of over 35 blows per foot. An occasional loose zone was encountered, for example at a depth of 12 feet in Boring DM-26-92. The soil can be considered to possess high strength and low compressibility characteristics. All borings drilled during our investigation were terminated in this layer. Information from deeper borings that were previously drilled in the vicinity indicate that this soil layer extends to about Elevation 450, where somewhat coarser sands and gravels were encountered.

Basalt bedrock was encountered during previous investigations at a depth of about 740 feet, i.e. approximately Elevation -210. A generalized soil profile from the ground surface to the top of bedrock is presented on Plate 7. The actual profile may vary over the length of the proposed structure.

No groundwater was encountered in the borings drilled for this investigation. Previous investigations indicate that groundwater is encountered at approximately Elevation 400 in the vicinity of the LIGO project.

🚰 Dames & Moore

4.3 FIELD TESTING

4.3.1 Plate Bearing Tests

Plate bearing tests were conducted to measure the in situ elastic modulus and coefficient of subgrade reaction of the near-surface brown silty fine sand at two locations. The first test was located near Boring DM-25-92 on the Southwest leg, and was conducted at approximately Elevation 530. The second test was located near Boring DM-8-92 on the Northwest leg, and was conducted at approximately Elevation 525. Both tests were conducted at locations where the soil within the depth of influence of the 2-foot diameter plate consisted of the brown silty fine sand in a medium dense condition. Test results were as follows:

		Elastic Modulus (ksf)		Subgrade Reaction Modulus (pci)	
Test No.	Station	Virgin Cycle	Reload Cycle	Virgin Cycle	Reload Cycle
1	SW 20+00	370	1900	150	780
.2	NW 84+50	290	880	120	400

Details of the tests and plots of the results are presented in Appendix B.

Results of plate bearing tests conducted by Golder Associates for the Skagit Hanford Nuclear Project indicated elastic modulus values in the range from about 1300 to 2800 ksf for the undisturbed gray fine to medium sand. These values were for the virgin loading curves. Apparently no plate bearing tests were conducted in the surficial brown silty fine cand layer during that investigation.

4.3.2 Percolation Tests

Percolation rates were measured in shallow hand dug holes at two locations in the vicinity of the corner station in order to provide information for design of leach fields and seepage pits. Details of the tests are presented in Appendix B, and a discussion of the use of results is found in Section 5.8 Leach Fields.

4.3.3 Geophysical Testing

Compressional and shear wave velocity measurements were made by the downhole method in one boring at the corner station (DM-20-92) and in one boring at each of the end stations (DM-1-92 and DM-41-92). Measurements were made to depths up to 60 feet in each hole. Details of the test method and results are presented in Appendix D. The results indicate a 2-layer soil profile consisting of a lower velocity surficial material from 13 to 20 feet thick, underlain by a higher velocity layer which extends to the bottom of the holes. This concept is generally consistent with visual identification and N-value information obtained during drilling. However, the thickness of the surficial layer as interpreted from the seismic velocities is greater than indicated

Tes Dames & Moore

in the boring logs at each geophysical test location. Test results for two of the holes (DM-1 and DM-20) are similar, indicating average compressional and shear wave velocities of about 1960 fps and 890 fps respectively for the upper layer and 5080 fps and 1390 fps respectively for the lower layer (i.e. gray fine to medium sand). Tests in the third hole (DM-41-92) showed velocities that were roughly 20 percent lower than those for the other two holes. There is no immediately obvious explanation for the difference in velocity values, as soil descriptions and N-values were similar for all three borings.

During the Skagit Hanford Nuclear Project investigation, in situ velocity measurements were made using downhole, crosshole and surface refraction techniques. In the range from Elevation 450 to 510, which corresponds to depths occupied by the gray fine to medium sand, the shear wave velocities were similar to those measured by Dames & Moore. However, in that same depth range the compressional velocities were substantially lower than those measured by Dames & Moore.

A typical profile of soil conditions and geophysical parameters, including measured wave velocities and calculated shear modulus values, is presented on Plate 7. The data presented is a synthesis of data obtained from the LIGO investigation and from previous investigations at the Hanford site, particularly for the Skagit Hanford Nuclear Project.

4.4 LABORATORY TESTING

Selected samples were tested in the laboratory to obtain pertinent physical, engineering, chemical/electrochemical and thermal characteristics of the soils at the LIGO site. Details of the tests and tabular and graphical representations of the results are found in Appendix C. Results of tests for moisture content, density and percent fines are shown directly on the boring logs at the appropriate sample locations.

Collapse tests were conducted on samples of the brown silty fine sand in its undisturbed loose to medium dense condition and in a recompacted condition. A percentage of collapse (or "collapse potential") of 2 percent was measured for this soil in the "undisturbed" condition, suggesting "moderate trouble" for foundation design as defined by Jennings and Knight (1975) and the U.S. Navy (1982). This collapse percentage may be somewhat of an overestimate because of some sample disturbance that could be anticipated during test preparation for this type of soil. A percentage of collapse of about 0.1 percent was measured for the sample that was recompacted to 92 percent of the maximum dry density. No collapse problem is anticipated for this recompacted material.

Drained triaxial compression tests were conducted on a sample of the brown silty fine sand recompacted to 95 percent of its maximum dry density. The results indicated a surprisingly high elastic modulus value of 2600 ksf. A similar test conducted on a sample of the gray fine sand from Boring DM-38-92 in its natural condition indicated an elastic modulus value of about 1900 ksf. This value no doubt reflects some sample disturbance that is inevitable for samples of this type.

Results of compaction tests and sieve and hydrometer analyses are presented in Appendix C. The brown silty fine sand tends to be poorly graded with a Coefficient of Uniformity of 3 to 6. The gray fine to medium sand is typically more well graded with a CU of 10 or more. However, this lower layer also contains zones where the silt content may increase to 15 to 20 percent, and the gradations narrow to where CU values are also in the 3 to 6 range. Compaction tests were conducted for the brown silty fine sand, the gray fine to medium sand and

🗱 Dames & Moore

for a mixture of the two that would create a well graded "select" fill material. Maximum dry densities all fall in the range from 110 to 120 pcf, with optimum moisture contents from 10 to 14 percent.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 GENERAL

All structures and equipment associated with the LIGO facility may be supported on shallow spread footings or mat foundations that are placed on either compacted on-site fill soil, or the surficial brown silty sand that has first been densified in the upper 8 feet (minimum), or on the gray fine to medium sand in its undisturbed condition. The variation in surface elevations is such that all three of the above-mentioned foundation support conditions will occur along the beam tube alignment. We do not recommend use of the surficial brown silty sand for foundation support without measures to densify the upper portion of this loose to medium dense stratum. Details of our recommendations are presented in the following sections.

5.2 FOUNDATIONS

5.2.1 Beam Tube

We recommend that foundation support for the beam tube consist of shallow footings placed on compacted fill or on the undisturbed sand deposits, depending on the original ground surface elevations. The ground surface at various locations along the beam tube alignment is as much as 18 feet below and 26 feet above the proposed finished floor grade (Elevation 528). Soils at the foundation level will therefore range from relatively deep fill to either the surficial brown silty fine sand layer or the gray fine to medium sand layer. Because of the loose character of portions of the brown silty fine sand, we recommend that foundations be supported on this material only after soil improvements efforts have been adopted in the upper 8 feet (minimum) to reduce the compressibility of this soil and minimize the potential for settlements from either saturation or vibratory ground motion. The brown silty fine sand layer should likewise be improved where it will underlie compacted fill used for foundation support.

An allowable bearing pressure of 2000 psf may be used for design of the beam tube foundation pad for any of the subgrade soil conditions described above. This value may be increased by one-third for transient loads from wind or seismic sources. Compacted fill should consist of either of the natural sand deposits encountered during this investigation, or a "select" mixture of the two. Proctor compaction tests results (see Plates C-5 and C-6) indicate that the maximum density of these two soils are not significantly different. The mixed "select" fill should contain no less than about 40 percent and not more than about 60 percent of either of the two natural sand deposits.

Soil improvement methods applied to the brown silty sand may consist of a combination of removal and recompaction together with in-place densification by vibratory rolling. We recommend that improvement methods be used where footings will be placed either on compacted fill or directly on the silty fine sand itself. As a minimum, the upper 8 feet of the silty fine sand layer should be removed and the exposed subgrade rolled with a heavy vibratory roller. If after removal of the upper 8 feet, the exposed soil still appears to be in a loose condition, additional soil should be excavated until a satisfactory subgrade condition is encountered. We expect

Te Dames & Moore

that such additional excavation may be needed on an infrequent basis. At least three passes should be made using a roller having a minimum overall weight of 15,000 pounds and a minimum operating frequency of 1750 vibrations per minute (Dynapac CA 15A or equivalent). Proof-rolling of the subgrade is not necessary when the gray sand is encountered unless requested by the soils engineer. The excavated soil should replaced by compacting in 8 to 10 inch thick lifts to at least 95 percent of the maximum dry density as measured using ASTM D-1557. Additional fill required to achieve the finished floor level should be placed using the same compaction criteria.

We estimate that actual applied pressures beneath an approximately 18 to 20-foot wide concrete pad with 5-foot wide thickened strip footing on each side will be roughly 1000 psf. Total settlement at any location along the beam tube will be approximately 0.2 inches. Differential settlement may occur between sections of the beam tube that are supported on the dense undisturbed gray sand and nearby sections on the improved silty fine sand due to the fact that the latter material will likely have a lower elastic modulus. The magnitude of differential settlement is estimated at less than 0.2 inches over a distance of roughly 100 to 200 feet. The settlements will occur essentially simultaneous with the application of load. No long-term post construction settlements are expected. Settlements were estimated using the method of Schmertman (1970 and 1978). Values of elastic modulus for the various soil layers were estimated using the results of laboratory triaxial compression tests, in situ plate bearing tests and published correlations between N-values and modulus (e.g. Bowles, 1988).

Footings should be placed at a depth of at least 2 feet for protection against frost heave. Improvement to the brown silty fine sand should extend laterally a distance of at least 5 feet beyond the outer edges of the footings.

5.2.2 Corner, Mid and End Stations

We recommend that foundations for the corner station, mid stations and end stations consist of shallow spread footings or mats placed on compacted fill or on either of the two natural sand deposits, depending on the ground surface elevation. The midstation on the Northwest leg and most of the corner station must be supported on compacted fill because current ground surface elevations are at least several feet below finished floor grade. The other stations will be supported on one of the natural sand deposits. Because of the loose character of portions of the undisturbed brown silty fine sand, we recommend that foundations be supported on this material only after soil improvements efforts have been adopted in the upper 8 feet (minimum) to reduce the compressibility of this soil and minimize the potential for settlements from either saturation or vibratory ground motion. Improvement efforts should also be adopted for the brown silty fine sand prior to placement of compacted fill on this layer.

An allowable bearing pressure of 2000 psf may be used for the improved brown silty fine sand or for compacted fill soils when footing or mat widths are less than 20 feet. For larger mats an allowable bearing pressure of 3000 psf may be used in those soil conditions. When footings or mats are placed directly on the undisturbed gray sand layer, allowable bearing pressures of 3000 psf and 4000 psf may be used for footing/mat widths less than and greater than 20 feet, respectively. These allowable bearing values may be increased by one-third for transient loads from wind or seismic sources, but not for continuous vibratory loads from vibrating machinery.

TAMES & MOORE

Recommendations for improving the brown silty sand and for selecting and compacting fill soils are the same as those presented for the Beam Tube in Section 5.2.1 above.

Settlement estimates for the corner station were made assuming first that the entire structure, except for the Office/Shop Area, is supported on a single 4-foot thick mat with an applied bearing pressure of 3000 psf. Most of the mat would be supported on the densified or recompacted surficial silty fine sand fill. A total settlement of approximately 0.4 inches was estimated for the center of the mat, with settlements around the edge ranging from about 0.1 to 0.3 inches. A maximum differential settlement of approximately 0.3 inches could therefore occur over a distance of about 200 to 300 feet at some locations. This amount of differential settlement would not be expected to be detrimental to a typical commercial or industrial structure. If a portion of the corner station is supported on spread footings instead of the single mat, settlement of an individual column with 100 kip loading is estimated at approximately 0.4 inches where the foundation soil consists of the densified or recompacted brown silty fine sand. Settlement of footings on the undisturbed gray fine to medium sand is estimated at less than 0.3 inches. Settlement of mat foundations covering only a portion of the corner station would be less than the values given above for the single mat.

The mid-stations were assumed to consist of a roughly 40 foot by 100 foot mat along the beam tube alignment. An applied pressure of 3000 psf was assumed for the mat. Associated office/shop areas are expected to be supported on spread footings. Settlement estimates for the mid-stations are significantly affected by the existing surface grades at those locations. Along the Southwest Leg, excavations of about 18 feet are required at the mid-station to reach the finished floor grade. Because of this net "unloading" situation, we estimate that settlement of the mat and footings will be negligible. Along the Northwest Leg the mid-station mat will be supported on the densified or recompacted silty fine sand, and a total settlement of approximately 0.3 inches is estimated for the center of the mat. Settlement at the corner of the mat is estimated at about 0.2 inches, making the differential settlement about 0.1 inches.

The end stations were also assumed to consist of a 40 foot by 100 foot mat along the tube alignment, with associated shop/office areas supported on spread footings. An applied pressure of 3000 psf was assumed for the mat. Total settlement for the mat at the Southwest end is estimated to be less than 0.1 inch, with negligible differential settlement. Total settlement for the mat at the Northwest end is estimated at less than 0.3 inches, with differential settlement between the center and corner of the mat of about 0.1 inches.

5.3 COEFFICIENT OF SUBGRADE REACTION

A commonly employed method of representing a soil subgrade for purposes of soil structure interaction analysis is the "Winkler" foundation, in which the subgrade is modeled as a series of vertical or horizontal springs with a spring constant termed the "modulus of subgrade reaction" K_s . For sand subgrades loaded vertically, K_s should be determined for the actual footing or mat size using the expressions by Terzaghi (1955):

The Dames & Moore

SQUARE FOOTINGS:

 $K_s = K_1 \left(\frac{B+1}{2B}\right)^2$

RECTANGULAR FOOTINGS:

Same as K_s for square footing, except K_1 should be modified as follows:

$$K_1 = K_1 \cdot \frac{(m + 0.5)}{1.5m}$$

Where $K_s =$ the value of vertical modulus of subgrade reaction for a footing or mat of width B.

 K_1 = the value of modulus of subgrade reaction for a 1-foot wide square plate.

m = length of rectangular footing divided by width (L/B).

We recommend the following values of K_1 for vertical loading:

	Static K ₁ (pci)	Dynamic K ₁ (pci)
Brown Silty Fine Sand (Improved or Recompacted)	150	1.500
Gray F-M Sand	220	2200

These values were selected based upon the results of field plate bearing tests, laboratory triaxial and grain size distribution tests, penetration resistance values during drilling, and experience obtained by others as reported in the literature. The values apply to a rigid, square plate of one foot width with loading applied at the ground surface.

5.4 LATERAL EARTH PRESSURES

Information about lateral earth pressures will be required to design subsurface walls or retaining walls and to estimate the resistance of structures to lateral forces induced by seismic or wind sources. Permanent retaining walls and subsurface walls that are free to translate or rotate away from the retained soil by an amount equal to approximately 0.1 percent of the height of the wall should be designed for active earth pressures. If the walls are rigid and unable to translate or rotate, at-rest earth pressures should be used. Our recommendations for active and at-rest earth pressures for both the static and dynamic cases are shown graphically on Plate 8. Recommended earth pressure coefficients are as listed below.

E DAMES & MOORE

	ACTIVE		AT-REST		PASSIVE	
	Static K _A	Dynamic K _{DA}	Static K _o	Dynamic K _{DO}	Static K _p	Dynamic K _{DP}
Silty Fine Sand (Improved or Recompacted)	0.27	0.27	0.43	0.15	2.5	2.0
Gray F-M Sand	0.22	0.24	0.36	0.13	3.0	2.5

RECOMMENDED LATERAL EARTH PRESSURE COEFFICIENTS

Notes:

1. K_{DA} and K_{DO} values are used in equations on Plate 8 to estimate active and at-rest pressures.

 K_{DP} value is multiplied by total unit weight of soil to get equivalent fluid unit weight for use in estimating passive earth pressure.

3. K_{p} and K_{pp} values include safety factor of 1.5.

The dynamic lateral earth pressures for the active and passive case were estimated according to the method described by Seed and Whitman (1970) and corrected by Davies et al (1986). These methods are based on the Mononabe-Okabe equations. The dynamic lateral earth pressure for the at-rest case was estimated using the findings of Sherif et al (1982). A horizontal ground acceleration of 0.35 g was used to estimate dynamic earth pressure values. This acceleration value was used in the design of the Skagit Hanford Nuclear Project. It is based on a postulated Richter Magnitude 6.5 earthquake with a recurrence interval of at least 10,000 years.

Lateral forces may also be resisted by friction between the soil and the bottom of footings and mats. We recommend a friction coefficient of 0.4 for the silty fine sand that is either improved in-place or used as compacted fill. A friction coefficient of 0.45 may be used for the gray fine to medium sand in either its undisturbed state or as compacted fill. These values may be assumed constant for both static and dynamic conditions.

5.5 SEISMIC DESIGN CONSIDERATIONS

During this project, direct measurements of unit weights, compressional wave velocities and shear wave velocities were made in the elevation range from 466 to 534. All other seismic design parameters for soils from the ground surface to the top of rock were calculated from these measured parameters, or were estimated from in situ tests performed by others and from laboratory and in situ values published in the literature for similar soil conditions. A graphical summary of some of the key parameters as a function of depth is shown on Plate 7.

The shear modulus (G) values presented in Plate 7 are applicable only to the low amplitudes of shear strains which are created by the seismic shear waves during the downhole or crosshole test, i.e., typically in the range from 10^{-3} to 10^{-5} percent. The modulus values are therefore considered "maximum" values, and must be

12

016\REPORT\LIGOHAND.RWP

Tes Dames & Moore

modified to be applicable to the case of earthquake waves that produce much higher shear strains, i.e., on the order of 10^{-1} to 10^{-3} percent. The modifications for sands can be made using the relationship plotted in Plate 9. Also shown on Plate 9 is the relationship by which the damping values for sands may be estimated for the expected level of shear strain.

In order to estimate the wave velocities and seismic design parameters shown on Plate 7, we examined reports of seismic testing done by Dames & Moore and others at the Hanford site. Results of deep crosshole and downhole testing performed at the N-Reactor site (United Nuclear Industries, Inc. 1978), crosshole tests performed at the Fast Flux Test Facility (Hanford Engineering Development Laboratory 1975), downhole tests performed at the future grout vaults site (Dames & Moore 1988) and downhole, crosshole and refraction seismic test performed for the Skagit Hanford Nuclear Project (1984) were reviewed. A review was also made of estimates of the dynamic shear modulus reported by URS/John A. Blume & Associates (1977) for the 241-AN and 241-AP tank sites in the 200 East area. The data were not entirely consistent for the lower 150 to 200 feet of soil immediately overlying bedrock. Some information indicated increasing then decreasing velocity values, while other information indicated a constant or uniformly increasing velocity profile with depth. We believe that the data presented in Plate 7 represent a reasonable interpretation of the collected data, and are sufficiently accurate for design purposes.

Some methods of soil-structure interaction employ elastic modulus values to estimate the performance of structures during seismic shaking. For such an analysis, we recommend the following values:

• •	Elastic Modulus (E) in ksf		
	Static	Dynamic	
Brown Silty Fine Sand (Improved or Recompacted)	1,500	15,000	
Gray F-M Sand	1,800	18,000	

Static and dynamic values for coefficient of subgrade reaction have been recommended in Section 5.3.

The substantial depth to the water table at this site and the dense nature of soils at that depth means that liquefaction is extremely unlikely.

Ground shaking during an earthquake is known to cause settlement of dry granular soils that are in a relatively loose condition. We have estimated that as much as 1.5 inches of settlement could occur for portions of the structure that may be supported on the surficial brown silty fine sand layer that has not been improved (i.e. densified in place by rolling or other methods) or recompacted. This estimate was made using the method of Tokimatsu and Seed (1987) assuming a ground acceleration of 0.35g. If the brown silty fine sand is densified and/or recompacted as recommended in this report, the estimated settlement from seismic shaking decreases to approximately 0.3 inches for the design earthquake. This settlement is in addition to the settlement estimates for static loads as presented in Sections 5.2.1 and 5.2.2.

TAMES & MOORE

We recommend the use of a Site Coefficient (S-Factor) of 1.2 for seismic analysis of the LIGO facilities. The Site Coefficient is as defined and described in Section 2333 of the 1991 Uniform Building Code (UBC). If a simple representation of ground motion is required, we recommend that the normalized response spectra shape corresponding to a "Soil Type 2" be selected from Figure No. 23-3 of the UBC, page 195.

5.6 VIBRATORY FOUNDATION LOADS

Foundations for vibratory equipment such as compressors should be designed to prevent excessive deformation in the primary directions of motion of the machine, and to prevent settlement of the foundation soils due to long term vibration-induced consolidation.

Foundations for vibratory equipment may be placed on the natural gray fine to medium sand or on a "select" compacted fill consisting of either the gray fine to medium sand or a mixture of that soil with the brown silty fine sand. We do not recommend the use of the silty fine sand alone, either improved in-place or recompacted, unless it is overlain by a layer of select compacted fill of thickness equal to 1.5 times the width of footing/mat for the equipment.

Because of the narrow gradation of the brown silty fine sand, some risk of long term settlement from vibratory loading exists, even if this material is recompacted. We are therefore recommending the restrictions described above. The mixture should contain no less than about 40 percent and not more than about 60 percent of either of the two natural sand deposits.

Allowable bearing pressure values are the same as those recommended in Section 5.2.3. Compacted fill should be placed in accordance with the recommendations given in Section 5.2.1.

We recommend the following parameters for the design of foundations for vibrating equipment:

	Total Unit Weight (pcf)	Shear Modulus (ksf)	Poisson's Ratio
Select Fill	110	2400	.25
Brown Silty Sand (Improved or Recompacted)	105	2000	.30
Gray F-M Sand	105	3500	.25

SOIL PARAMETERS FOR USE IN DESIGN OF FOUNDATIONS FOR VIBRATING EQUIPMENT

The shear modulus values shown in the table above have been reduced from the "maximum" values obtained from geophysical testing in order to correspond to the 10^{-2} shear strain amplitude that probably better approximates the levels that will be induced by vibrating machinery.

5.7 CORROSION AND CHEMICAL DETERIORATION

Deterioration of metallic and/or concrete structures below the ground surface may occur where chemical and electrochemical conditions within the soil and ground water are unfavorable. A series of laboratory tests were conducted during this investigation to evaluate such conditions. A suite of corrosion potential tests were conducted on one sample each from Borings DM-1-92, DM-20-92 and DM-39-92. DM-20-92 is located at the corner station while the other two borings are located at the end stations. The soil sample from Boring DM-39-92 consisted of the gray fine to medium sand, while the other two samples consisted of the brown silty fine sand. The suite of tests included pH, resistivity, redox (i.e. oxidation-reduction) potential, sulfide content, sulfate content and chloride content. A summary of the test results is presented in Appendix C.

The test results do not identify any property of the soils that gives rise to concerns about corrosion or other deterioration of metallic and concrete structures at this site. All resistivity values are high, ranging from 68,000 to 370,000 ohm-cm, while the pH is neutral to slightly basic. These results suggest non-aggressive environments from the standpoint of corrosion. The redox potential values ranging from 287 to 323 mv indicate well aerated soil and suggest the absence of sulfate-reducing bacteria that are typically associated with corrosion. The absence of sulfate-reducing bacteria is also confirmed by the negative results measured for the sulfide screening tests.

This analysis does not consider stray currents which may occur at the site nor does it evaluate the possibility of the interconnection of dissimilar metals. The above analysis is based only on the corrosion behavior of a single material by itself without outside influences.

From this analysis it may be concluded that special corrosion mitigating features need not be included in the design of underground utilities. Standard quality controlled designs including proper bedding materials should result in structures that will experience little or no corrosion over their design life. However any buried structure viewed as "critical" should be reviewed in detail in the design phase for possible outside influences such as the interconnection of dissimilar metals or the possibility of being under the influence of stray currents.

Based on the above analysis, we recommend the following:

- 1. Standard construction materials and practices may be employed for the installation of sanitary sewer and water utilities.
- 2. Standard construction materials and practices may be employed for the installation of potable and fire water utilities.
- 3. Standard construction materials and practices may be employed for the installation of tanks bottoms, underground tanks or buried concrete structures.
- 4. Standard construction materials and practices may be employed for the installation of the site groundgrid system.
- 5. The interface connections between existing utilities and utilities to be constructed should be completed in a manner that will minimize or eliminate any galvanic couples and also to avoid the introduction of stray current onto the piping.

TAMES & MOORE

- 6. The sulfate content is such that specialty sulfate resistant portland cements are <u>not</u> required for concrete tanks and utilities for corrosion control. This does not exclude selection of those materials for other than corrosion control reasons.
- 7. The soil conditions in general (based on the available data) would <u>not</u> require the use of specialty coatings, inert membranes, nor cathodic protection. This does not exclude selection of those materials for other than corrosion control reasons.
- 8. The groundgrid design should take into consideration the high soil resistivities at this site.

5.8 PAVING

The variation in subgrade soils for paved surfaces will likely be similar to that for footing subgrades, ranging from the dense gray fine to medium sand to compacted fill. If excavations are required to reach the subgrade level, the exposed subgrade should be thoroughly proofrolled using a vibratory roller, especially where the subgrade soil consists of the brown silty fine sand. At least the upper 1-foot of subgrade soil should be at 95 percent of the maximum dry density, as measured using ASTM D-1557. The following are recommended values of California Bearing Ratio (CBR) for use in design of flexible pavement.

Soil	CBR
Compacted Fill (Silty Fine Sand)	20
Brown Silty Fine Sand (Proofrolled)	15
Gray F-M Sand (Proofrolled)	25

RECOMMENDED CBR VALUES FOR PAVEMENT DESIGN

If rigid pavements are desired, the values of vertical subgrade reaction coefficient presented in Section 5.3 may be used for design.

The pavement section should consist of the asphalt (or concrete) surface course underlain by a base course of crushed stone aggregate. The thickness of the base and surface courses should be established following an evaluation of the anticipated traffic weight and volume to be supported by the pavement.

5.9 LEACH FIELD

We understand that leach fields and seepage pits will be used for sewage disposal. Percolation tests were therefore conducted at two locations in the vicinity of the corner station. Test results, presented in Appendix B, indicate a range of percolation rates from about 0.4 to 2.0 minutes per inch. The test conducted at the location

Tes Dames & Moore

of Boring DM-21-92 where the ground surface was at Elevation 522 indicated the lowest percolation rates (2 minutes per inch). The higher percolation rates measured at Boring DM-22-92 (ground surface at Elevation 533) probably reflects the fact that the upper 11 feet of soil consisted of the silty fine sand in a loose to medium dense condition. It would be prudent to design all facilities using a percolation rate of at least 2 minutes per inch.

5.10 EARTHWORK AND SITE PREPARATION

Soil in the upper 6 to 12 inches across the site may contain an undesirable amount of vegetation, and should therefore be stripped from any area to be occupied by structures or pavements. This material can be used for general site grading. Both naturally occurring strata, i.e. the brown silty fine sand and the gray fine to medium sand, are suitable for use as structural compacted fill. An exception to the use of the silty fine sand for compacted fill directly beneath vibrating equipment is discussed in Section 5.6. Laboratory compaction characteristics of each of the two natural soil types and of a mixture of the two soil types are presented in Appendix C. The results for the brown silty fine sand are somewhat variable, showing a maximum dry density between 110 and 120 pcf, depending on the silt content. Further testing should be performed prior to construction to better evaluate the nature of this variation. Fills for general site grading may be placed in 10 to 12 inch lifts and compacted to 90 percent of the maximum dry density. Compaction recommendations for footing/mat and pavement subgrades have been addressed elsewhere. Close attention should be paid to moisture control during hot-weather construction.

During the site grading process, if the soil at the foundation subgrade level is the gray sand, no further excavation would be necessary. If the soil at the subgrade level is the brown silty sand, a minimum of 8 feet should be excavated and recompacted as recommended in Section 5.2.1. If during excavation of the brown sand, the gray sand is encountered at less than 8 feet below the subgrade level, no further excavation is required. Excavations extending to 8 feet depth that continue to reveal the brown silty sand in a loose condition should be further extended until a medium dense condition is encountered or the gray sand is revealed. Information obtained during drilling and sampling for this project suggests that wherever the brown silty sand layer is greater than 10 feet thick, the lower portion of the layer is in a medium dense to dense condition. We therefore expect that excavations to depths greater than 8 feet below the finished floor level will be required only sporadically across the site. We recommend frequent monitoring of subgrade conditions by a representative from Dames & Moore in order to identify locations where subgrade conditions are unacceptable.

Disturbance of the foundation subgrade from foot traffic or other activities during slab and mat preparation should be kept to a minimum. Keeping the surface moistened should aid in this task. However, some additional measures may be required during the hot summer months. Alternative measures for minimizing subgrade disturbance include placement of an upper 4 inch layer of well graded sand and gravel or a 2 to 3-inch thickness of lean concrete immediately after final grading.

Temporary excavations in the surficial layer of brown silty fine sand will likely experience some sloughing if slopes are steeper than about 1.8 Horizontal on 1.0 Vertical (1.8H:1.0V). Furthermore, this soil is considered highly erodible by water and wind, and may be adversely affected during heavy rainfalls or windstorms. Temporary protection from erosion can be provided by covering the slopes with visqueen or similar plastic membranes during construction. Permanent slopes in this layer should not be steeper than about 2H:1V. Erosion protection can be provided by vegetation or a 6 to 8-inch thick layer of gravel and/or crushed stone.

016\REPORT\LIGOHAND.RMP

🗱 Dames & Moore

Temporary excavations in the gray fine to medium sand may experience some local sloughing if slopes are steeper than about 1.5H:1V. Where this layer exhibits some natural cementation, slopes stand at 1.25H:1V with only minor sloughing. Permanent slopes should be inclined at 2H:1V. The more narrowly graded zones within this layer (i.e. less medium to coarse sand) will be relatively prone to erosion, and may be protected as indicated in the paragraph above.

5.11 UNDERGROUND UTILITIES

Excavations for underground utilities in the surficial silty fine sand will readily cave into any excavation that is sloped steeper than about 1.8 on 1.0 (horizontal to vertical). The addition of moisture before and during the excavation process may assist in reducing the amount of caving.

The excavated soil will be suitable for both bedding and backfill. Backfill soil should be placed in lifts not exceeding 6 inches in thickness and compacted to 90 percent maximum dry density as determined by ASTM D-1557.


Two bulk samples of the brown silty fine sand were tested for thermal resistivity to assist in determining ampacity derating factors for power cables. Test results indicated thermal resistivity values in the range from 400 to 530 degrees centigrade-centimeter per watt (°C-cm/watt).

Laboratory electrical resistivity tests were conducted on selected samples to assist with calculation of resistance-to-soil for equipment grounding and for assessing the potential for corrosion. The results, presented in Appendix C, indicate that all resistance values are high, typically exceeding 60,000 ohm-centimeters. The potential for corrosion is more fully discussed in Section 5.7.

E DAMES & MOORE

6.0 LIMITATIONS

The recommendations and descriptions presented in this report are based on soil conditions disclosed by the borings drilled during this and previous investigations at the site. The existing subsurface information referred to herein does not constitute a direct or implied warranty that the soil conditions between boring locations can be directly interpolated or extrapolated, or that subsurface conditions and soil variations different from those disclosed by the borings will not be revealed. If, during construction, subsurface conditions different from those described herein are observed, such conditions should be reviewed and the recommendations given herein revised as necessary. Dames & Moore regards the monitoring of soil conditions at the subgrade during construction as a key element in the successful completion of this project.

Sincerely,

DAMES & MOORE, INC.

Harbans L. Chabra, PE Principal

W. m. mclabe

W. Martin McCabe, PhD, PE Senior Engineer

016\REPORT\L IGOHAND.RMP

19

🗱 Dames & Moore

7.0 REFERENCES

Bowles, J.E. (1988). Foundation Analysis and Design, McGraw Hill Book Co., N.Y.

- Dames & Moore (1988). "Final Report; Geotechnical and Corrosion Investigation, Grout Vaults, Hanford, Washington" for Kaiser Engineers, Inc. October 10, 1988.
- Davies, T.G., Richards, R. and Chen, K (1986). "Passive Pressure During Seismic Loading", ASCE Journal of Geotechnical Engineering, V. 112, N.4, pp. 479-483.
- Hanford Engineering Development Laboratory (1975). "Site Investigation Report for the Fast Flux Test Facility, Richland, Washington," for U.S. Atomic Energy Commission, BCL-1701. December.
- Jennings, J.E. and Knight, K. (1975), "A Guide to Construction on or With Materials Exhibiting Additional Settlement due to Collapse of Grain Structure", Sixth Regional Conference For Africa on Soil Mechanics and Foundation Engineering.
- NRC (U.S. Nuclear Regulatory Commission) (1982). "Safety Evaluation Report Related to the Operation of WPPSS Nuclear Project No. 2," NUREG-0892, Supplement No. 1, Washington, DC.
- Schmertmann, J.H. (1978). "Improved Strain Influence Factor Diagrams", J. Geotech. Eng. Div., ASCE, Vol.104, GT8, pp 1131 1135.
- Schmertmann, J.H. (1970). "Static Cone to Compute Static Settlement over Sand", J. Soil Mechanics and Found. Div., ASCE, Vol 96, SM-3.

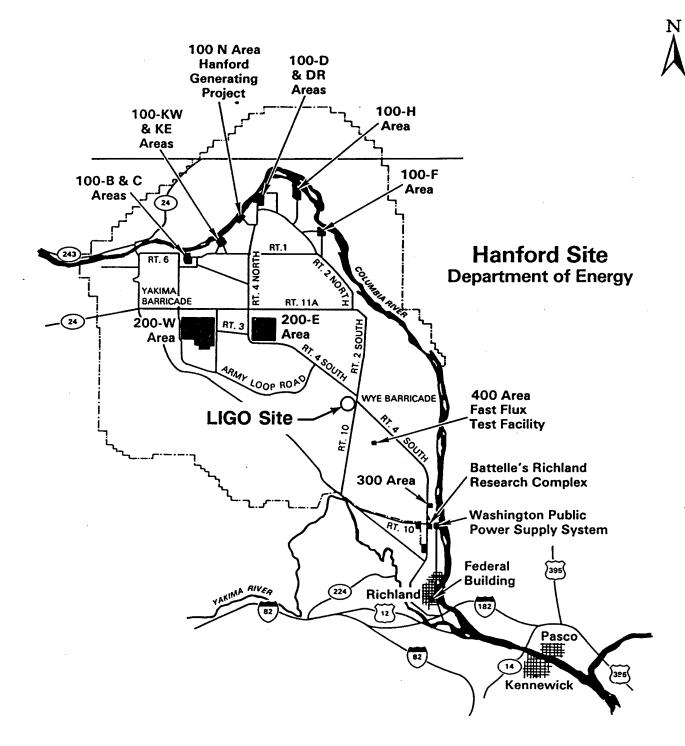
Scott, R.F. (1981). "Foundation Analysis," Prentice Hall, Inc., Englewood Cliffs, New Jersey.

- Seed, H.G., Wong, R.T., Idriss, I.M. and Tokimatsu, K. (1986). "Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils," J. of Geot. Eng. Div., ASCE, V. 112, No. 11, pp. 1016-1032.
- Seed, H.B. and Whitman, R.V. (1970). "Design of Earth Retaining Structures for Dynamic Loads," Proc. Specialty Conf. on Lateral Stresses in the Ground and Design of Earth Retaining Structures, ASCE, pp. 103-147.
- Sherif, M.A., Ishbashi, I. and Lee, C.D. (1982). "Earth Pressures Against Rigid Retaining Walls," J. of Geot. Eng. Div., ASCE, V. 108, No. GT5, pp. 679-696.

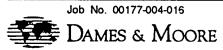
Skagit Hanford Nuclear Project, Preliminary Safety Analysis Report, Puget Power, 1984.

Tallman, A.M., Fecht, K.R., Marrott, M.C. and Last, G.V. (1979). "Geology of the Separations Areas, Hanford Site, South-Central Washington," Rockwell Hanford Operations RHO-ST-23. June 1979.

Terzaghi, K. (1955). "Evaluation of Coefficients of Subgrade Reaction," Geotechnique, V. 5, pp. 279.

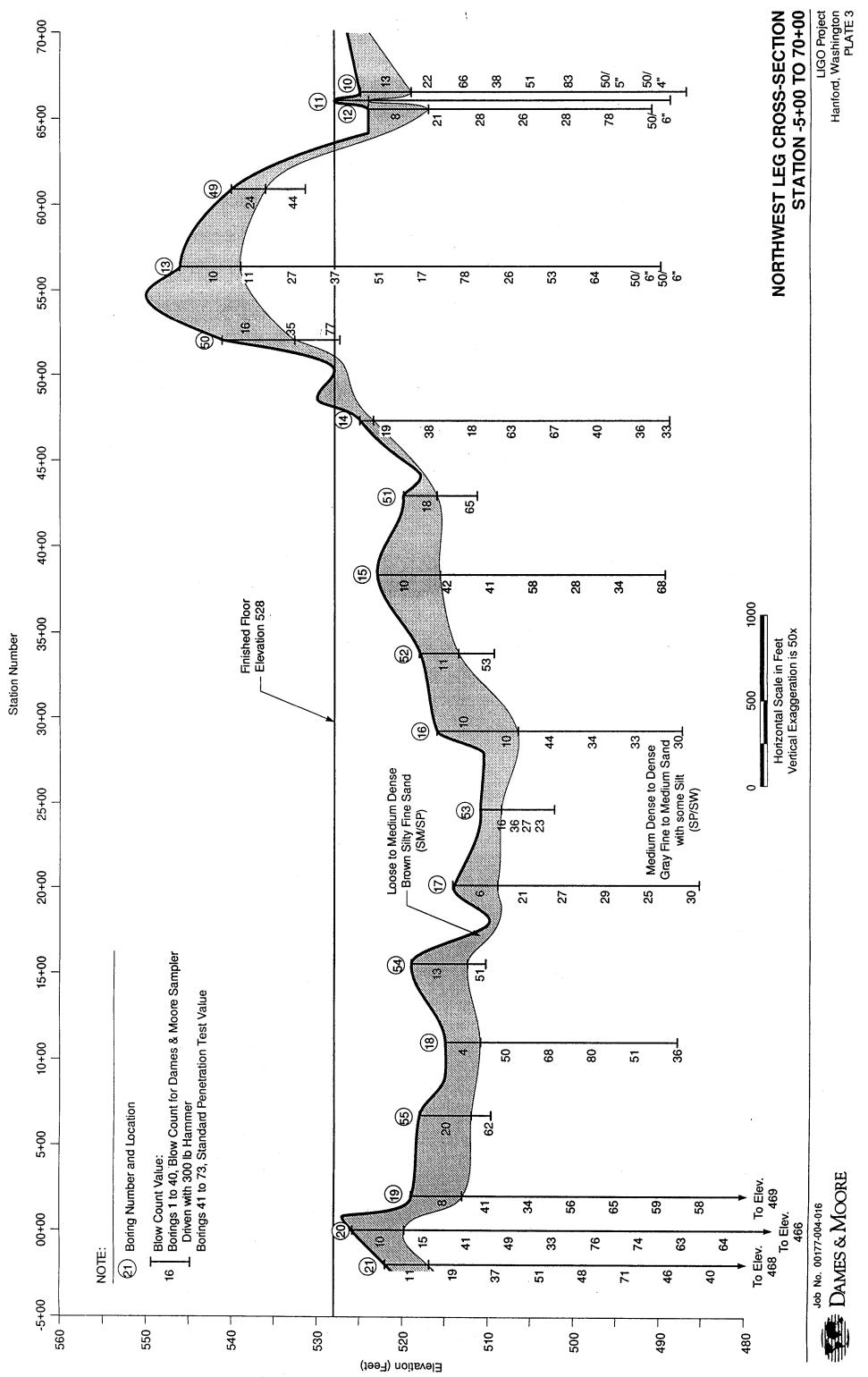

016\REPORT\LIGOHAND.RWP

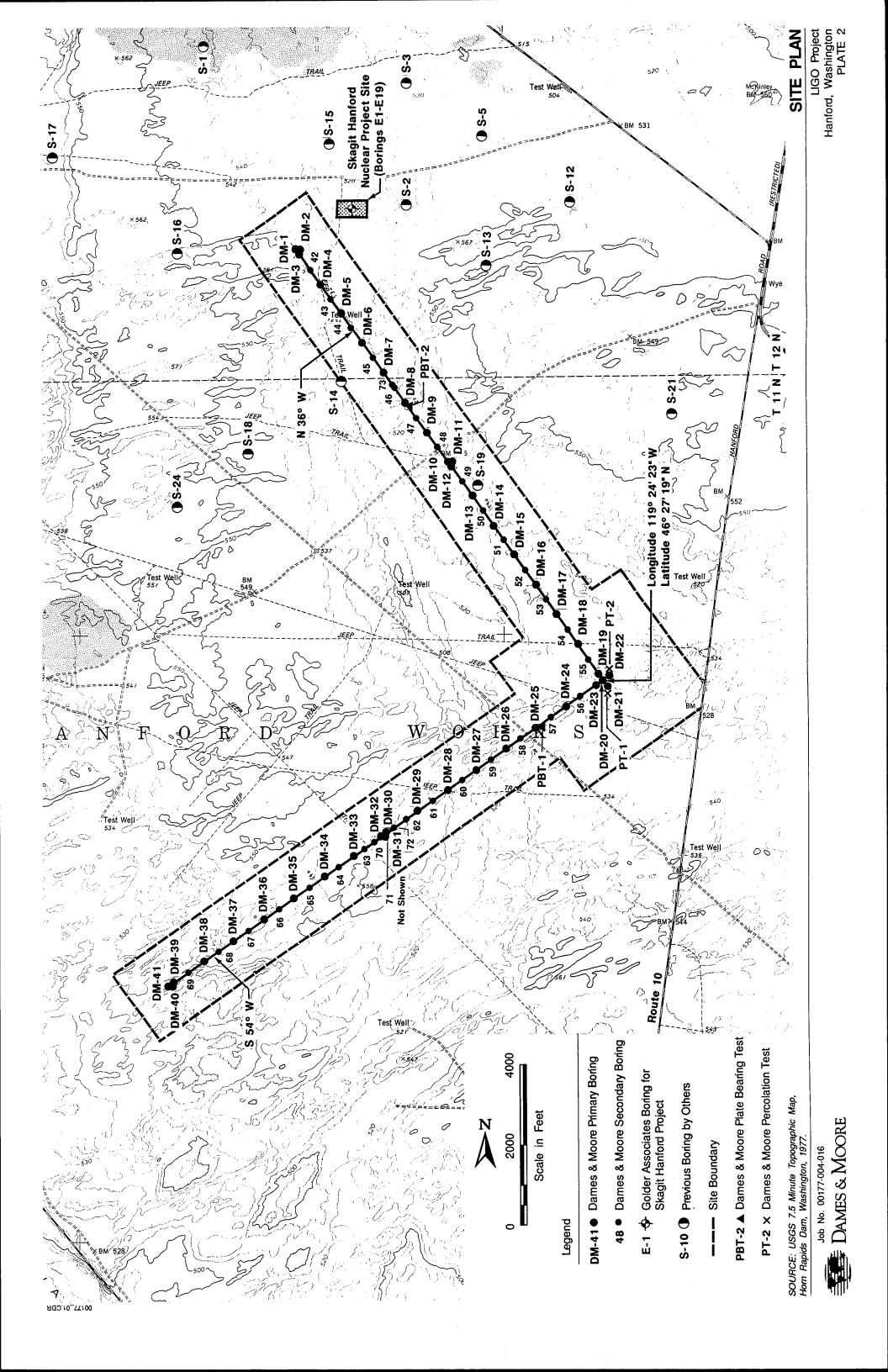
The Dames & Moore

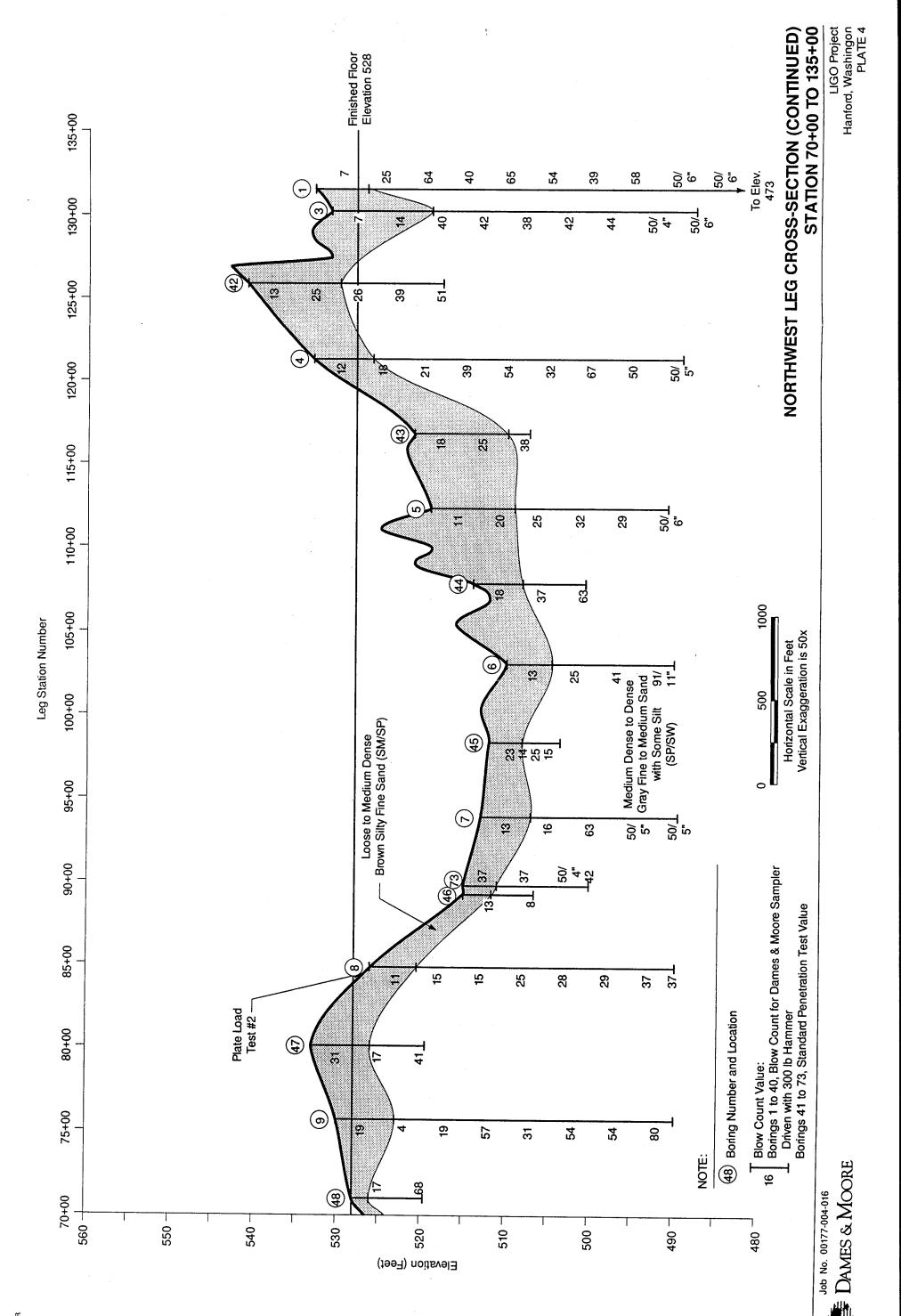

Terzaghi, K. and Peck R.B (1967). Soil Mechanics in Engineering Practice, John Wiley & Sons, New York.

- Tokimatsu, K. and Seed, H.B. (1987). "Evaluation of Settlements in Sands Due to Earthquake Shaking," Journal of Geotechnical Eng., ASCE, Vol. 113, No. 8, pp 861-878.
- United Nuclear Industries, Inc. (1978). "N-Reactor Updated Safety Analysis Report," by UNC Nuclear Industries for U.S. Dept. of Energy, UNI-M-90.
- URS/John A. Blume & Associates (1977). "Investigation to Determine Dynamic Soil Properties at the 241-AN and 241-AP Tank Sites," prepared for Vitro Engineering Corp., Richland, Washington. March 1977.

U.S. Navy (1982). Foundation and Earth Structures, Design Manual 7.2, Dept. of Navy. Alexandria, Virginia.

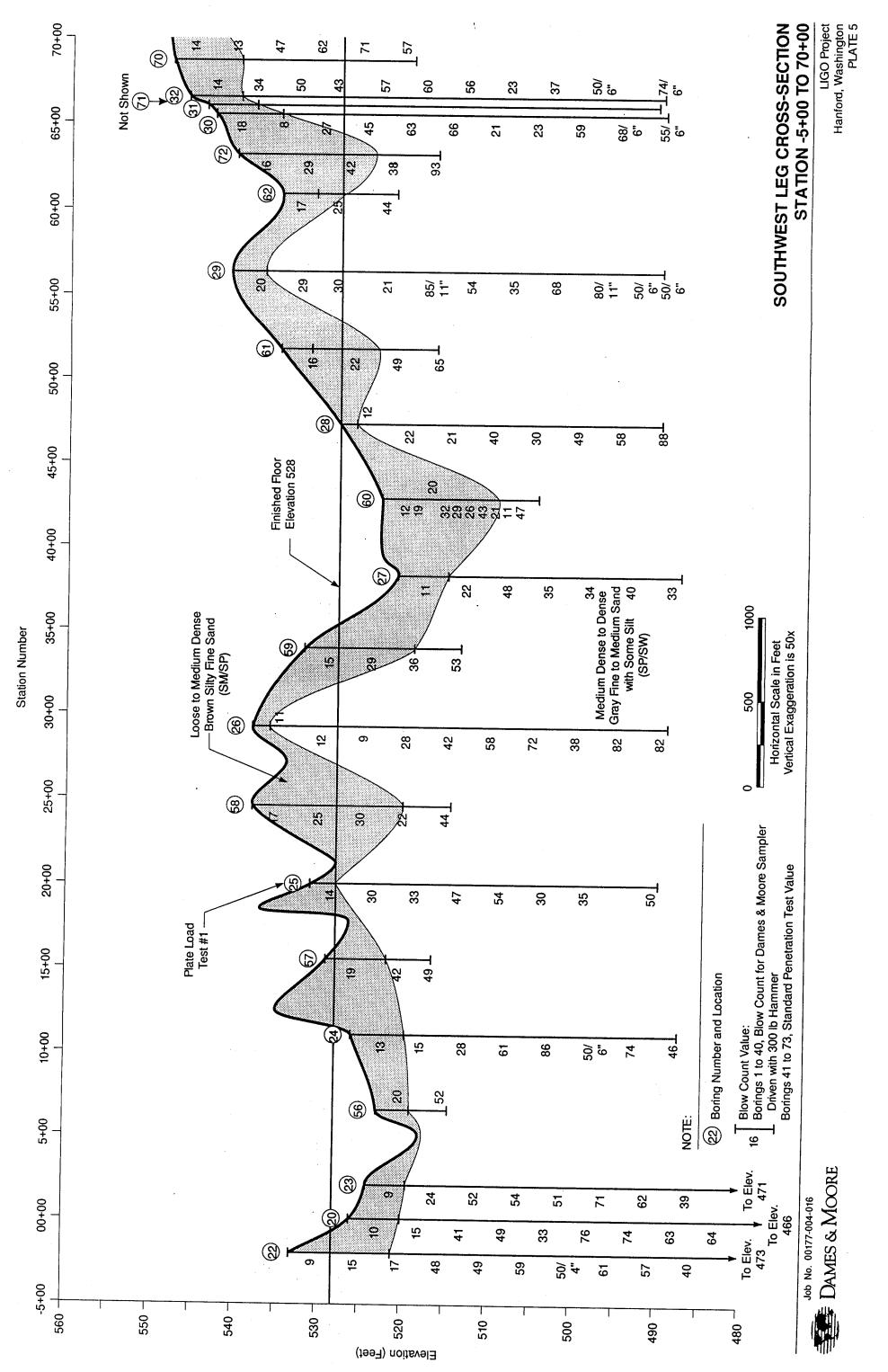


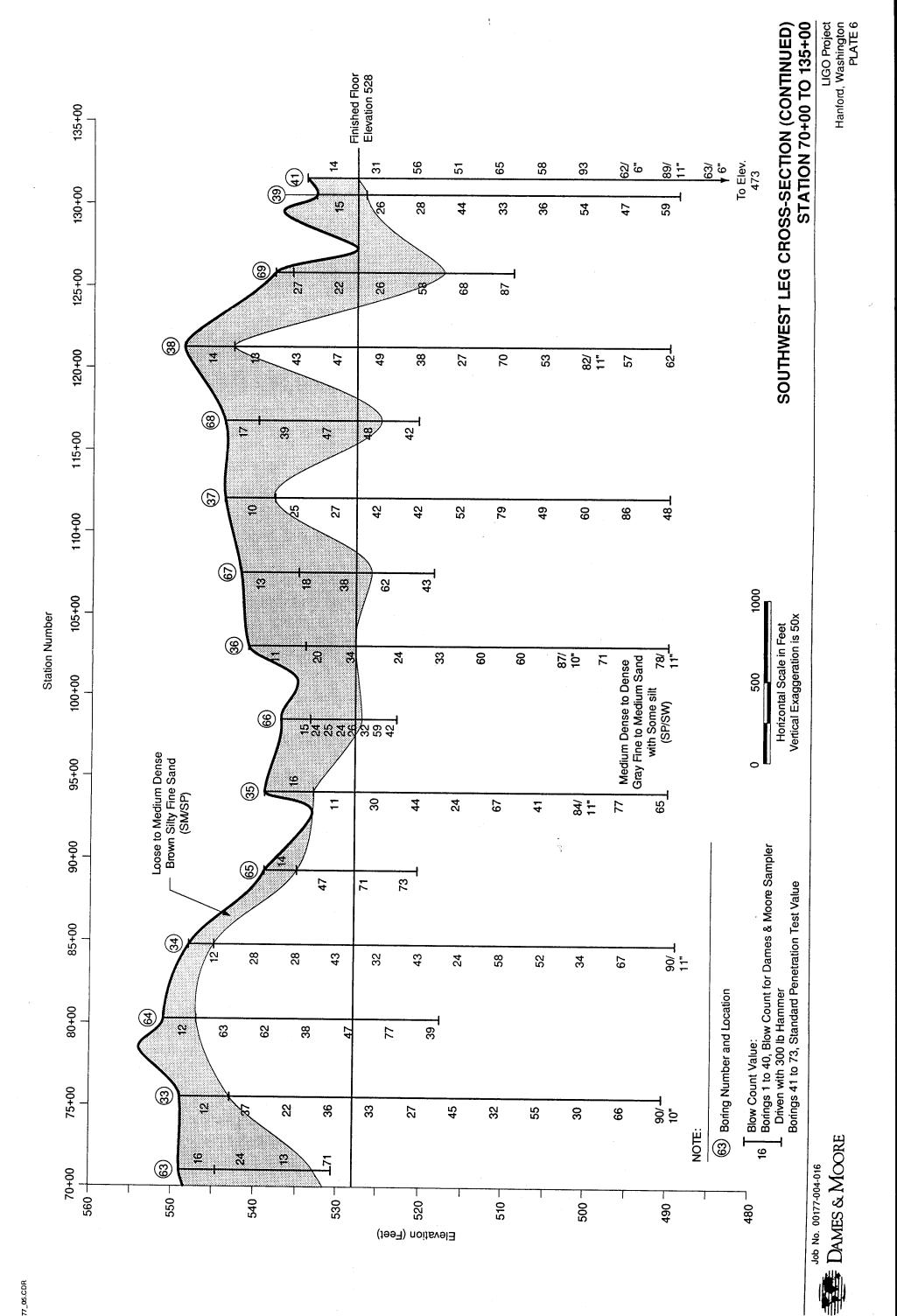

SOURCE: Department of Energy

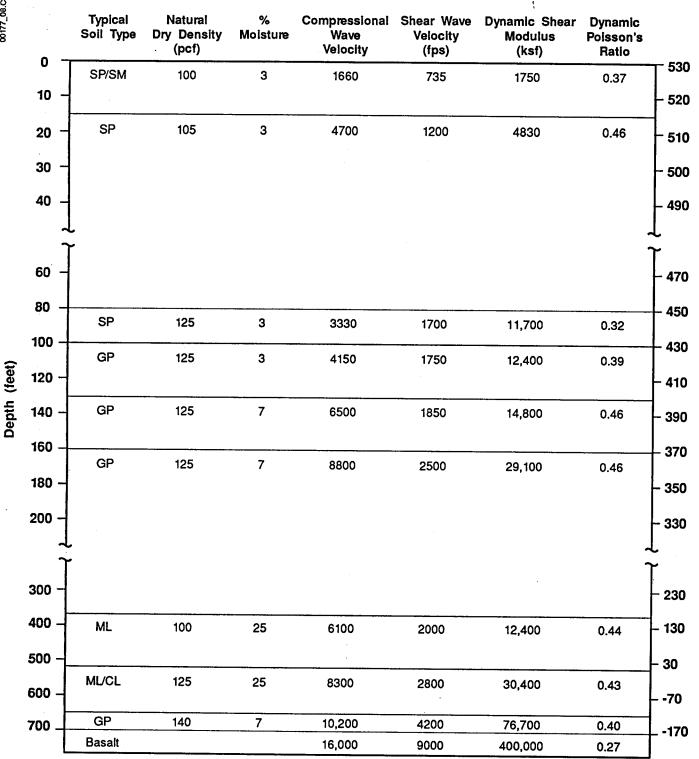


AREA MAP

LIGO Project Hanford, Washington PLATE 1







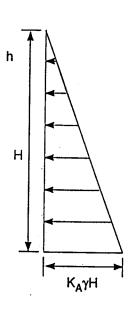
. .

Soil parameters below Elevation 466 estimated using data from previous investigations.

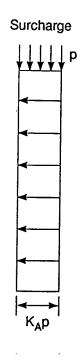
Elevation (feet)

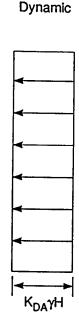
SEISMIC DESIGN DATA **TYPICAL SOIL PROFILE**

LIGO Project Hanford, Washington PLATE 7


00177_08.CDR

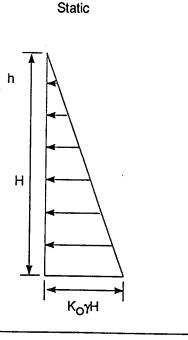
Job No. 00177-004-016 DAMES & MOORE 00177_09.CDR


Yielding Walls


Static Pressure = $K_A\gamma h + K_Ap$

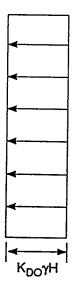
Dynamic Pressure = $K_A\gamma h + K_Ap + K_{DA}\gamma H$

Static



Unyielding Walls

Static Pressure = $K_0\gamma h + K_0p$

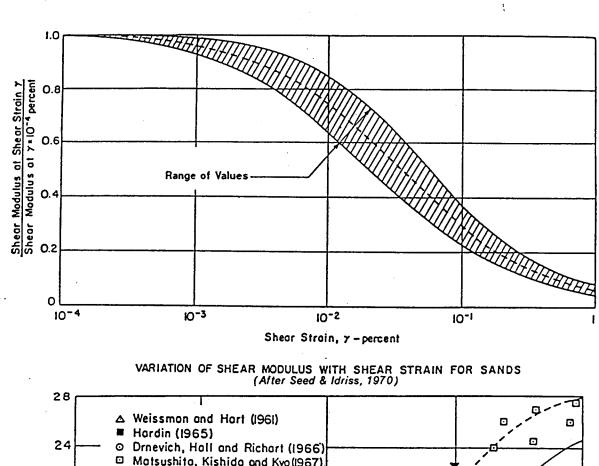

Dynamic Pressure = $K_0\gamma h + K_0p + K_{D0}\gamma H$

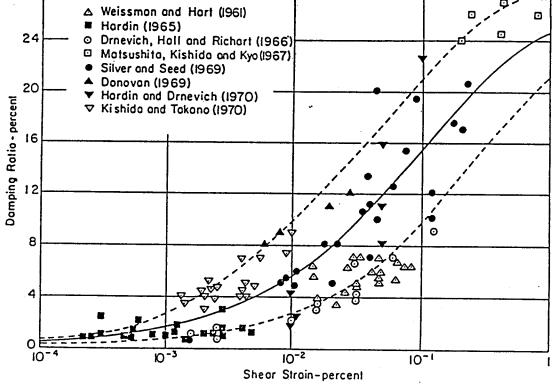
К_ор

Surcharge

Legend

- h Depth Below Grade
- H Height of Wall Below Grade
- γ Backfill Specific Weight (115 pcf)
- p Surcharge


K_{DA} Dynamic Earth Pressure Coefficient (see report Section 5.4 for values)


- K_A Active Earth Pressure Coefficient (see report Section 5.4 for values)
- K_{DO} Dynamic At-Rest Earth Pressure Coefficient (see report Section 5.4 for values)
- Ko At-Rest Earth Pressure Coefficient (see report Section 5.4 for values)

LATERAL EARTH PRESSURES

LIGO Project Hanford, Washington

Job No. 00177-004-016 DAMES & MOORE

DAMPING RATIOS FOR SANDS (After Seed & Idriss, 1970)

Job No. 00177-004-016 DAMES & MOORE

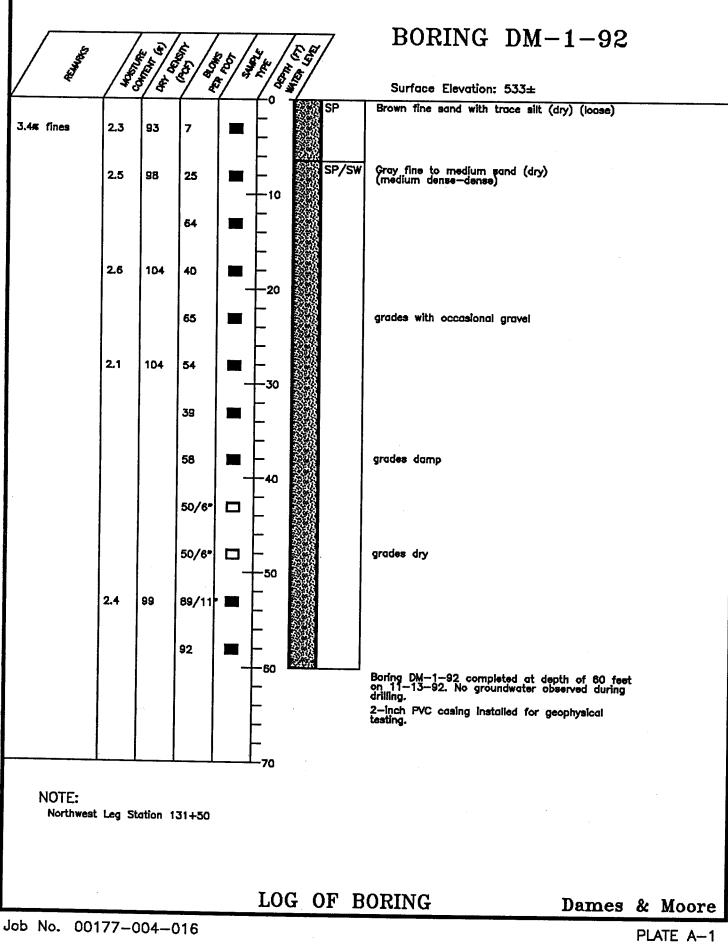
00177_10.CDR

LIGO Project

APPENDIX A FIELD INVESTIGATION

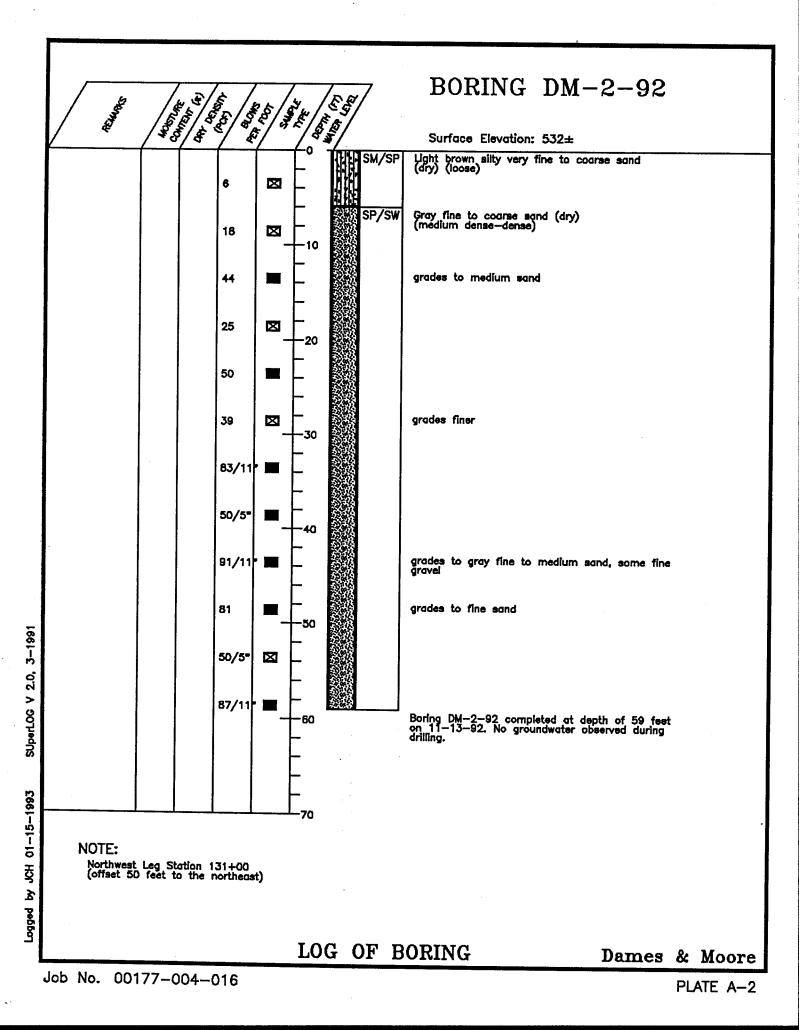
Subsurface and ground-water conditions at the site were investigated by drilling 41 primary borings and 32 secondary borings at the locations shown on Plate 2. The borings were drilled utilizing two truck-mounted hollow stem auger drill rigs, a Mobile Drill B-61 and an Acker CME Soil Max. The borings ranged in depth from about 8 to 63 feet below the existing ground surface. After reaching the final depth the borings were backfilled with bentonite mud. The spoils from the borings were spread out over the ground surface surrounding the boring.

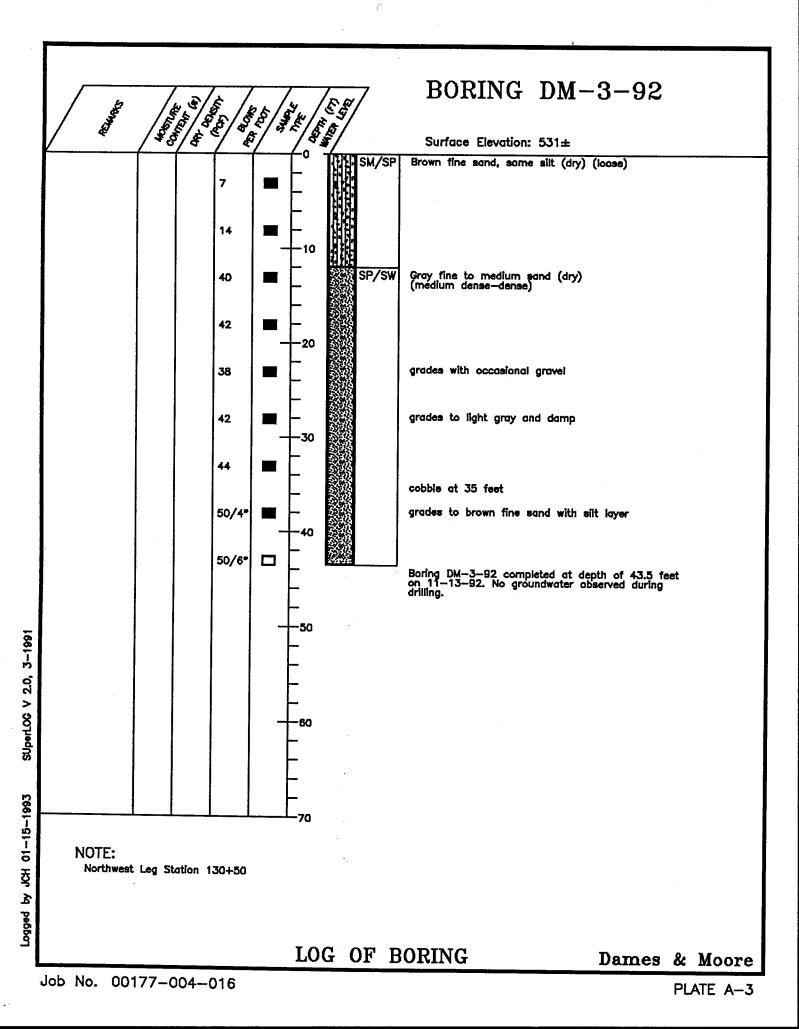
Borings DM-1-92, DM-20-92, and DM-41-92 were used in the geophysical survey and had a 2-inch diameter SCH 40 PVC pipe casing installed. The casing was grouted into place using a mixture of bentonite and cement. After the geophysical survey was conducted the borings were backfilled with bentonite mud.

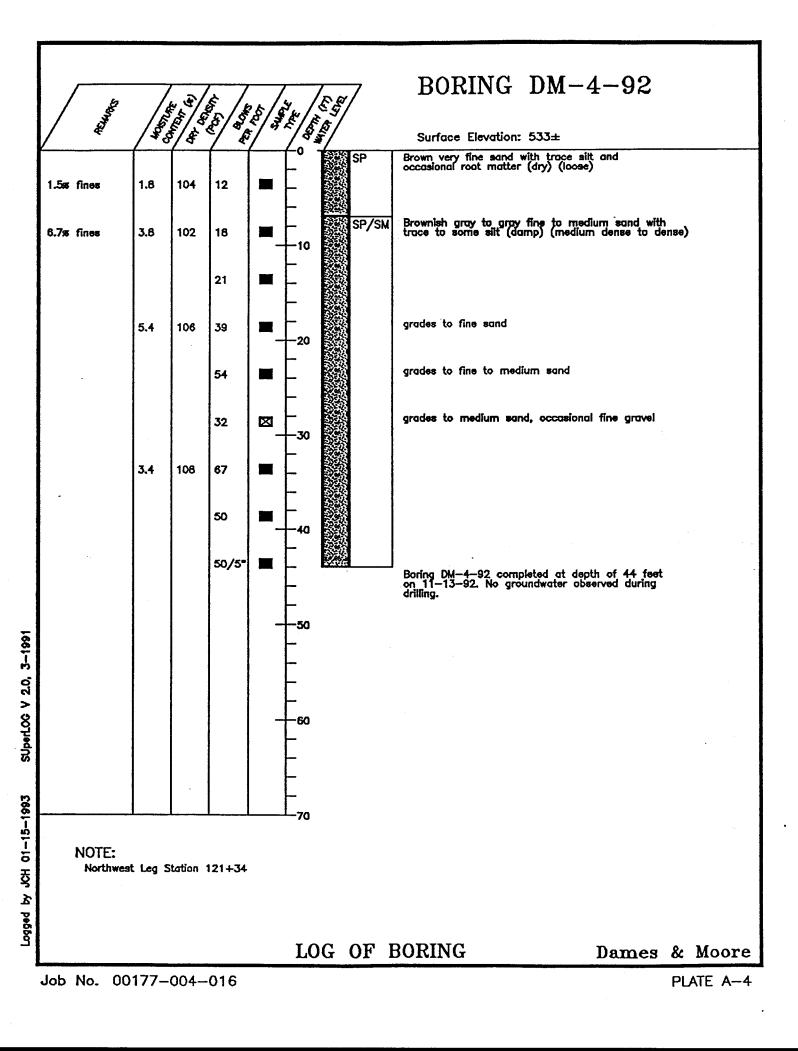

The drilling program was coordinated by a Dames and Moore staff engineer and a field technician who monitored the drilling activities, obtained samples of the soils encountered, classified the soils by visual and textural examination and maintained continuous logs of the subsurface conditions. Logs of the borings are presented on Plates A-1 through A-73.

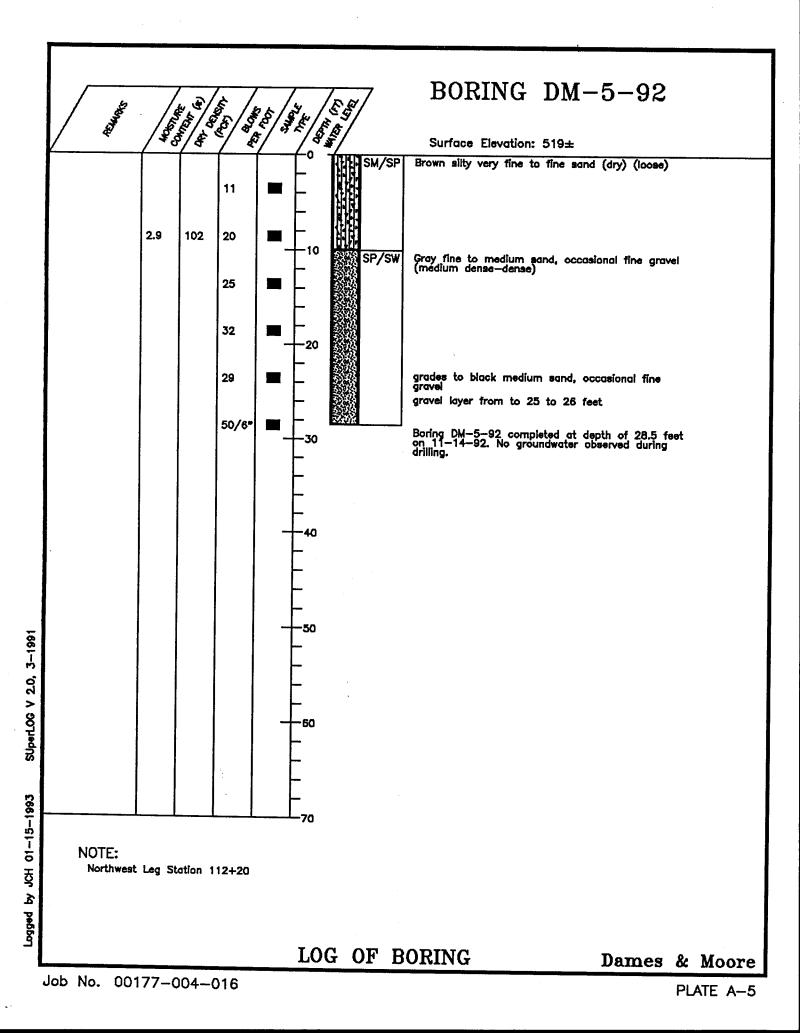
Relatively undisturbed samples of the soils encountered were obtained at about 5-foot intervals. In the primary borings a Dames & Moore U-Type sampler, as shown on Page A-2, was used to collect soil samples. Soil samples from the secondary borings were obtained using the standard penetration test. The U-Type sampler was driven with a 300-pound safety hammer falling 30 inches. The number of blows required to drive either sampler one foot or less into undisturbed soils is shown adjacent to the appropriate sample notations on the boring logs, Plates A-1 through A-73. A key to the notations used on the logs is presented on Plate A-74. The soils were classified in accordance with the Unified Soil Classification System which is described on Plate A-75.

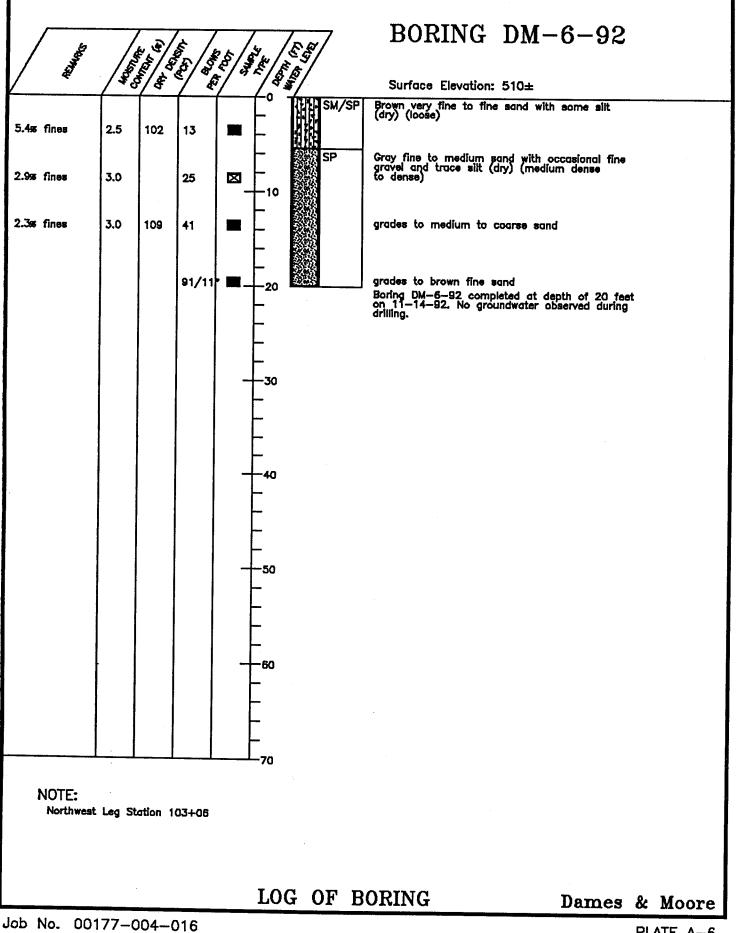
Based on energy ratios between the two different hammers and samplers used during the field investigation the blow count for a sample obtained using the Dames & Moore U-Type sampler should be equal to or slightly greater than the SPT value for similar sampling depth and soil conditions. However, comparing the U-Type sampler blow count values to the SPT blow count values for similar depth and soil conditions we find that on the average the blow count for samples obtained using the U-Type sampler are actually less than the SPT blow count. This may be due to using two different drill rigs that had different mechanical components used to raise the hammer. It is our opinion that the SPT blow count values may be slightly elevated due to details of the rig, and that the Dames & Moore sampler blow counts more accurately reflect the condition of the soils.

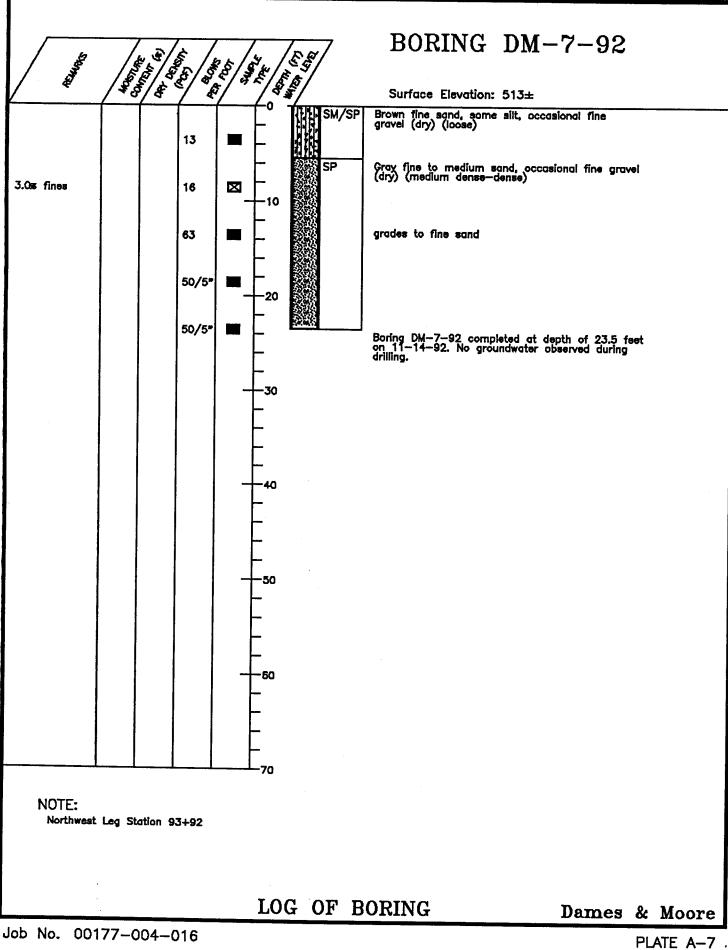

: A-1

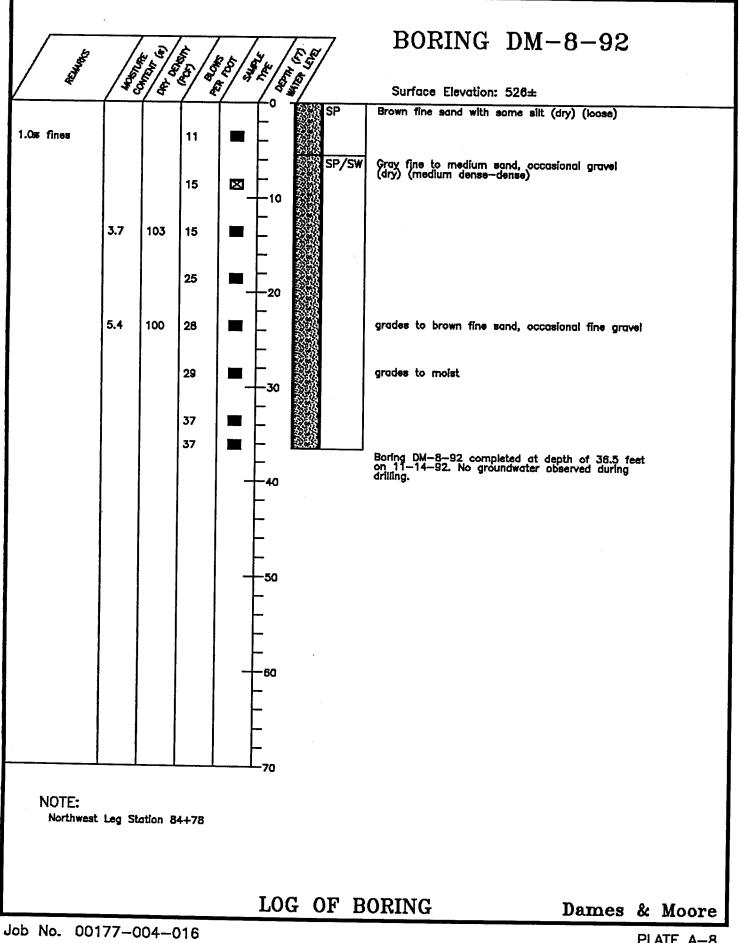

016\REPORT\LIGOHAND.RM

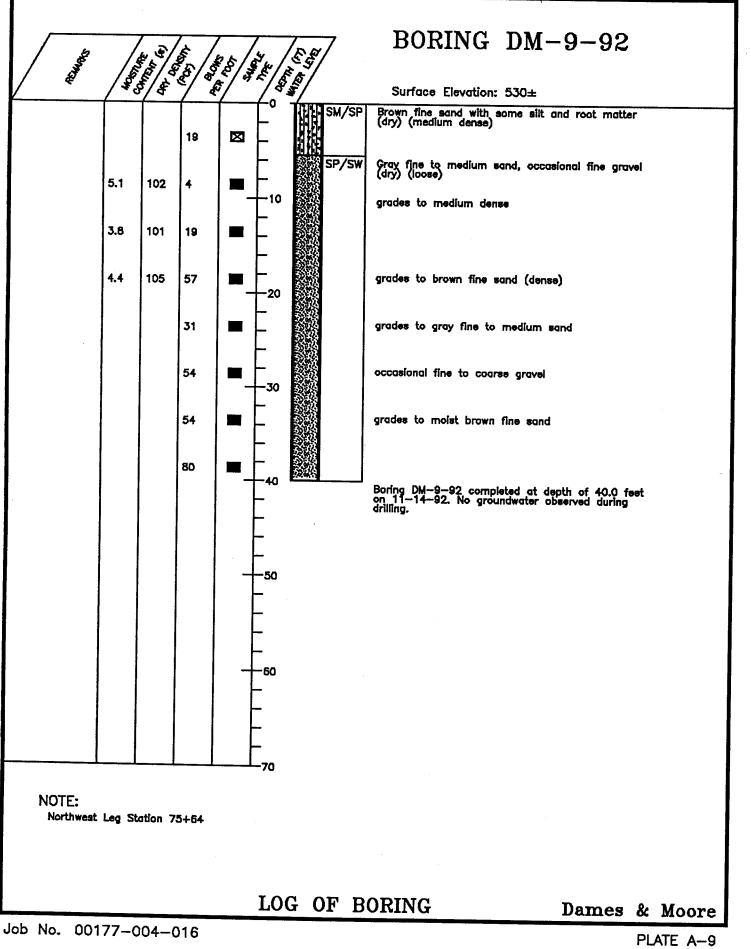


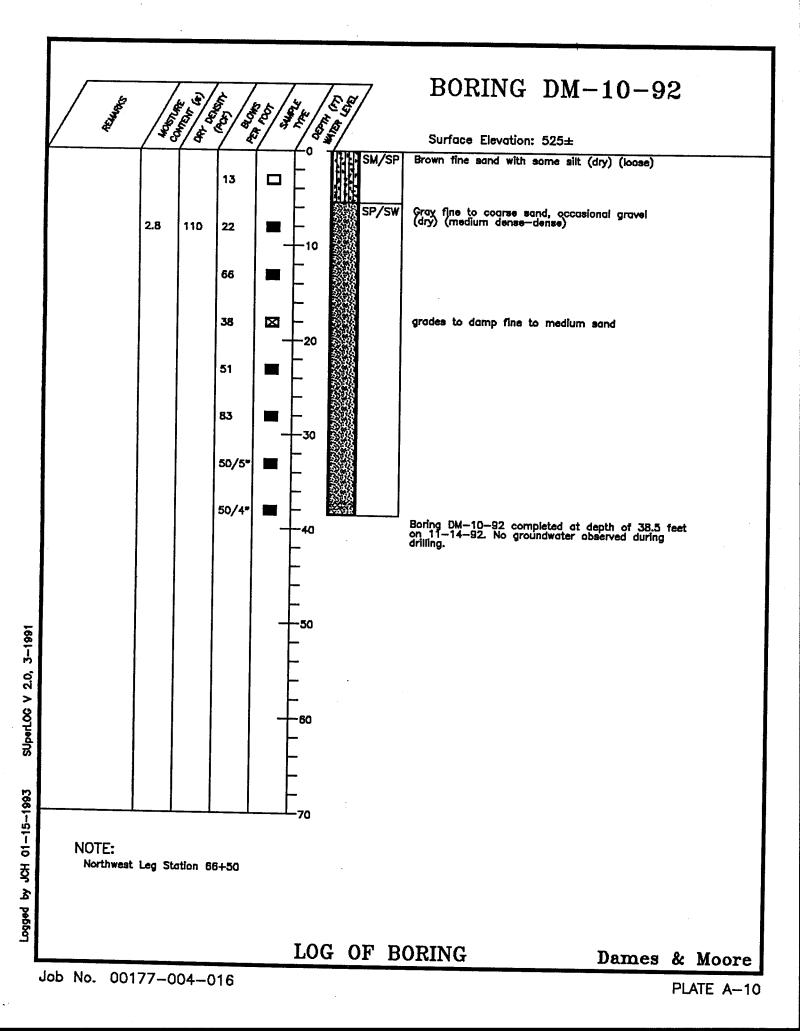

Logged by TSP 01-15-1993

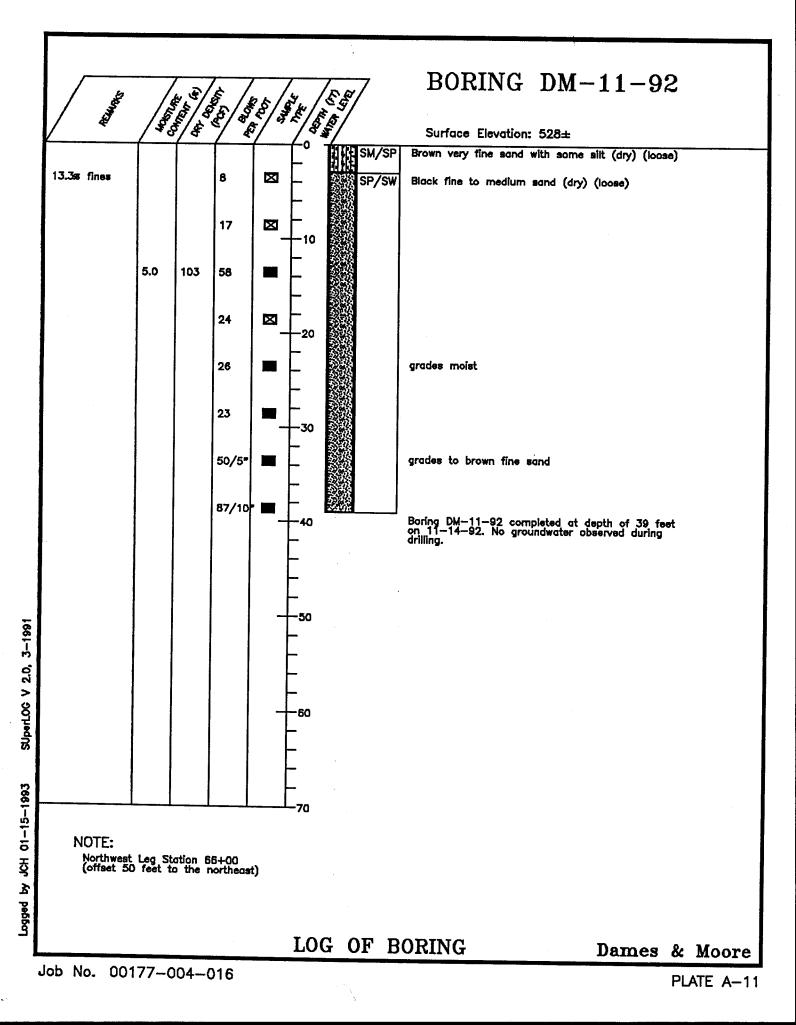

SUperLOG V 2.0, 3-1991

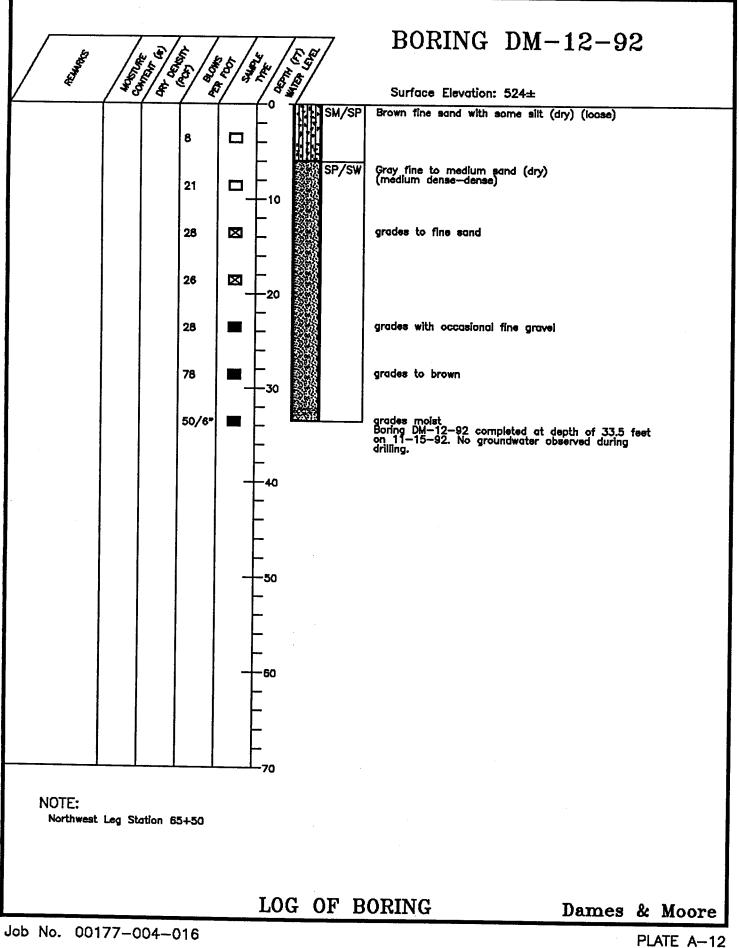


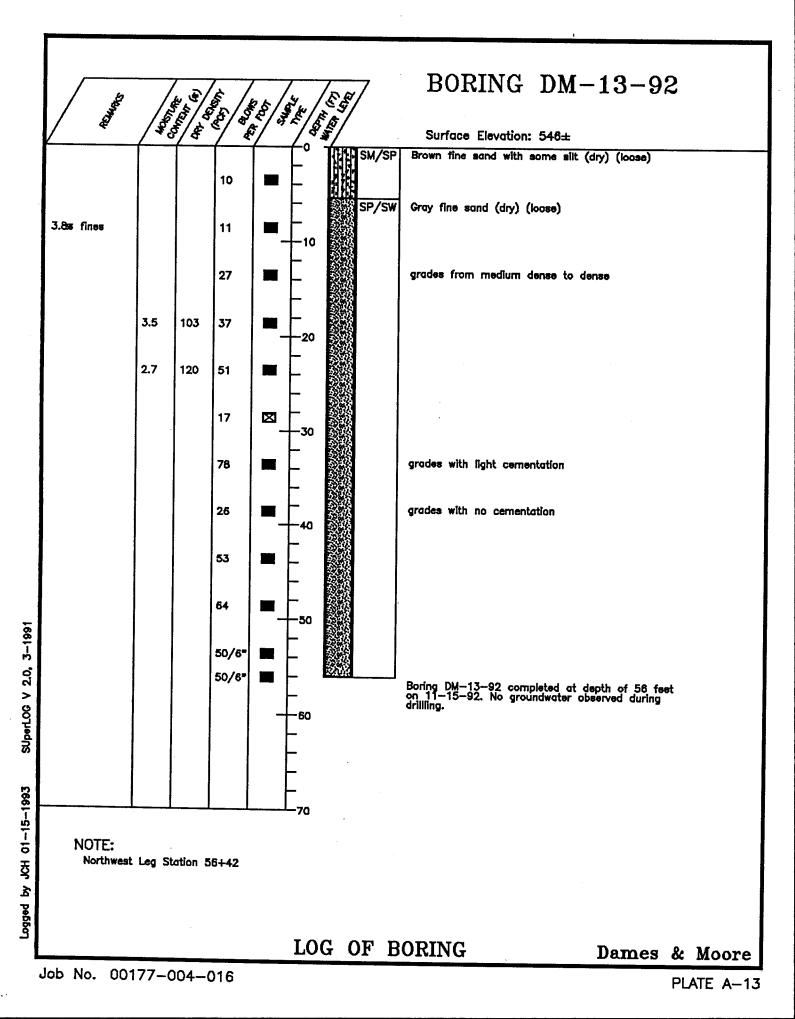


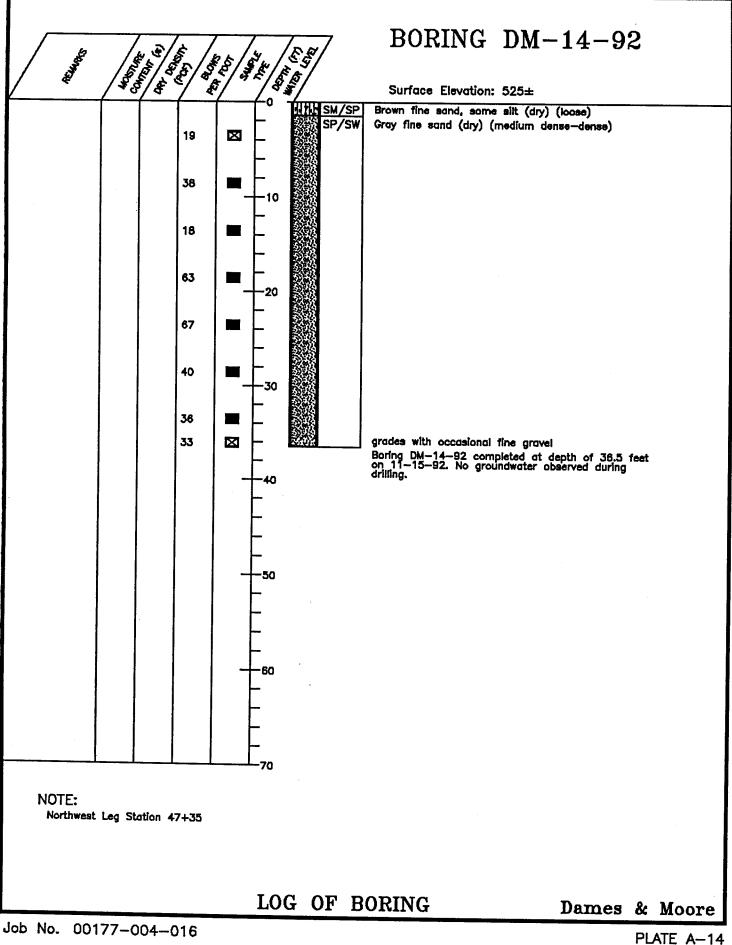


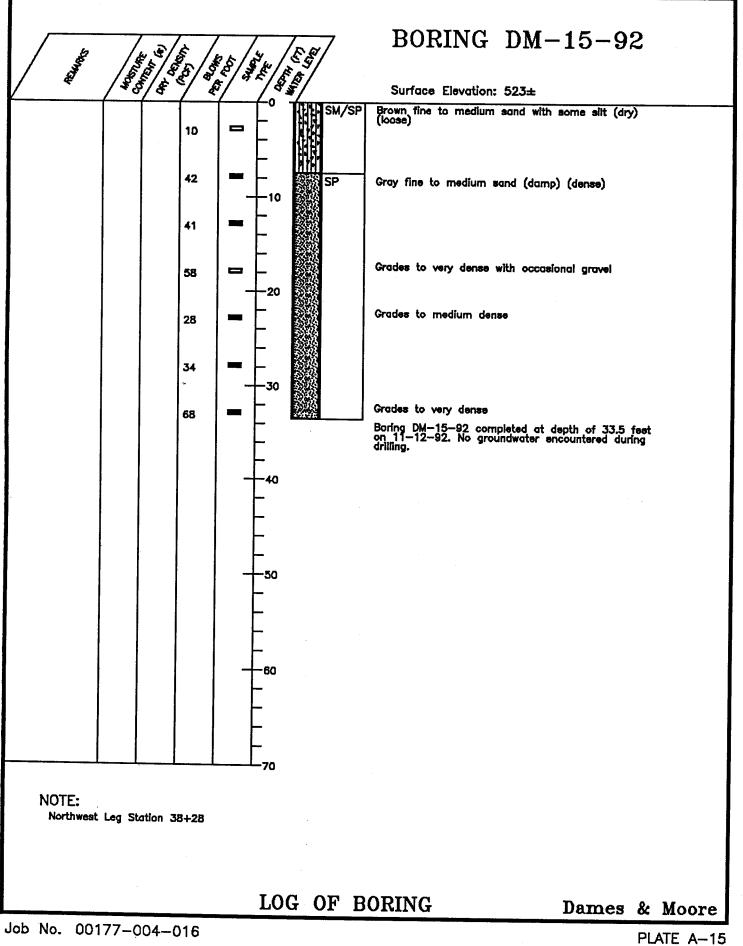






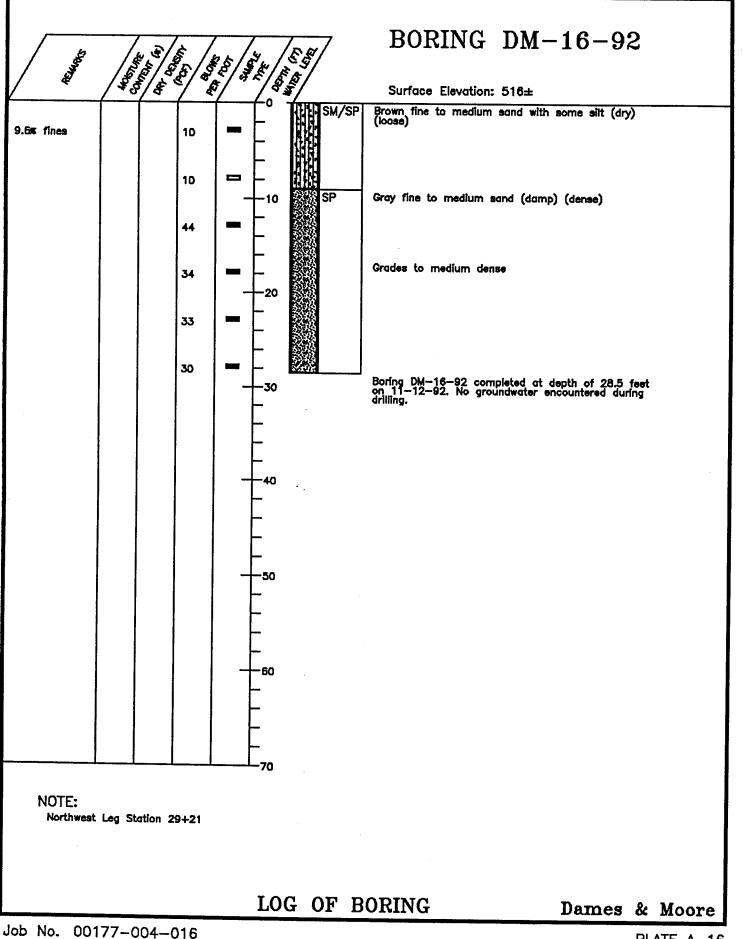
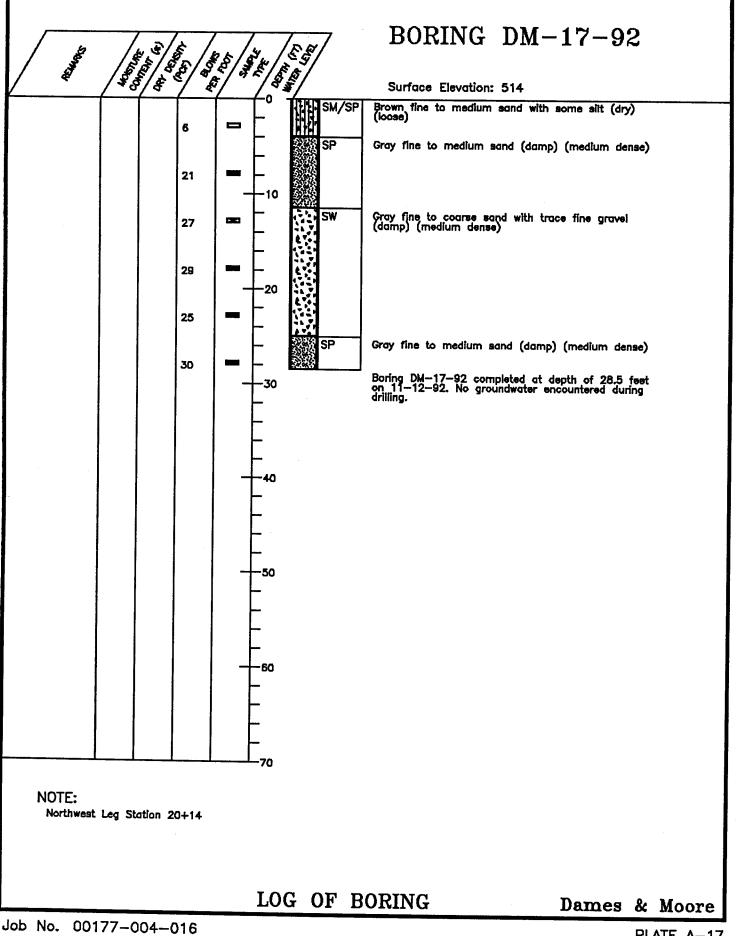
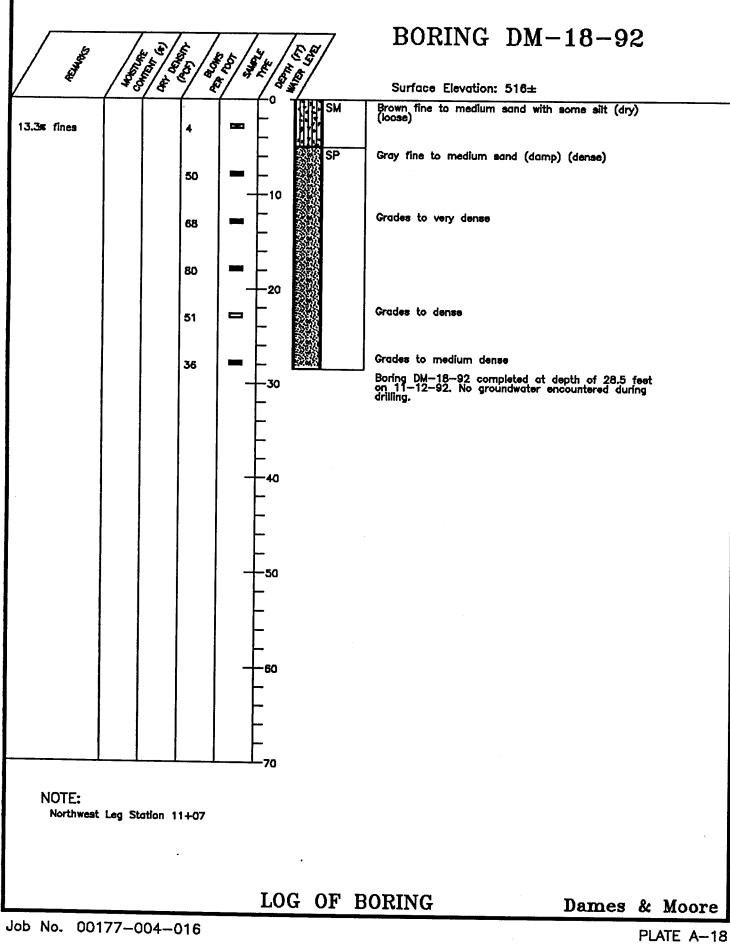

Logged by JCH 01-15-1993

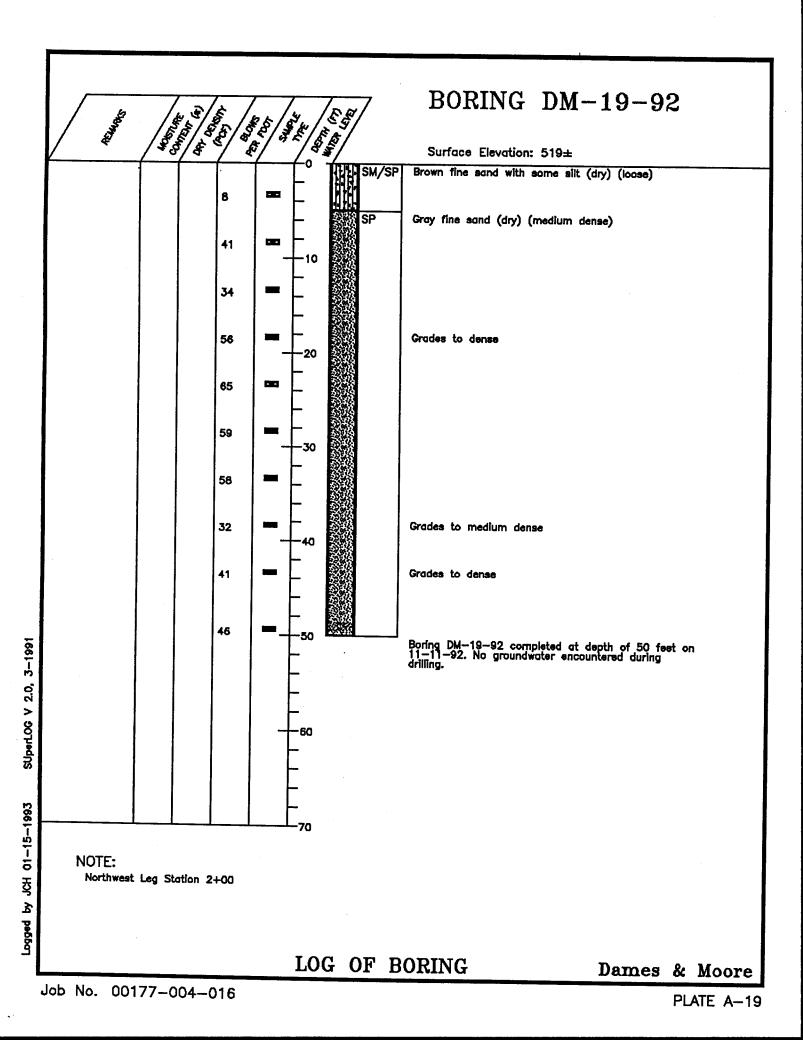


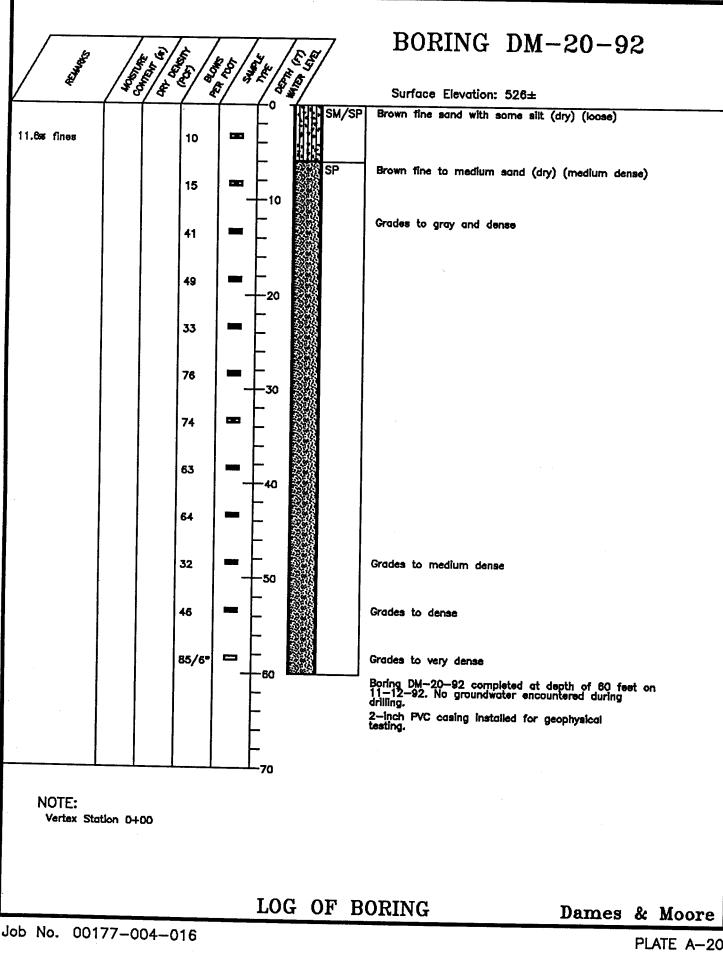


SUperLOG V 2.0, 3-1991

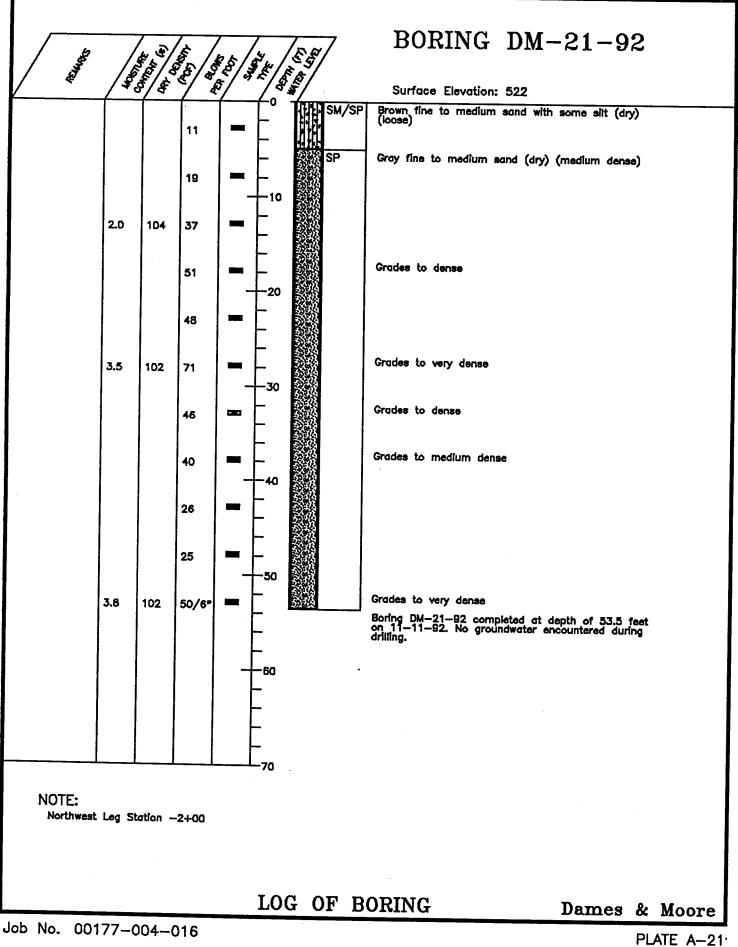
SUperLOG V 2.0, 3-1991

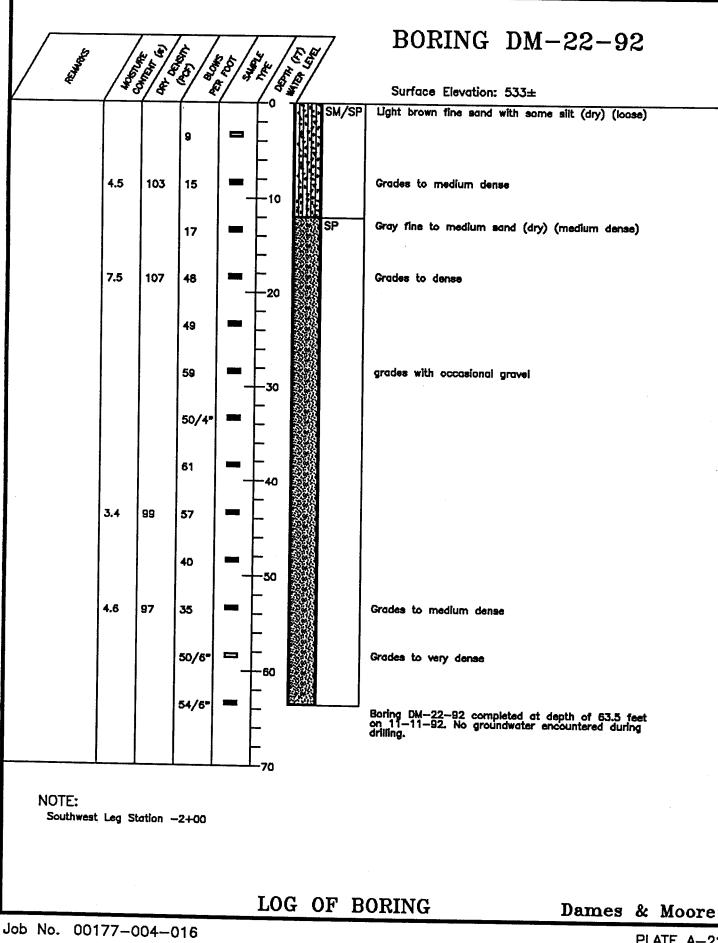




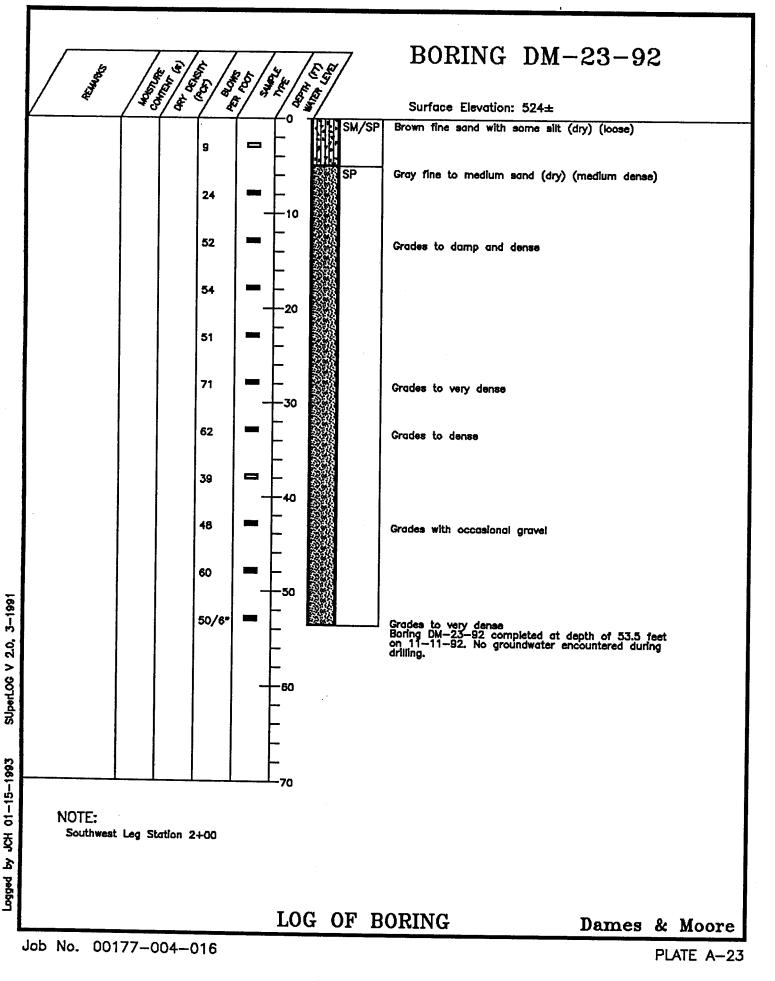

PLATE A-16


SUperLOG V 2.0, 3-1991

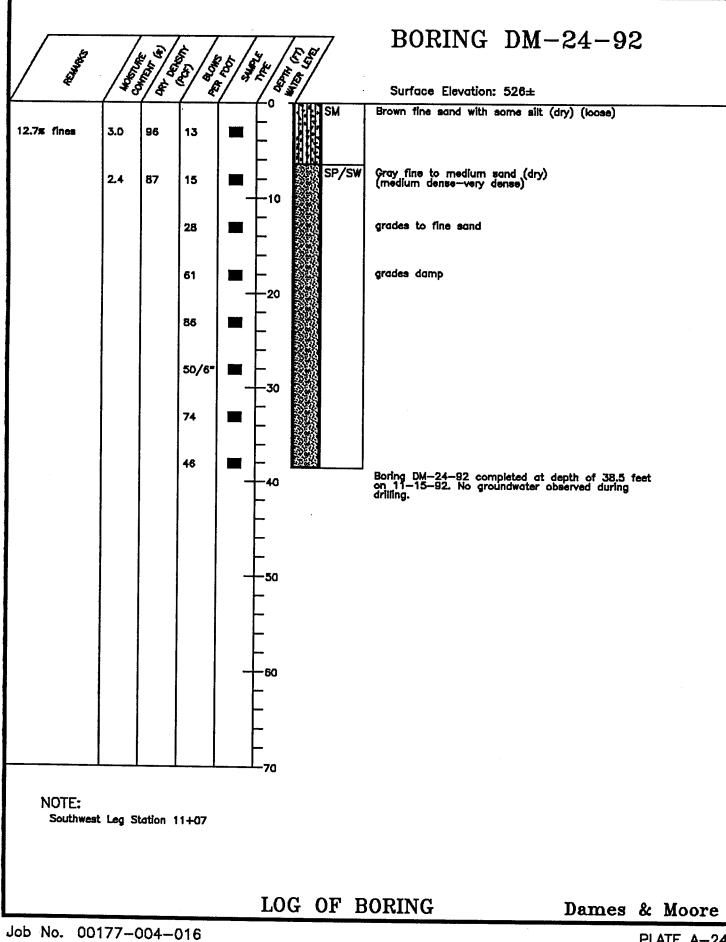
SUperLOG V 2.0, 3-1991

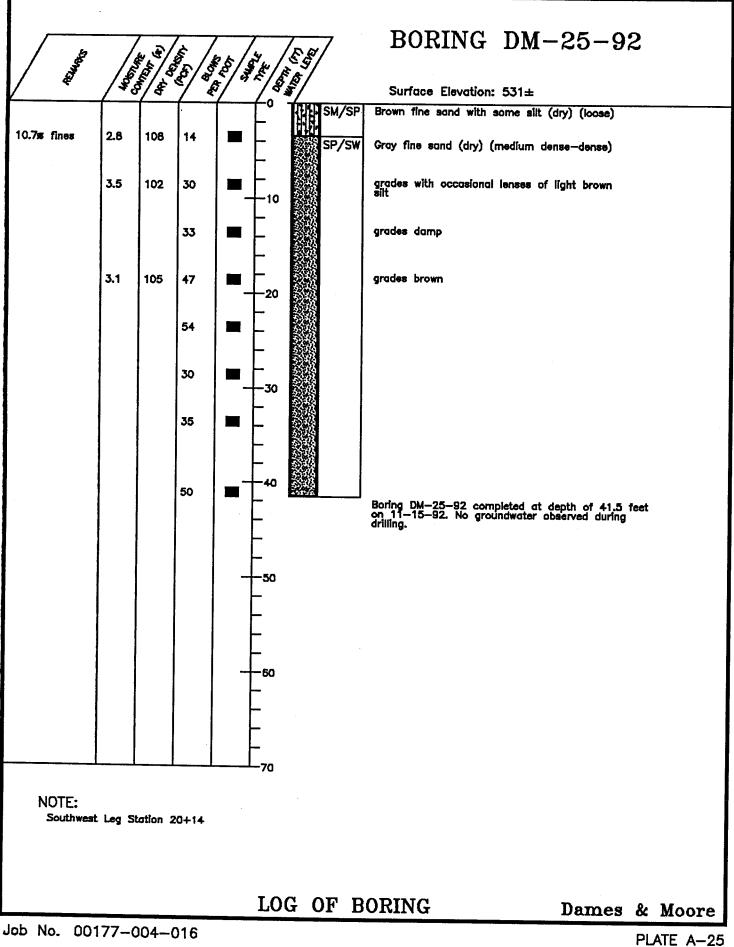


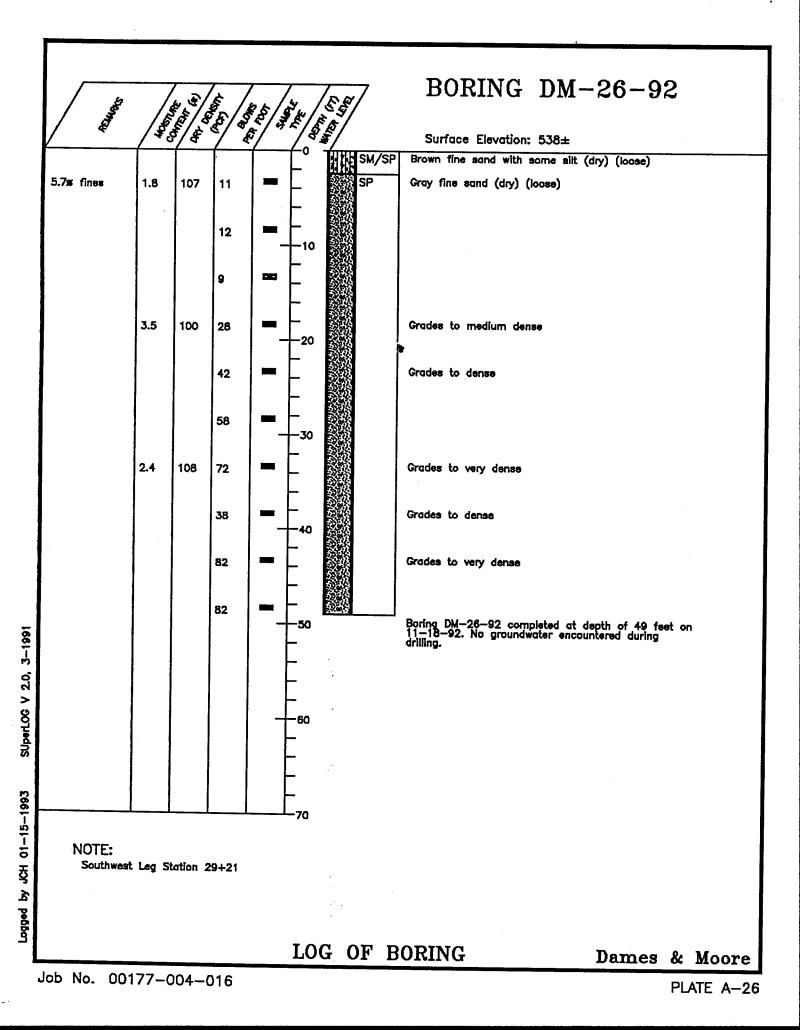

01-15-1993

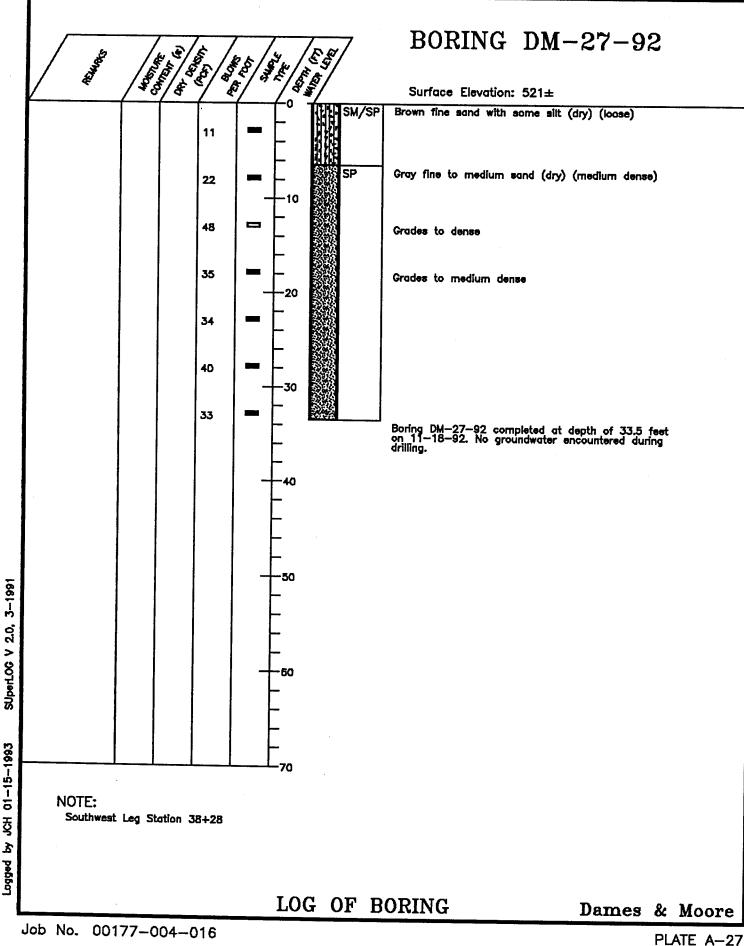

ठु

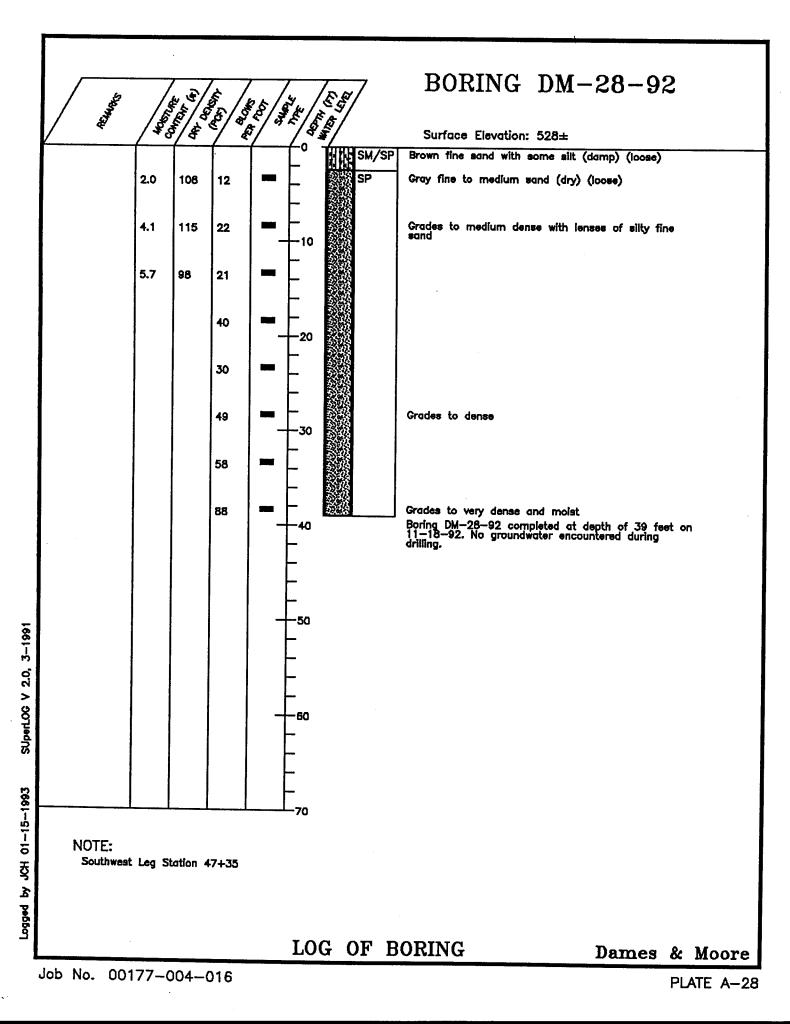
ka beggal

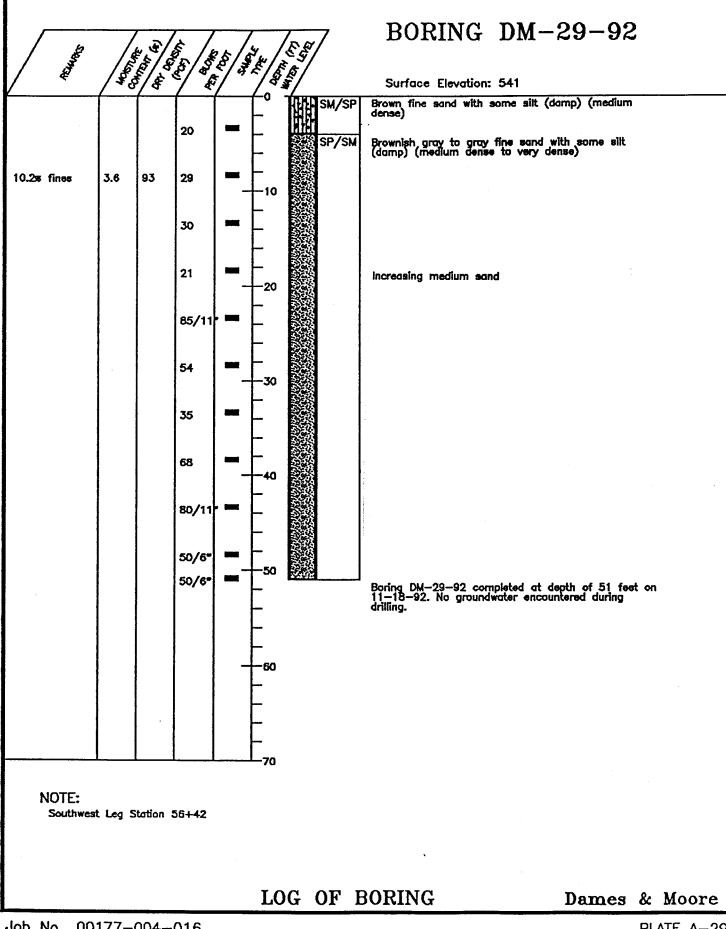


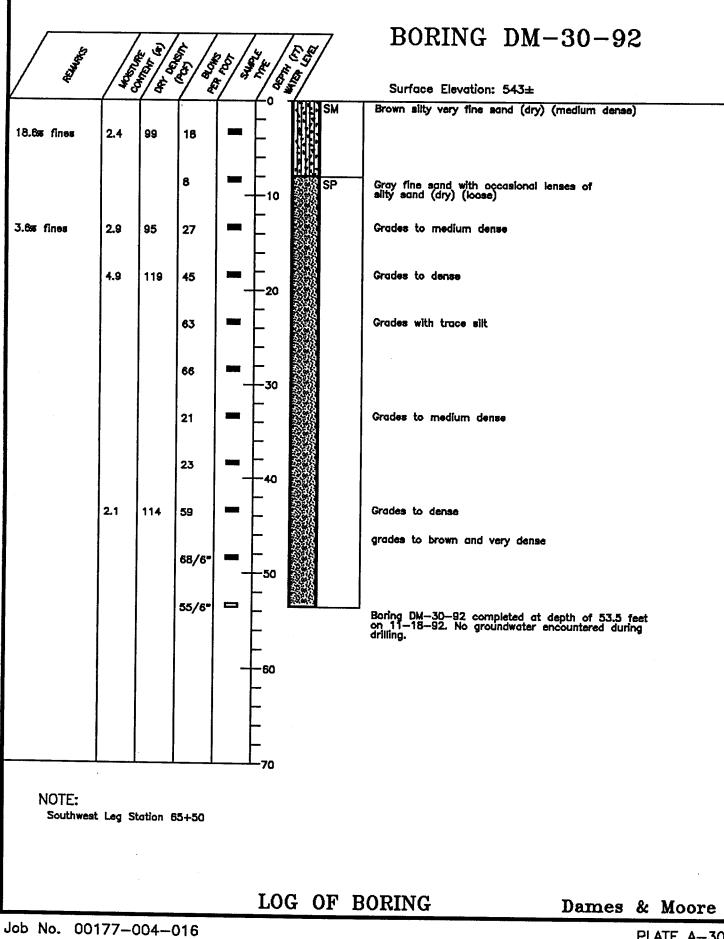

SUperLOC V 2.0, 3-1991

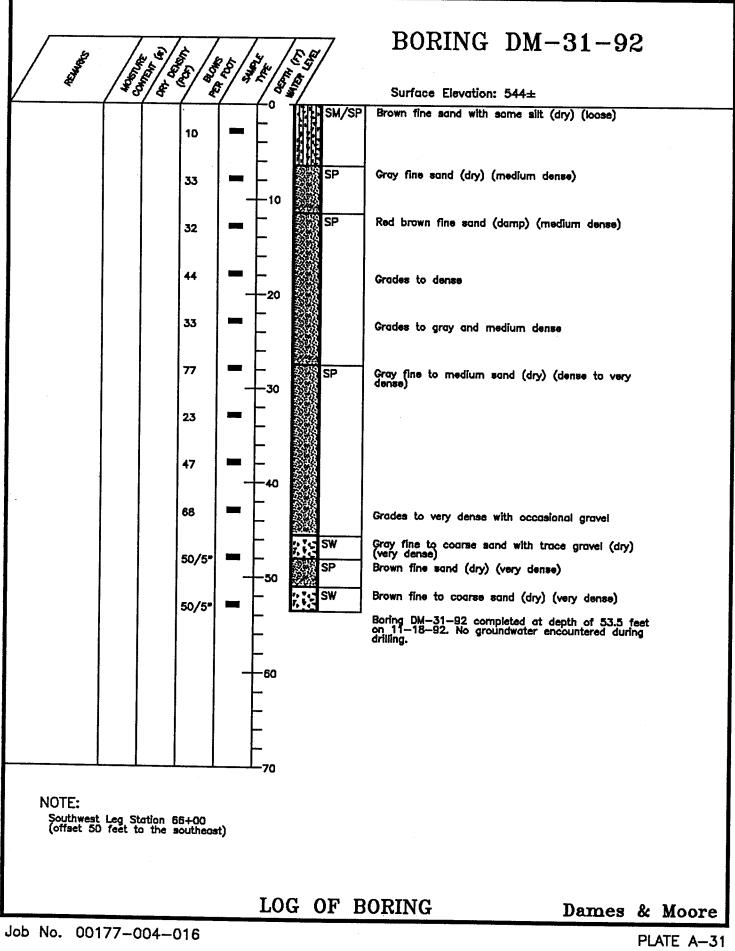


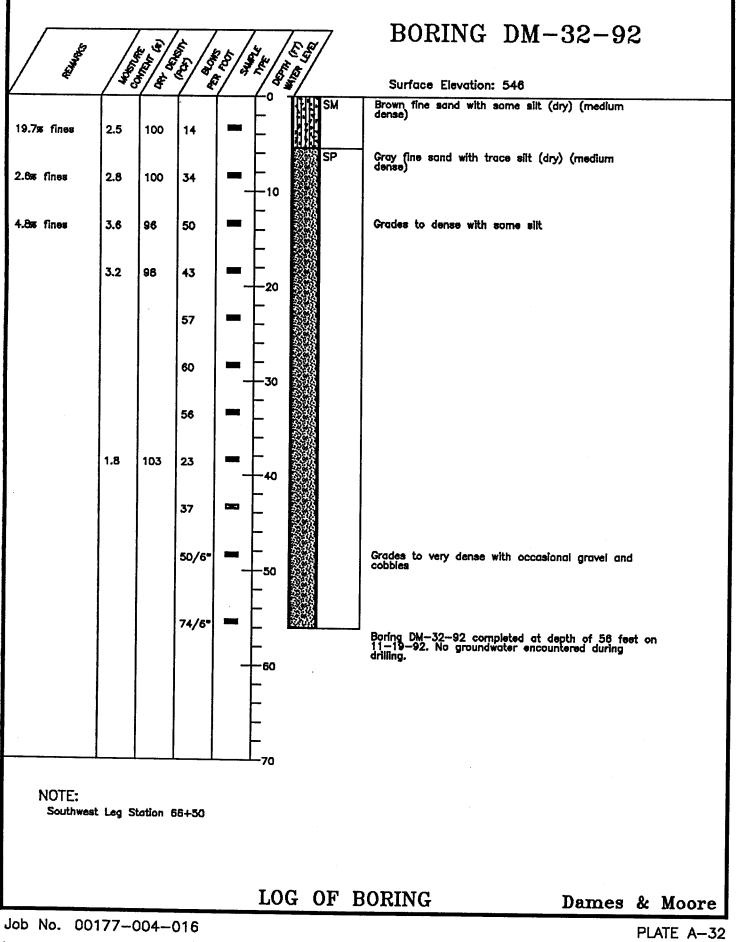



.

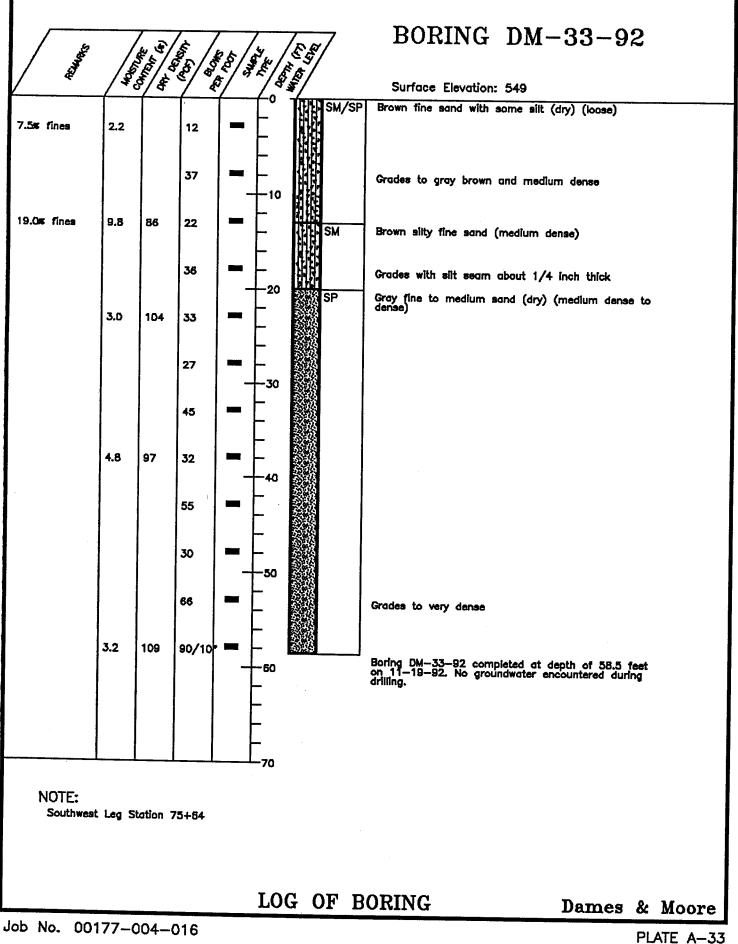


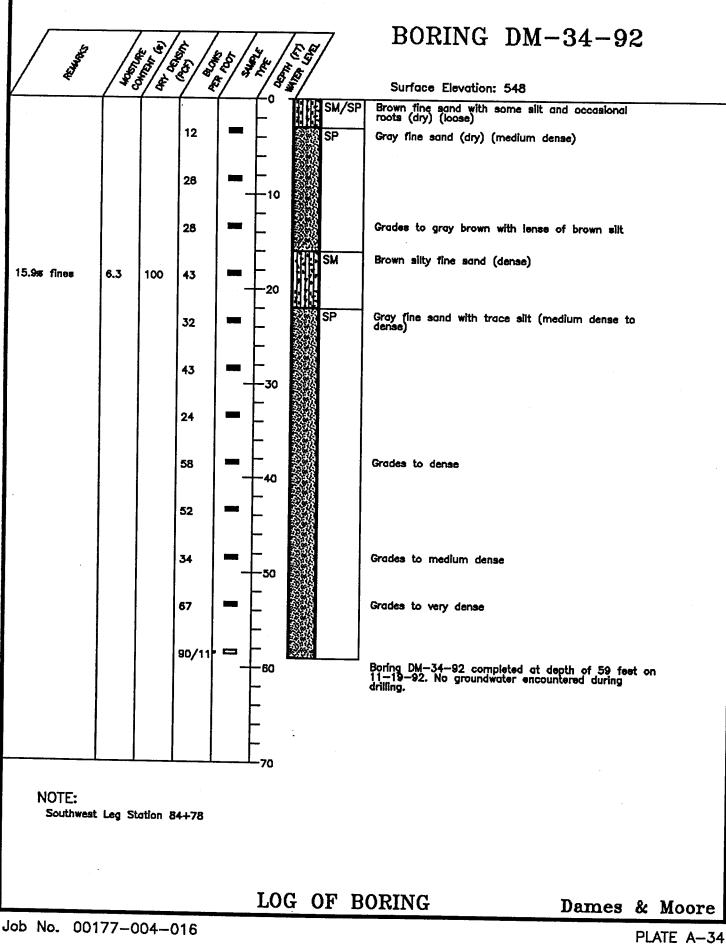



Job No. 00177-004-016


SUperrus V 2.0, 3-1991

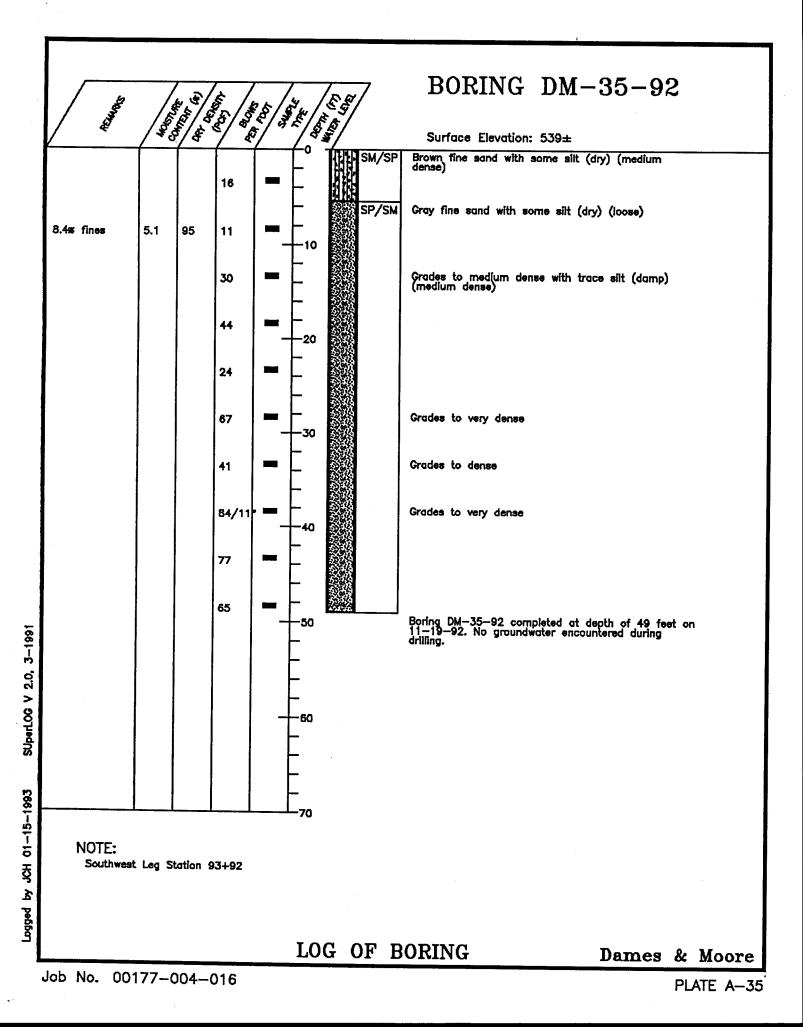
Logged by Juch 01-15-1993

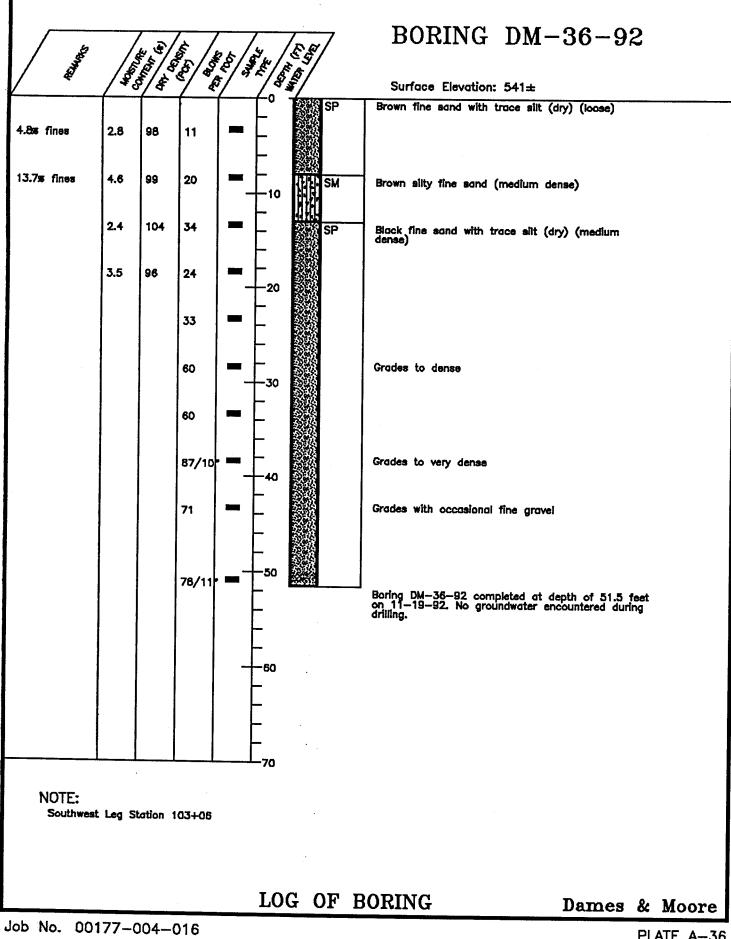

Logged by JCH 01-15-1993



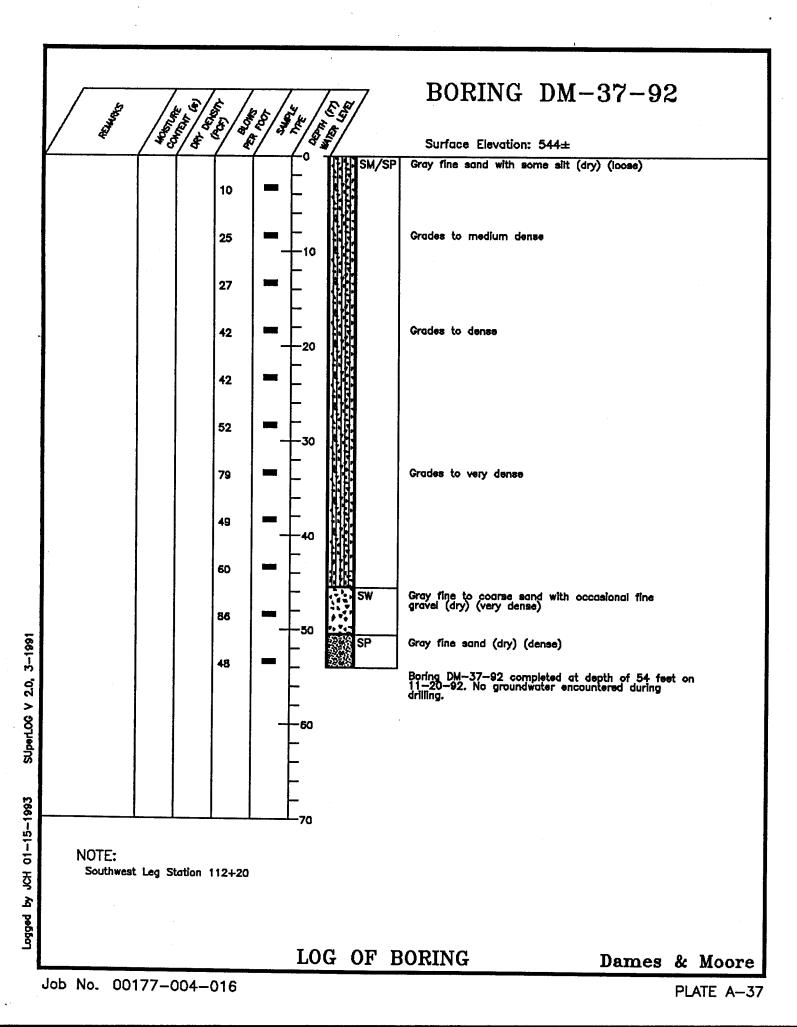
JCH 01-15-1993

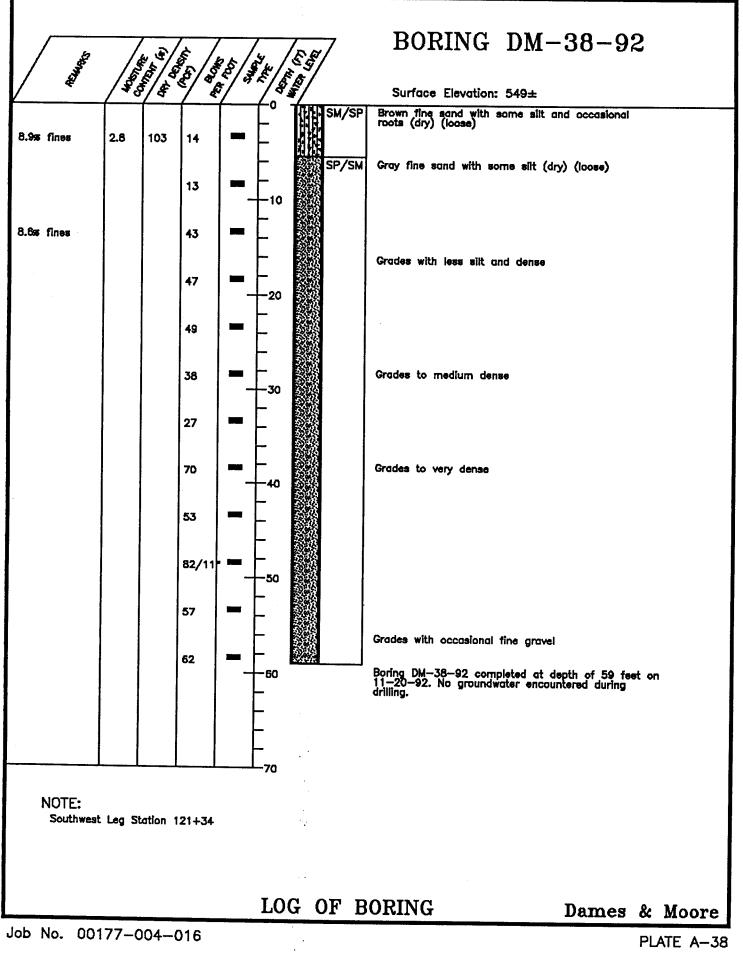
ka beggal

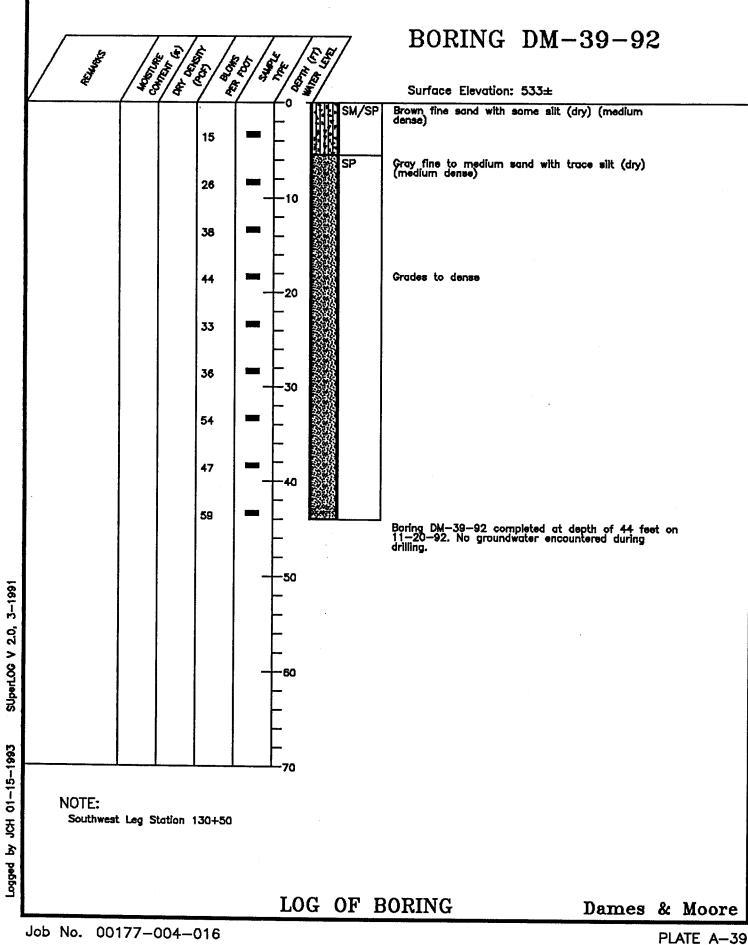

SUperLOG V 2.0, 3-1991 Logged by JCH 01-15-1993

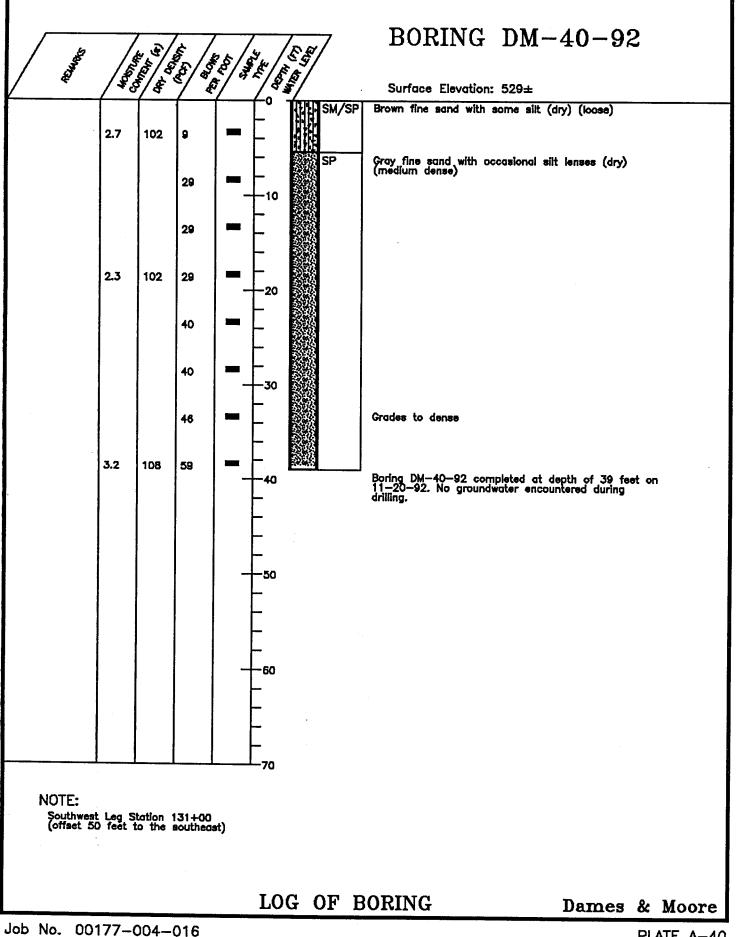


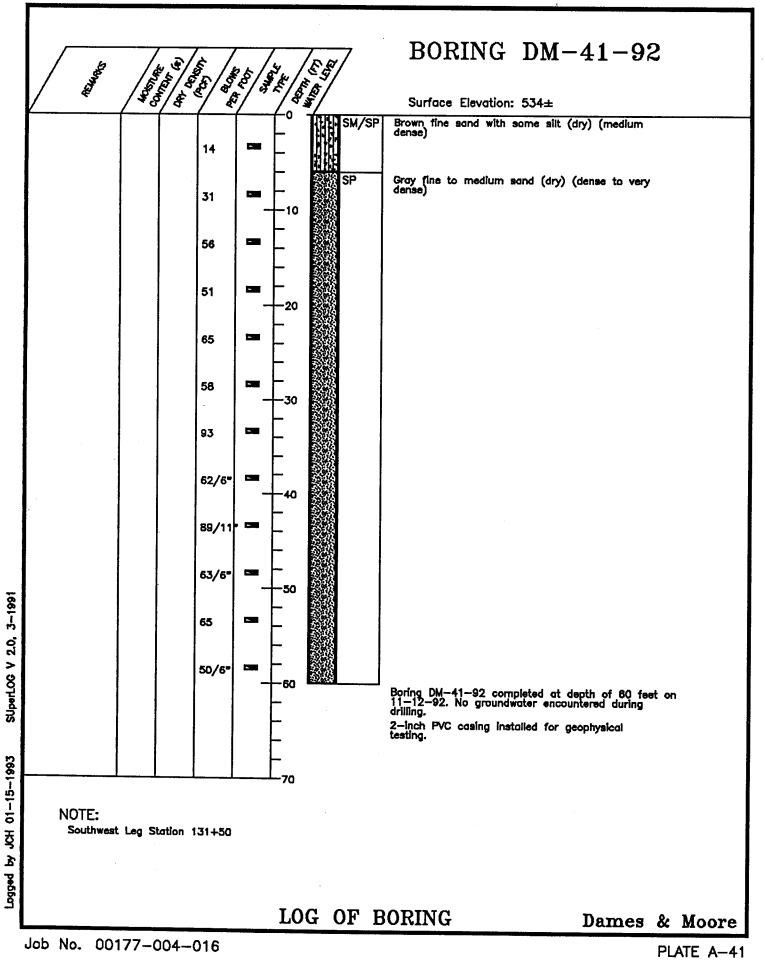
vd beggal

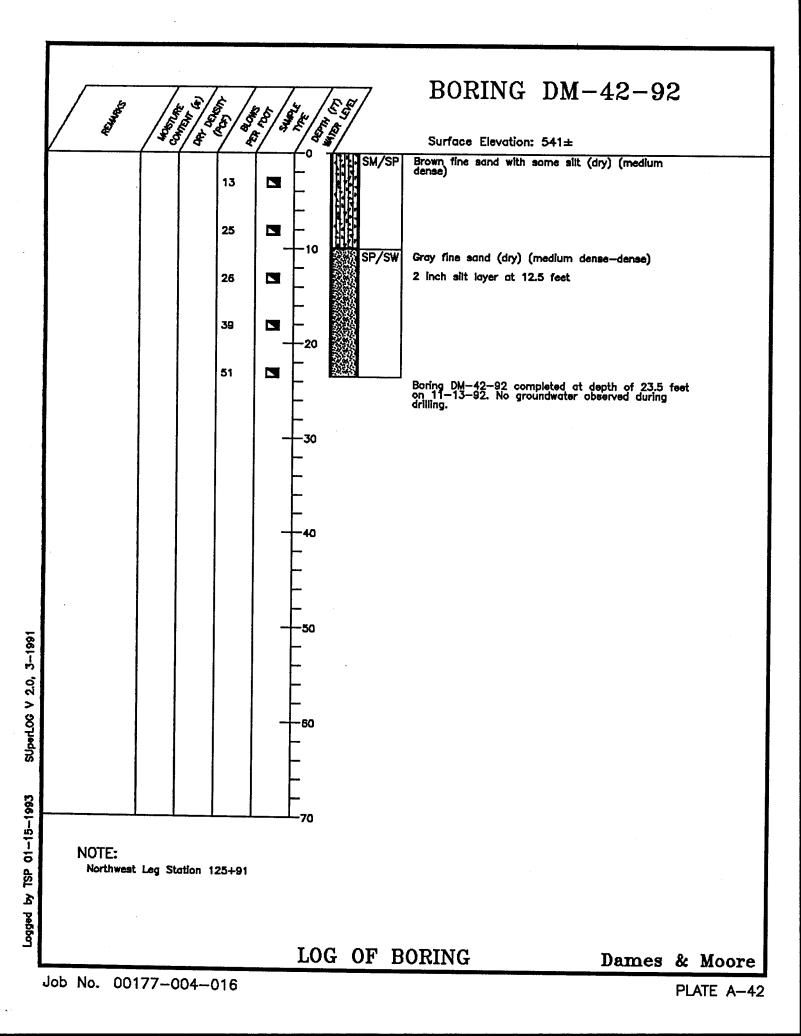

SUperLOG V 2.0, 3-1991

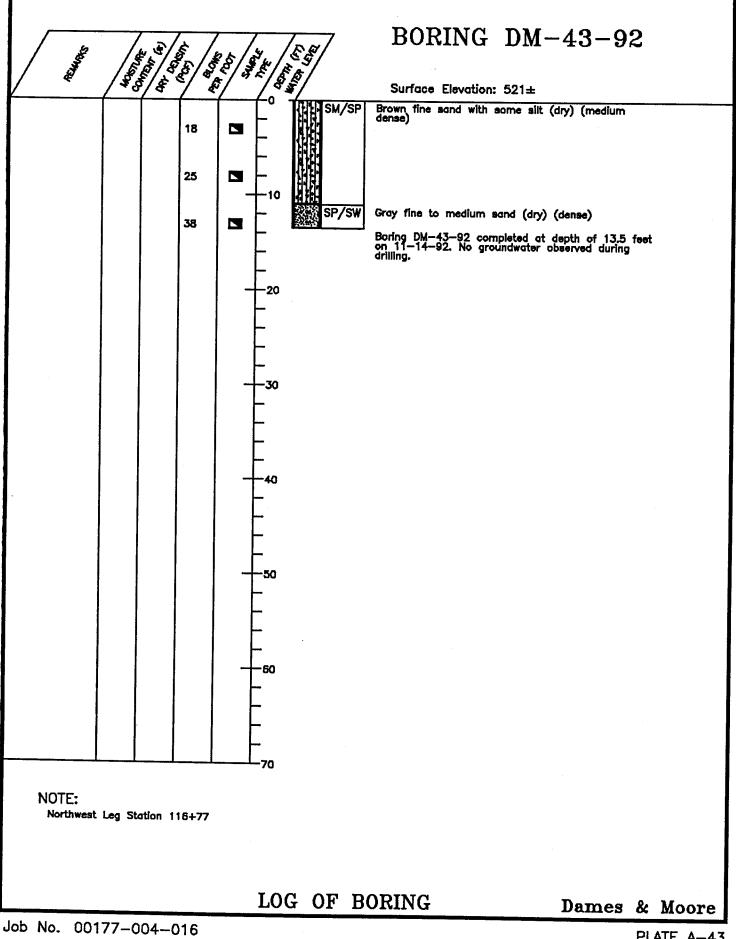

JCH 01-15-1993

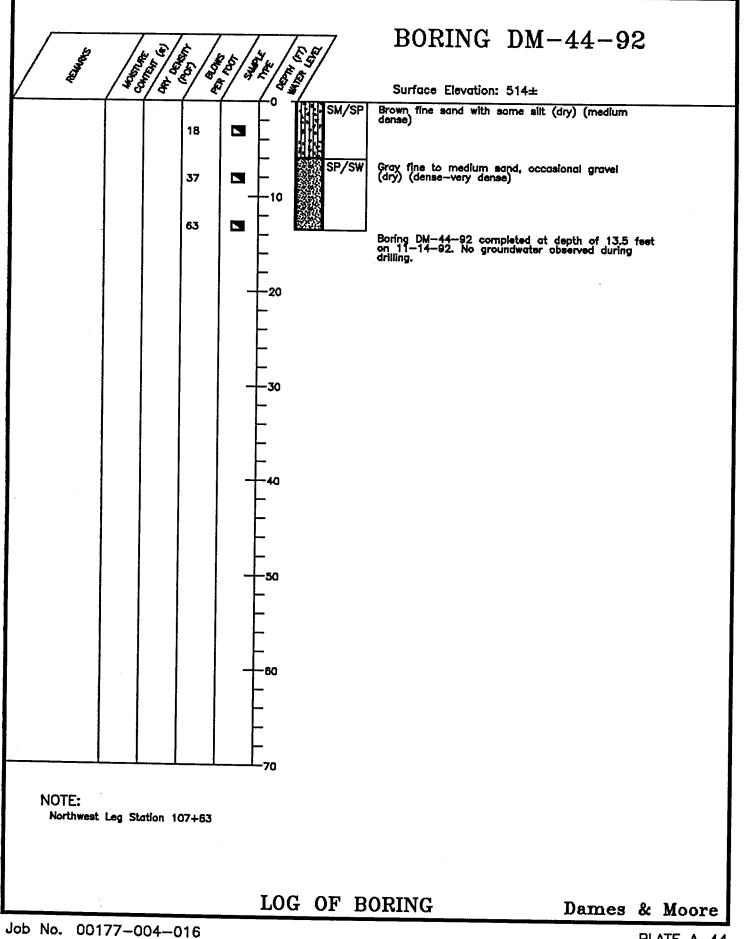


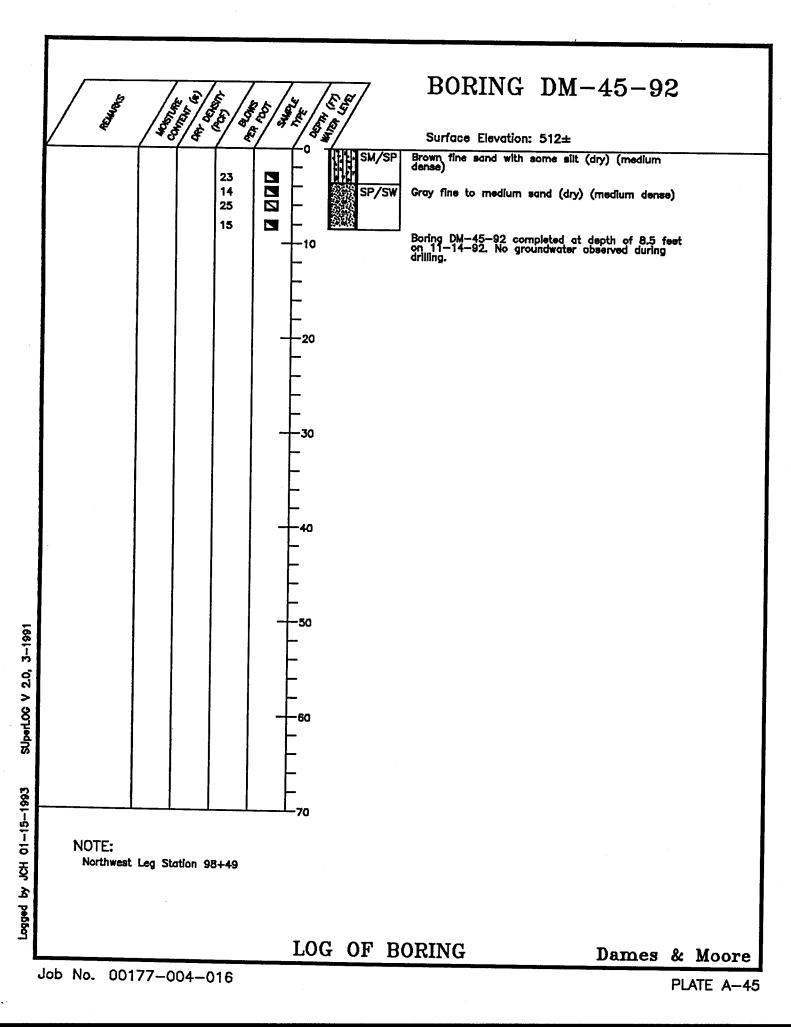

Logged by JCH 01-15-1993

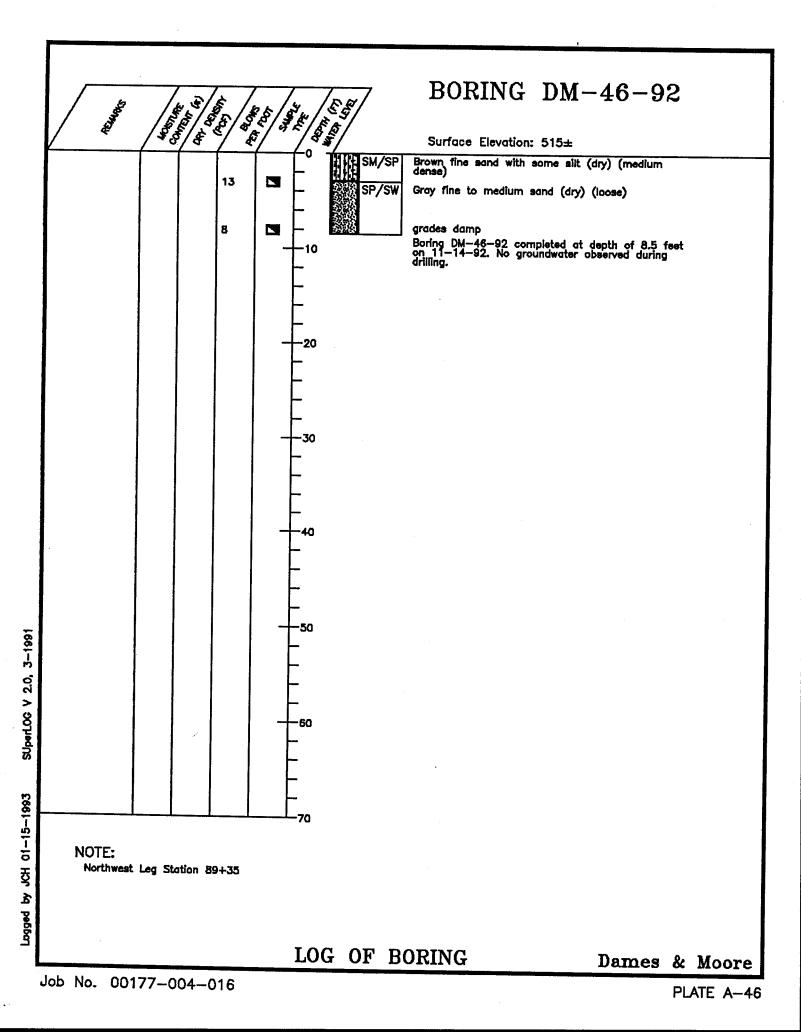


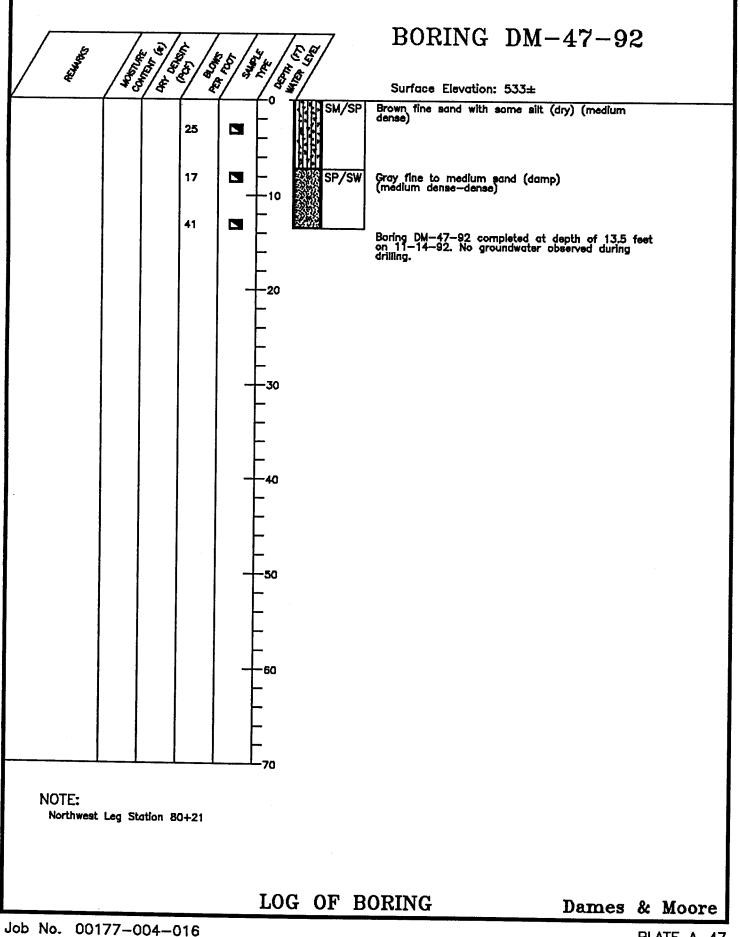

Logged by JCH 01-15-1993 SUPerLOG V 2.0, 3-1991

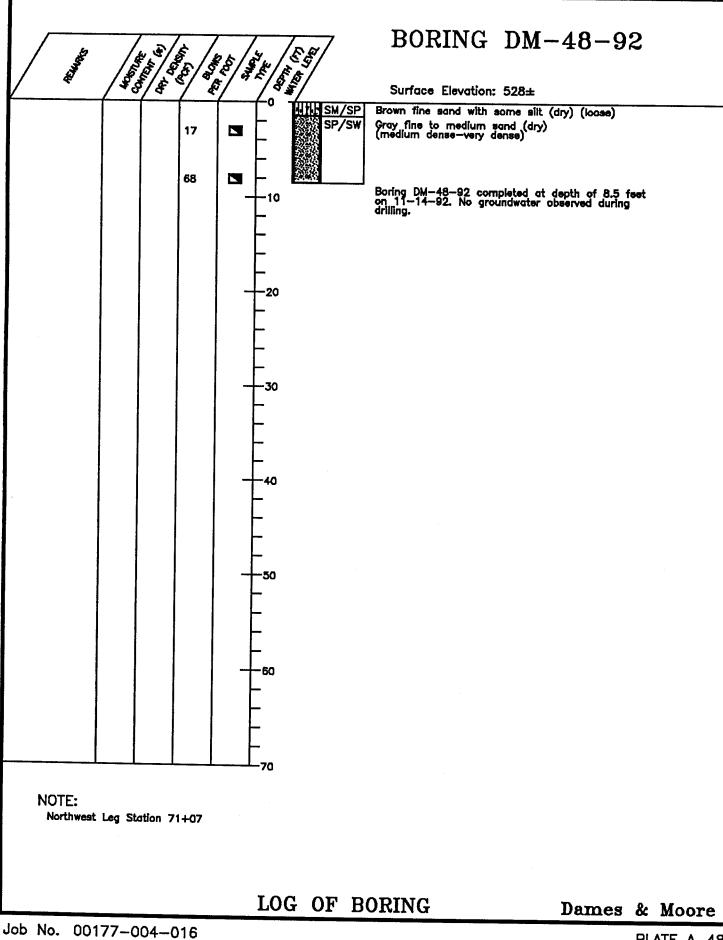



Logged by JCH 01-15-1993

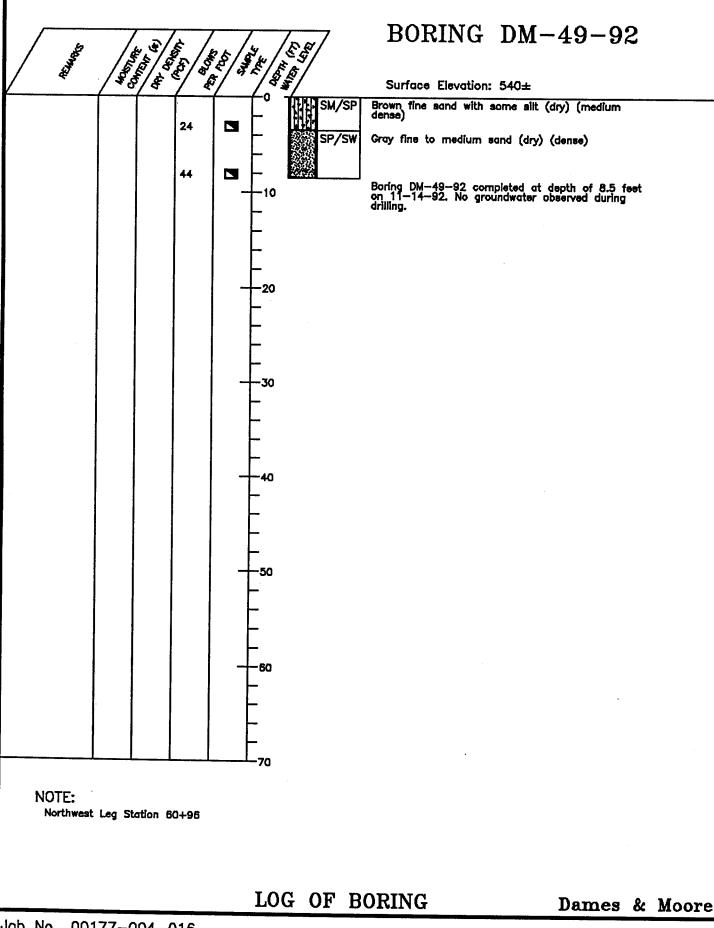


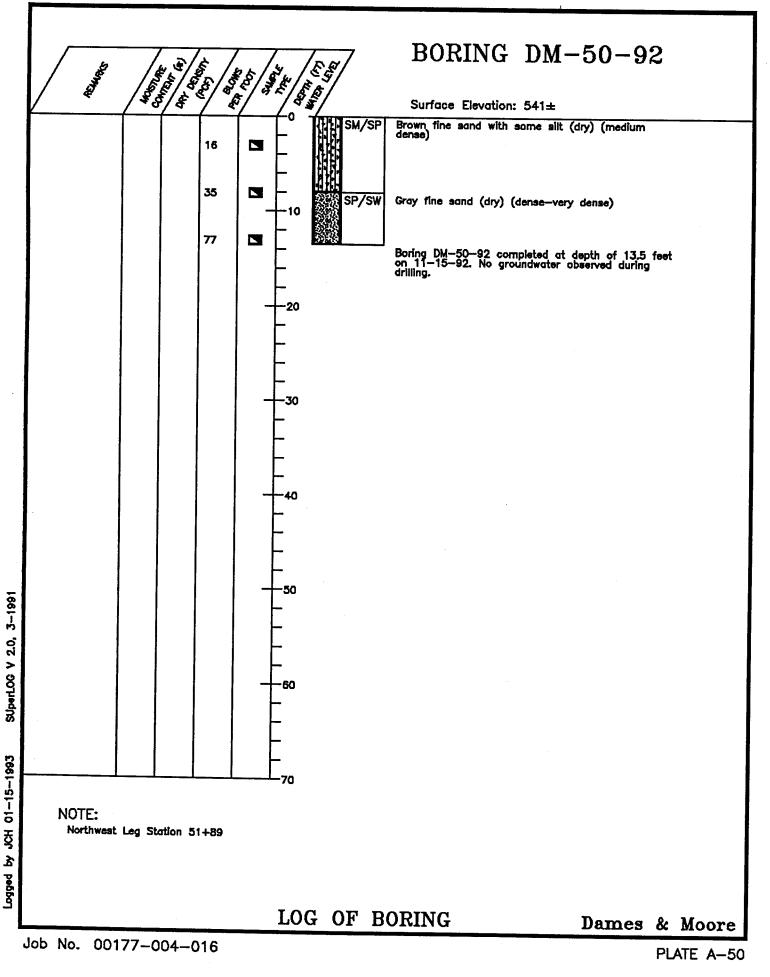


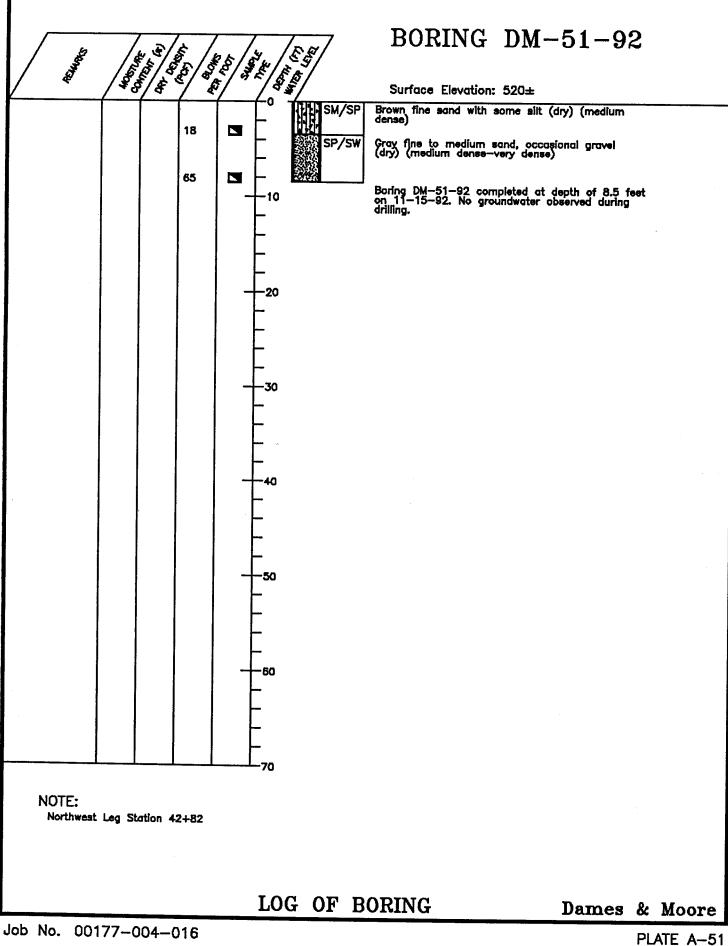

Logged by JCH 01-15-1993

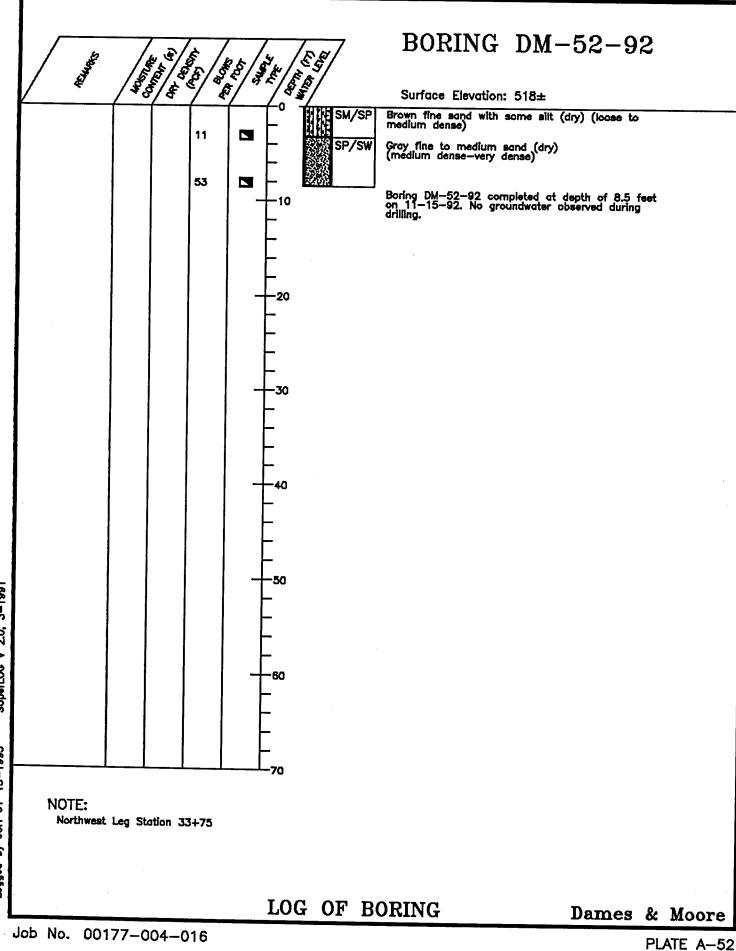


Logged by JCH 01-15-1993

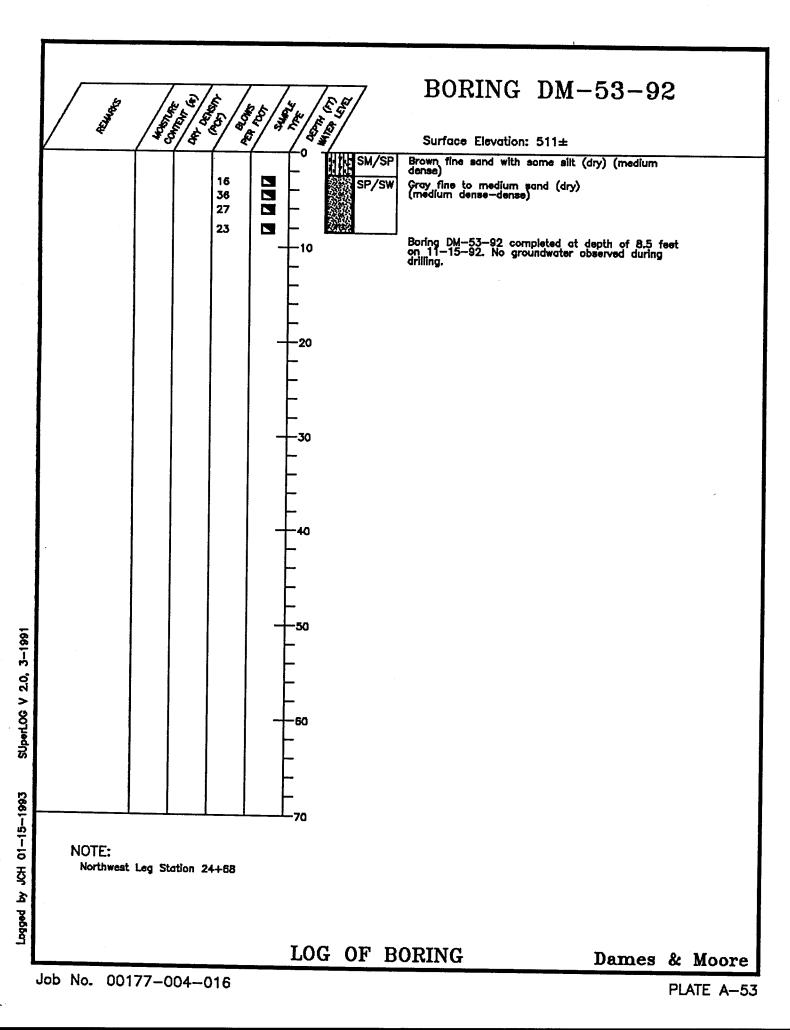


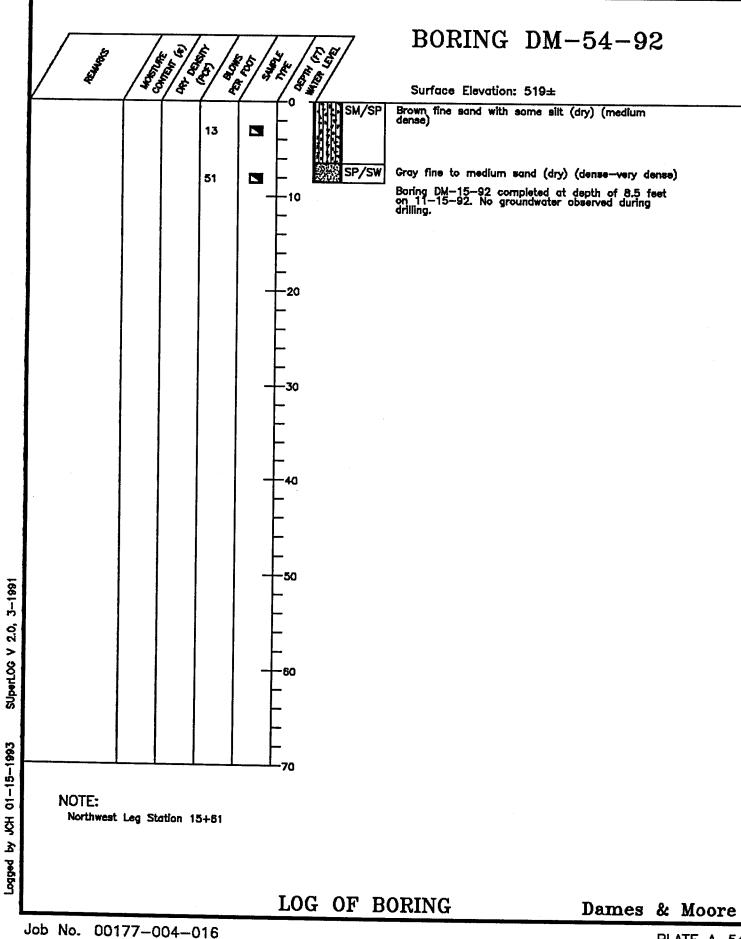


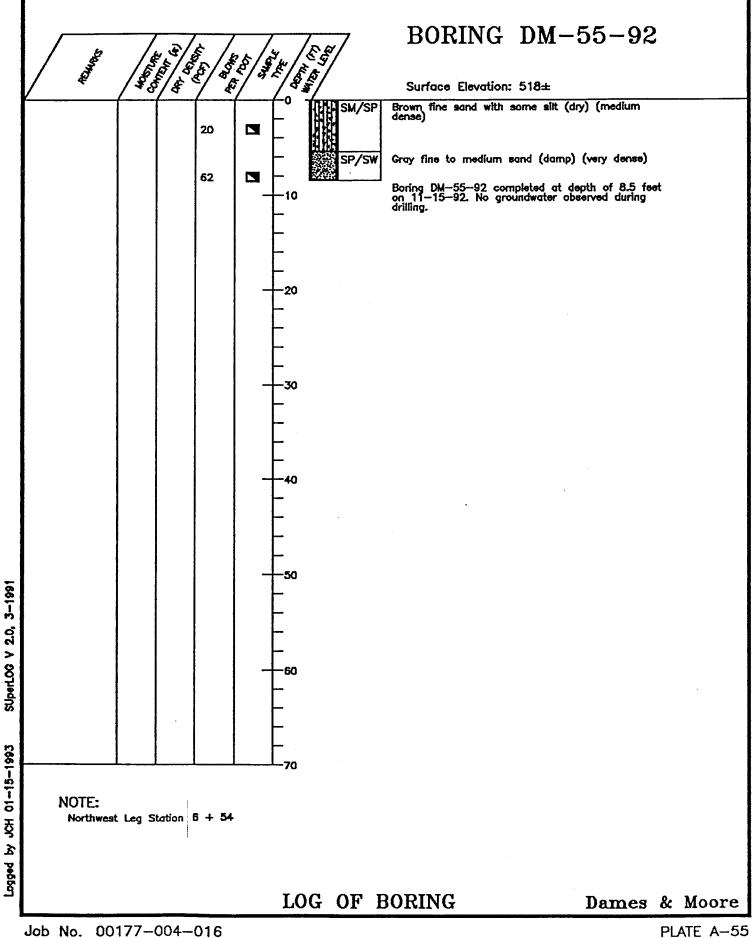


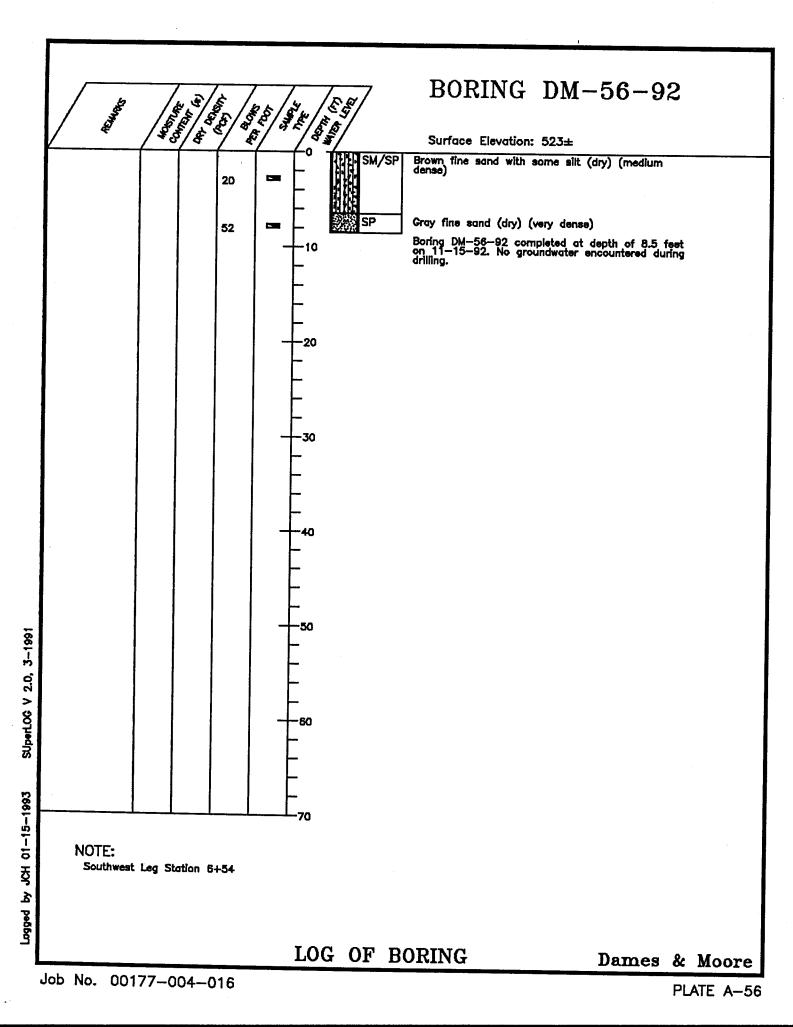


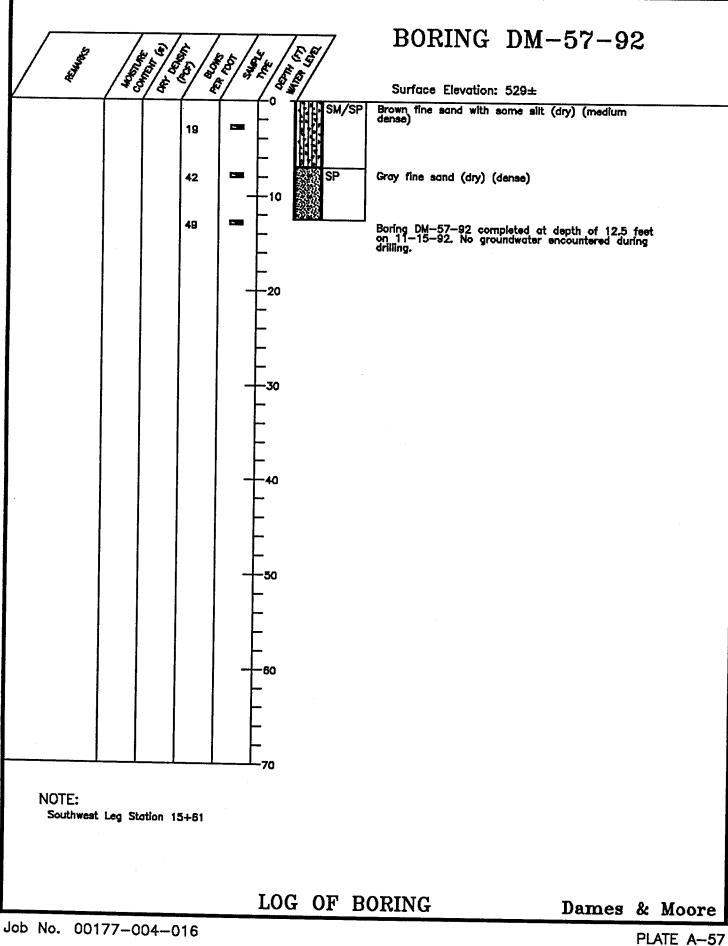
Logged by JCH 01-15-1993

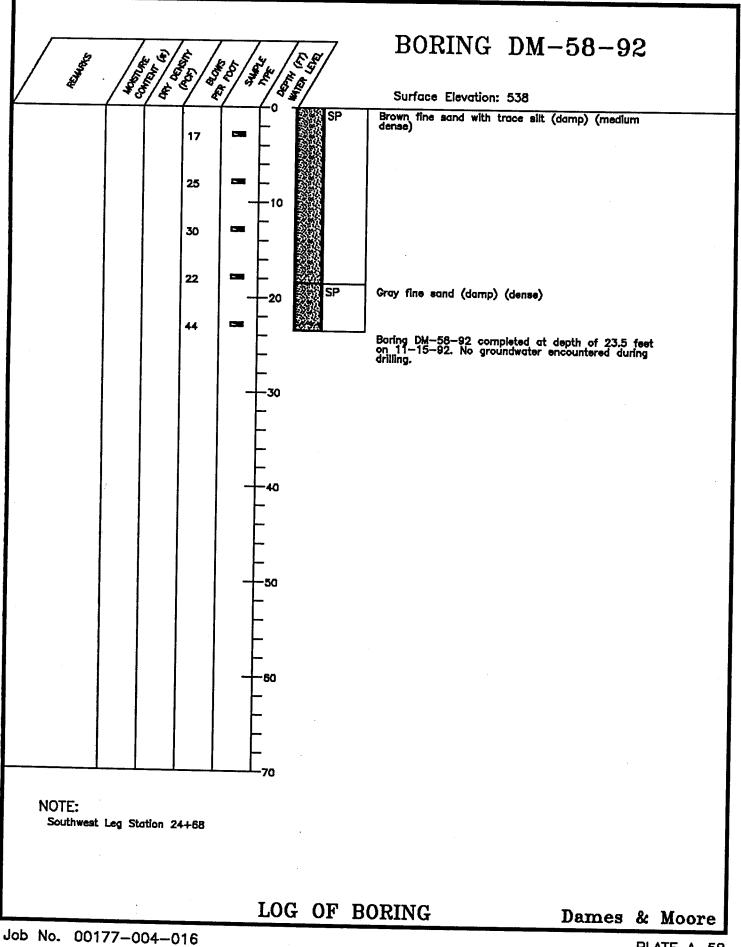


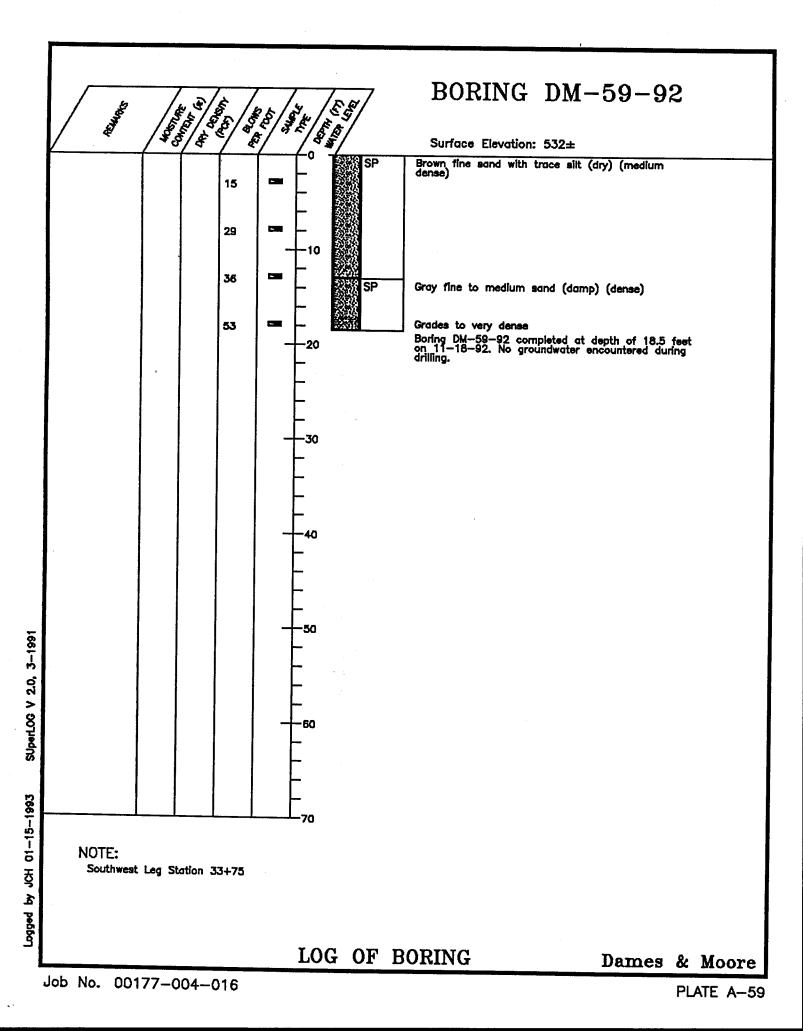




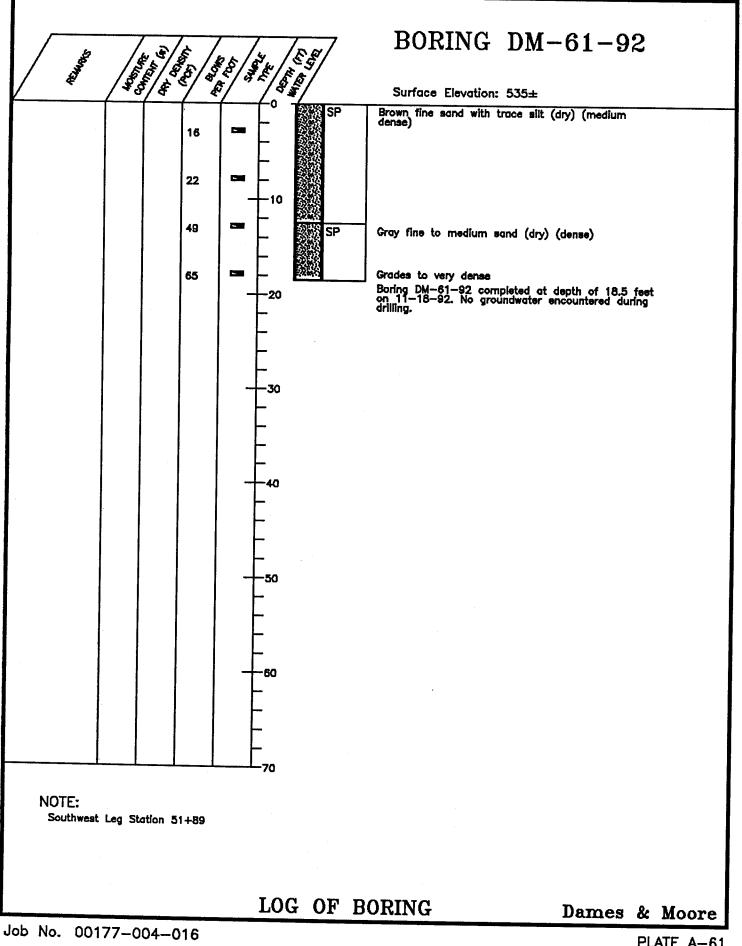

Lugged by JCH 01-15-1993

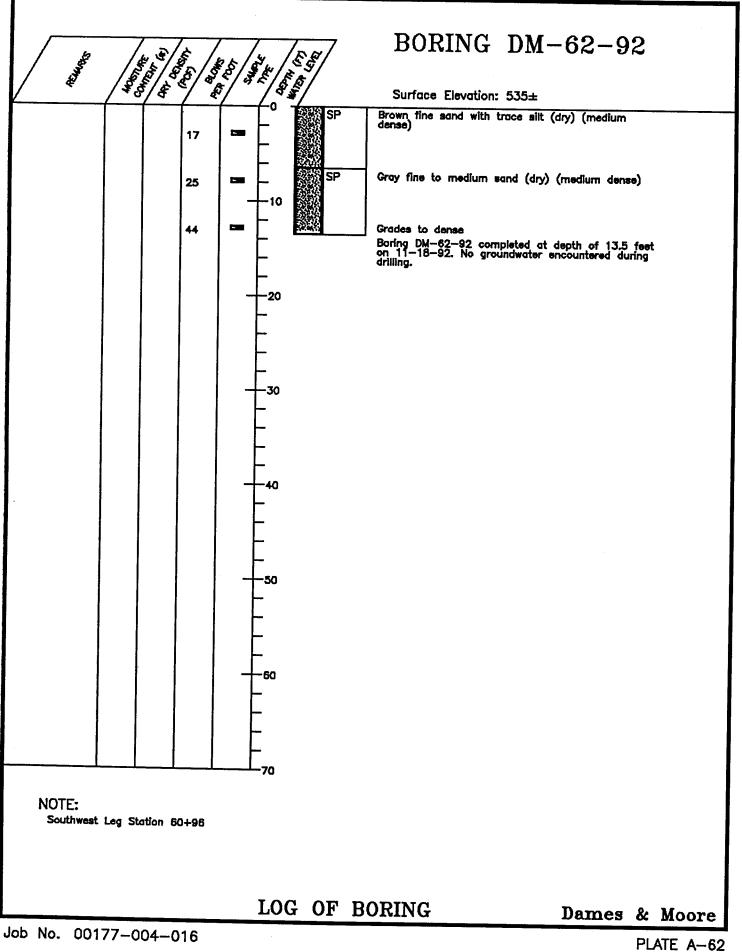

SUperLOG V 2.0, 3-1991

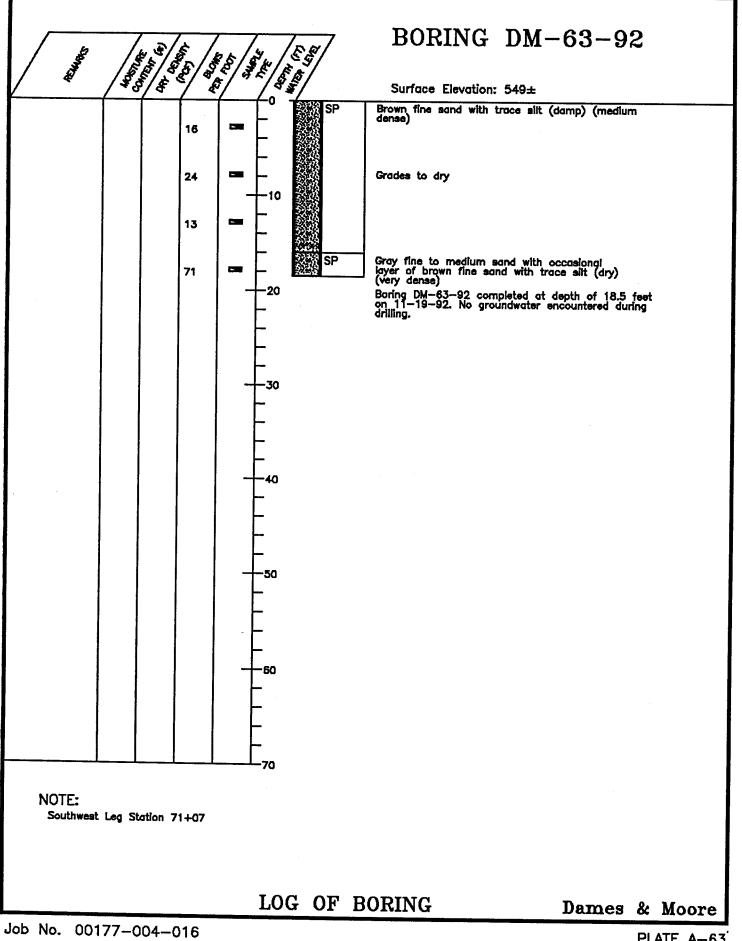


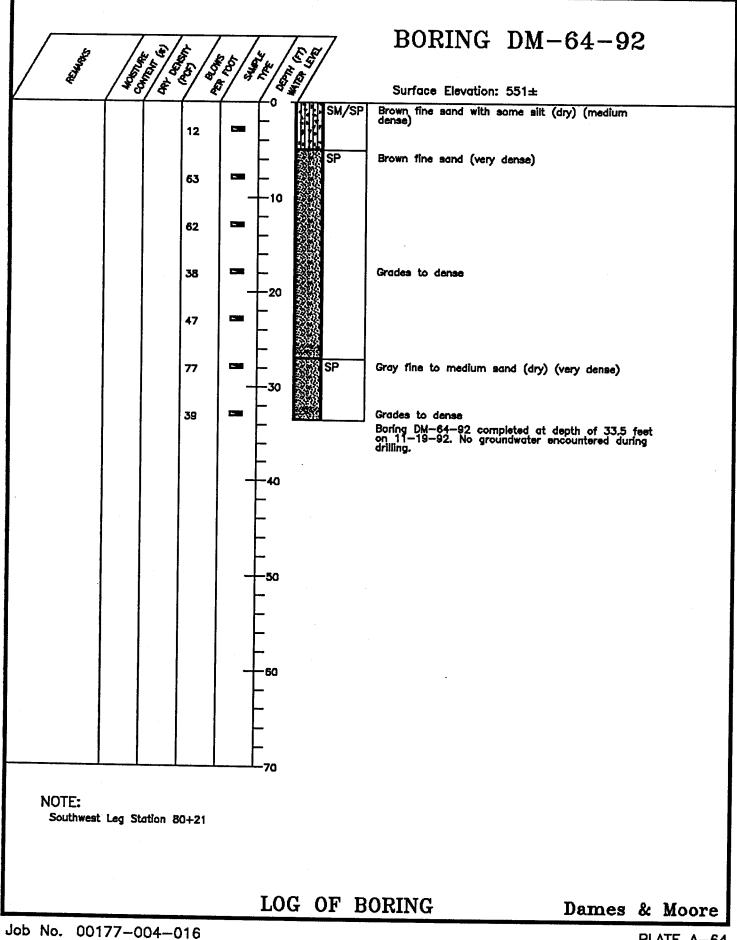


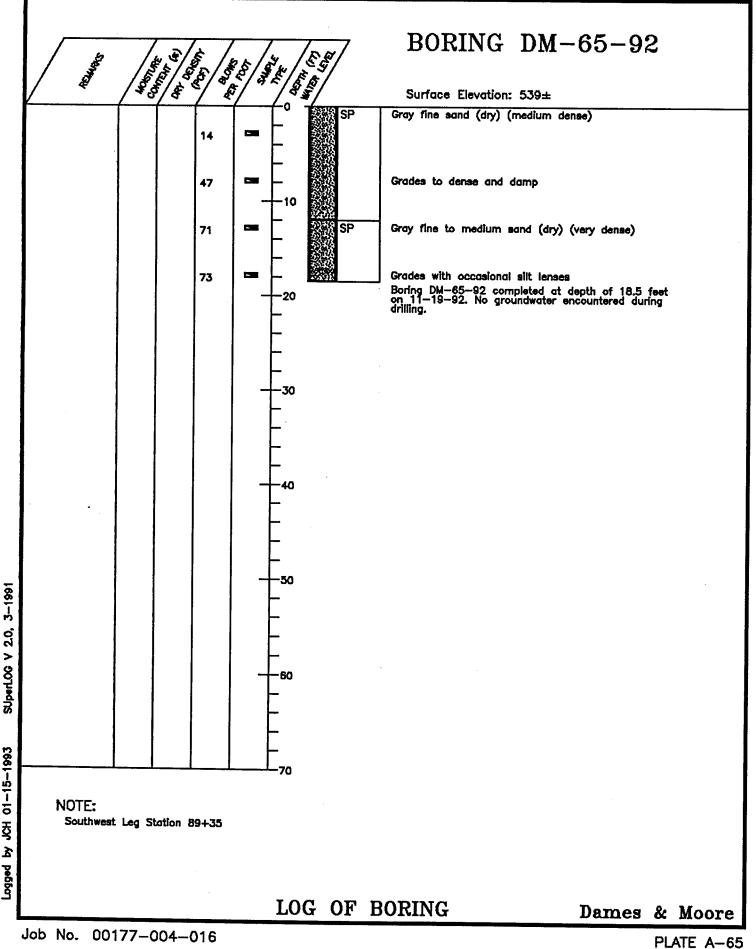

SUperLOG V 2.0, 3-1991 Logged by JCH 01-15-1993

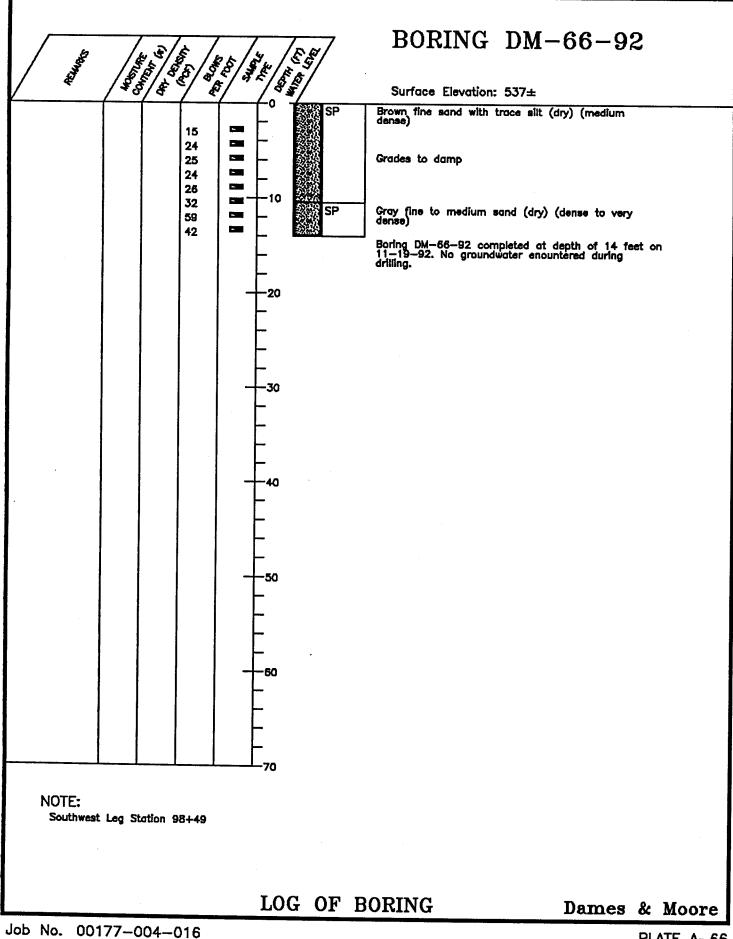

JCH 01-15-1993

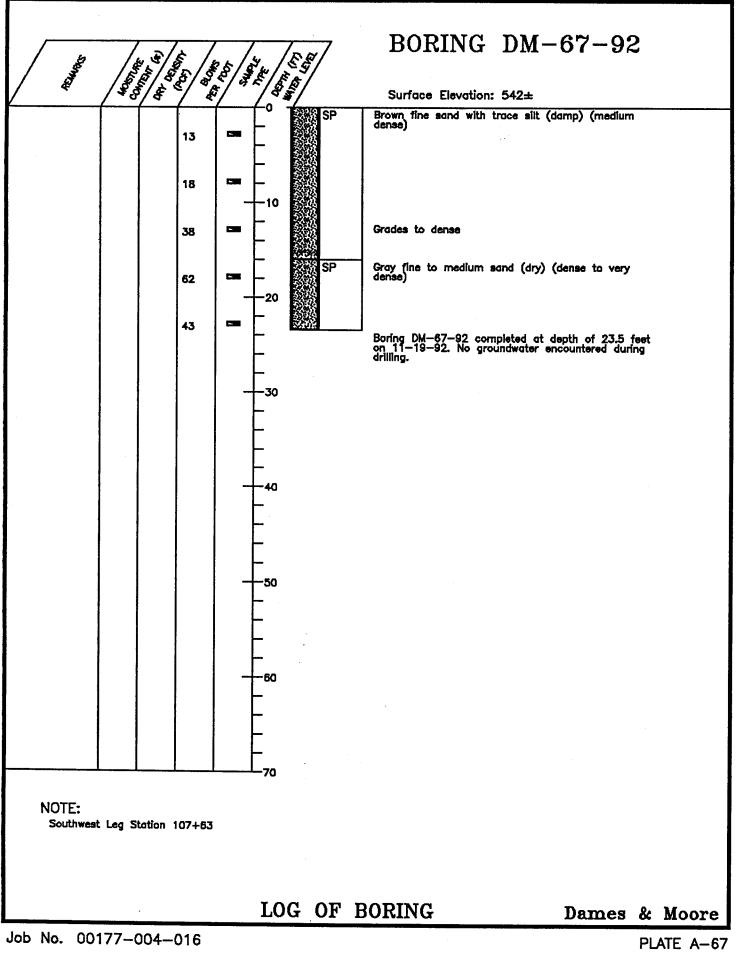

vd beggal

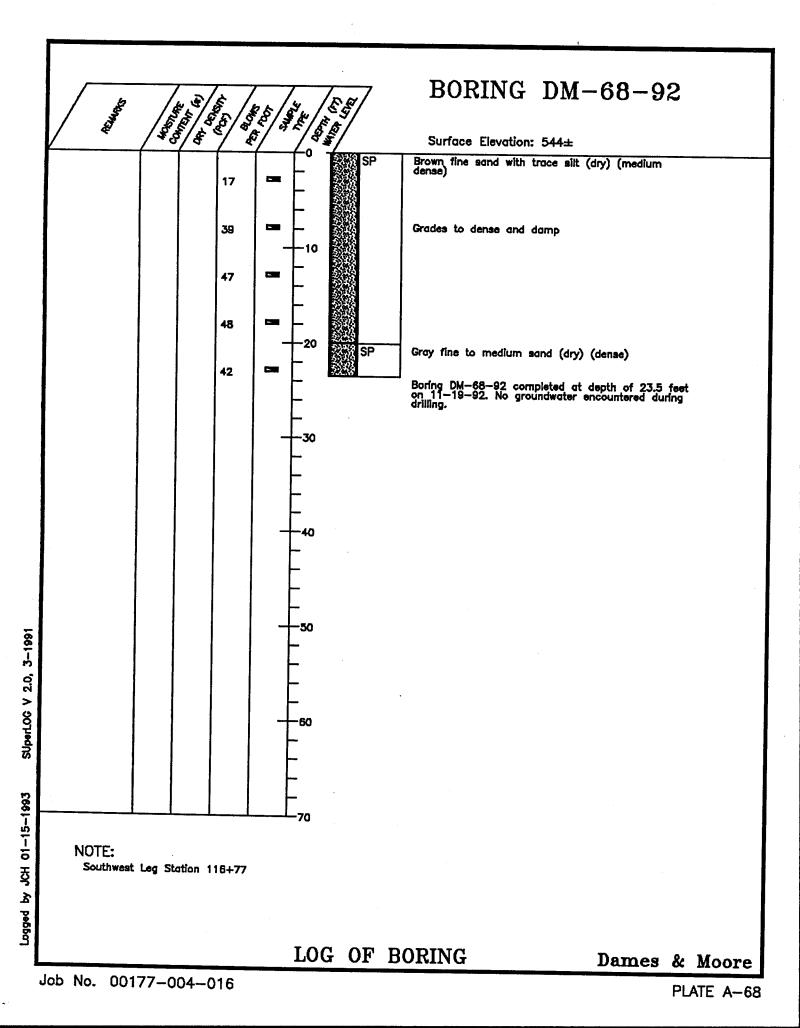


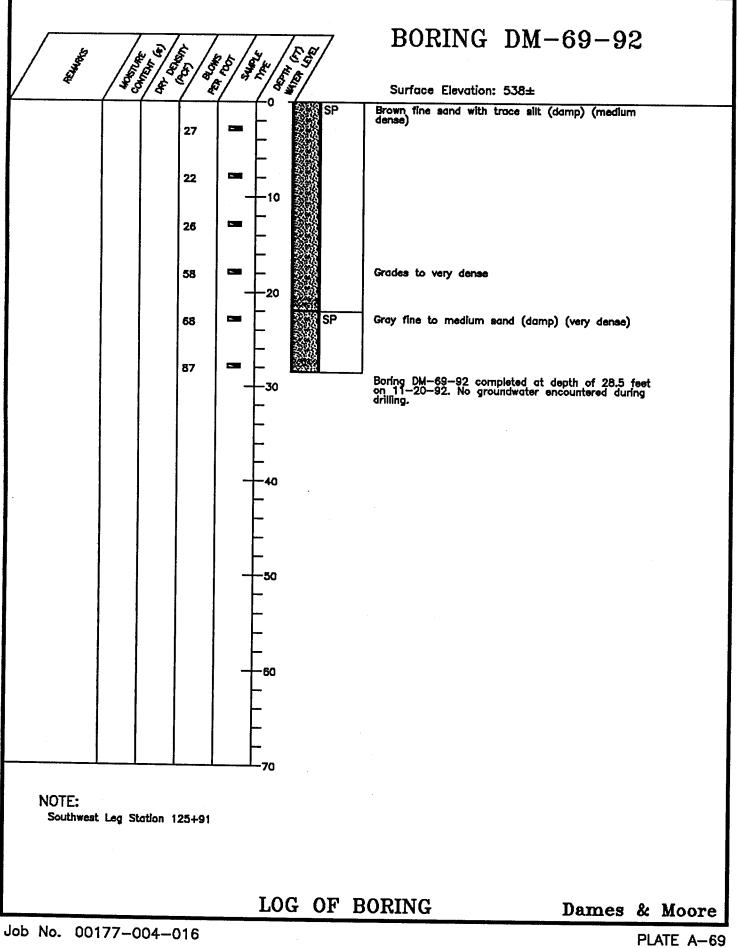


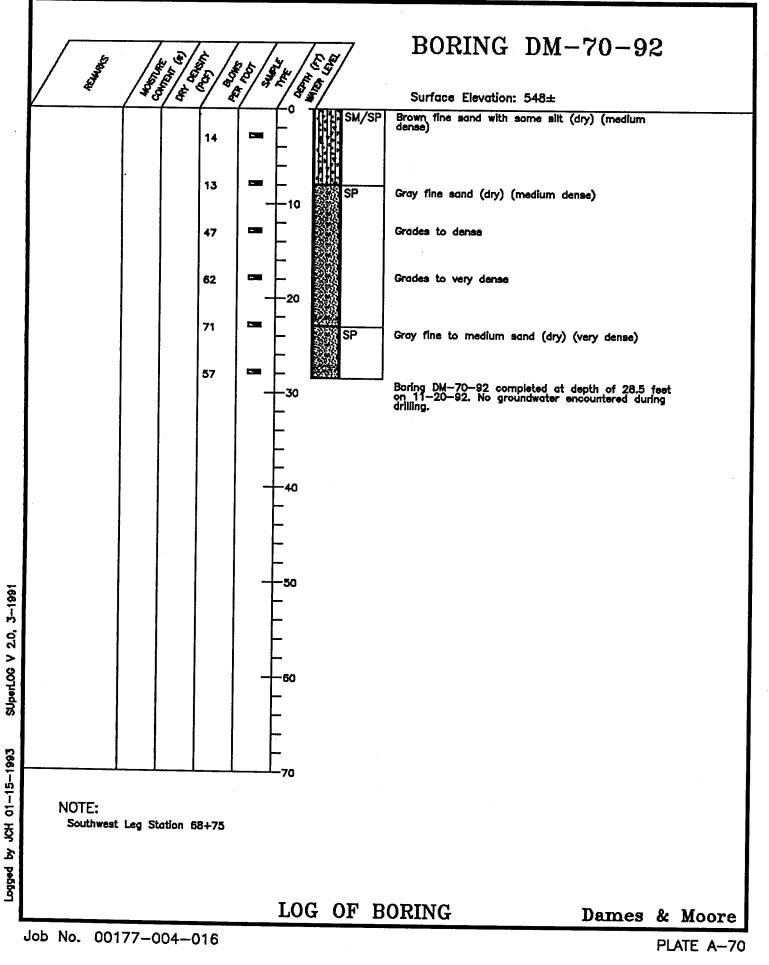

Logged by JCH 01-15-1993

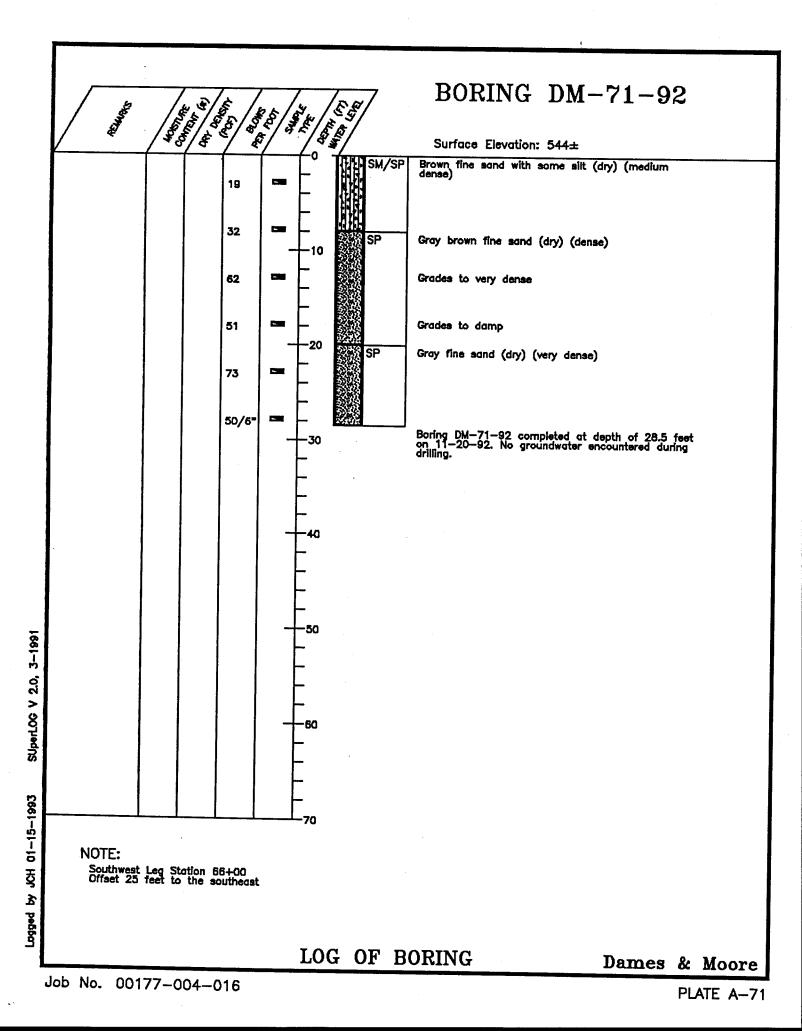


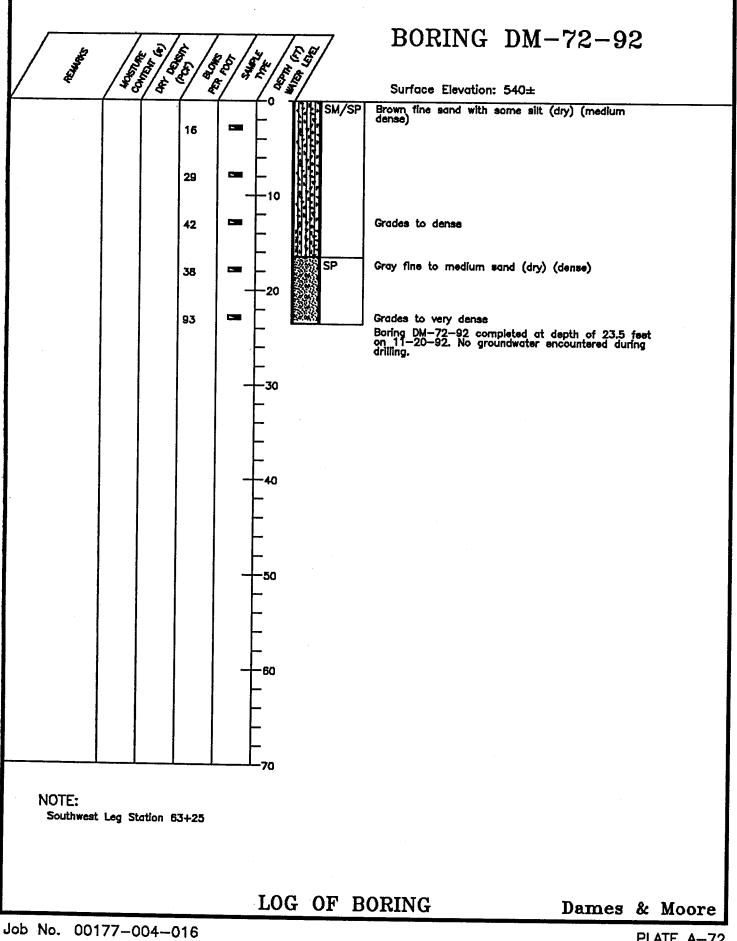


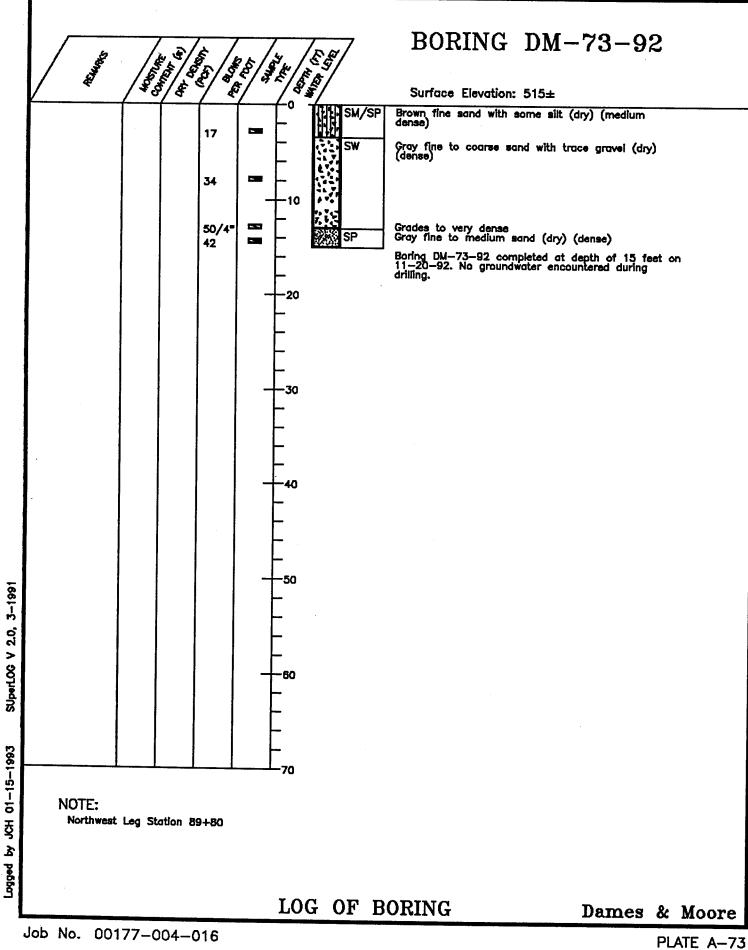







Logged by JCH 01-15-1993





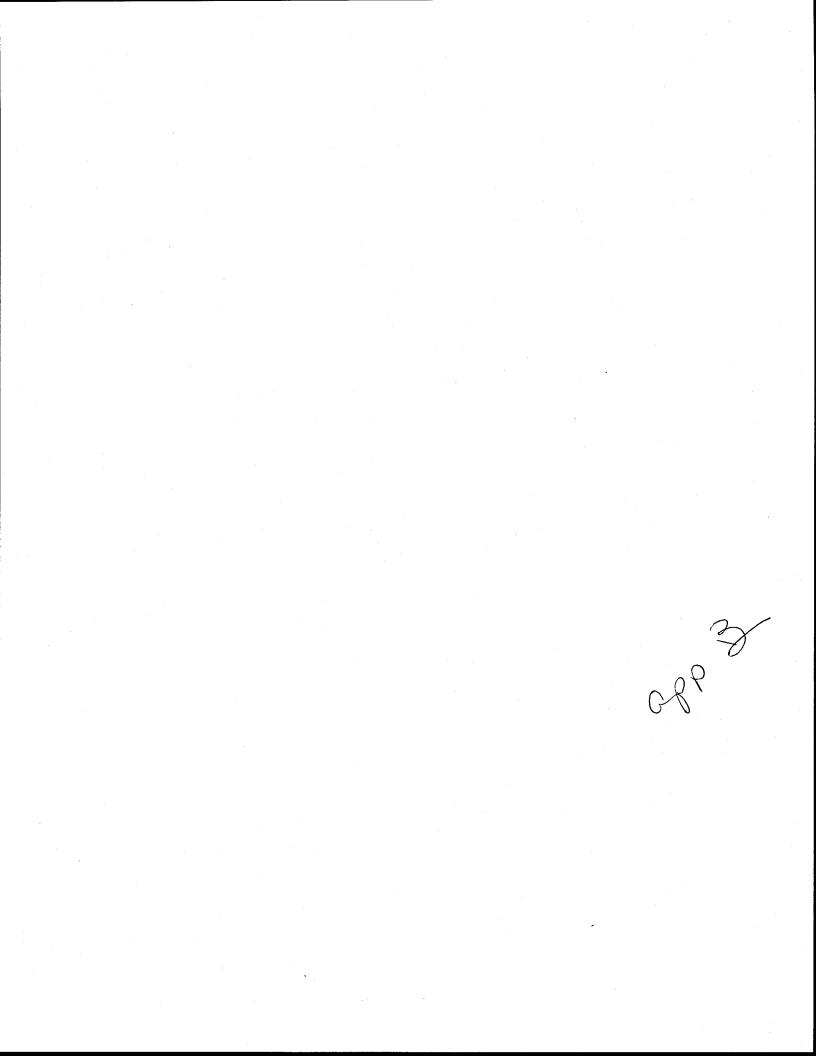
Logged by JCH 01-15-1993

KEY:

	Indicates Depth of Relatively Undisturbed Sample.
\boxtimes	Indicates Depth of Disturbed Sample.
	Indicates Depth of Sampling Attempt with no Recovery.
	Indicates Depth of Standard Penetration Test.
	Indicates Depth of Standard Penetration Test with no Recovery.

NOTE:

Blows required to drive Dames & Moore sampler one foot or less with 300 pound hammer from 30-inch drop or split spoon sampler with 140 pound hammer from 30-inch drop.


The discussion in this report is necessary for a proper understanding of the nature of the subsurface materials.

KEY

	Major Divisions		Graphic Symbol	Letter Symbol	Typical Descriptions
· · · · · · · · · · · · · · · · · · ·	Gravel and Gravelly Soils		000 000 000	GW	Well-Graded Gravels, Gravel-Sand Mixtures, Little or no Fines
Coarse Grained	Gravelly Soils	(little or no fines)	° ° ° °	GP	Poorly-Graded Gravels, Gravel-Sand Mixtures, Little or no Fines
Soils	More than 50% of	Gravels with Fines		GM	Silty Gravels, Gravel-Sand-Silt Mixtures
· ·	Coarse Fraction Retained on No. 4 Sieve	(appreciable amount of fines)		GC	Clayey Gravels, Gravel-Sand-Clay Mixtures
More than 50% of Material is Larger than No. 200 Sieve Size	Sand and	Clean Sand		SW	Well-Graded Sands, Gravelly Sands, Little or no Fines
	Sandy Soils	(little or no fines)		SP	Poorly-Graded Sands, Gravelly Sands, Little or no Fines
	More than 50% of Coarse Fraction Passing through No. 4 Sieve	Sands with Fines (appreciable amount		SM	Silty Sands, Sand-Silt Mixtures
		of fines)		SC	Clayey Sands, Sand-Clay Mixtures
				ML	Inorganic Silts and Very Fine Sands, Rock Flour, Silty or Clayey Fine Sand or Clayey Silts with Slight Plasticity
Fine Grained Soils	Silts and Clays	Liquid Limit Less than 50		CL	Inorganic Clays of Low to Medium Plasticity, Gravelly Clays, Sandy Clays Silty Clays, Lean Clays
	*			OL	Organic Silts and Organic Silty Clays of Low Plasticity
				МН	Inorganic Silts, Micaceous or Diatomaceous Fine Sand or Silty Soils
More than 50% of Material is Smaller than Io. 200 Sieve Size	Silts and Clays	Liquid Limit Greater than 50		СН	Inorganic Clays of High Plasticity, Fat Clays
				ОН	Organic Clays of Medium to High Plasticity, Organic Silts
	Highly Organic Soil			PT	Peat, Humus, Swamp Soils with High Organic Contents

Note: Dual symbols are used to indicate borderline soil classifications.

Unified Soil Classification System Dames & Moore J PLATE A-75

APPENDIX B

IN-SITU TESTING

016\REPORT\LIGOHAND.RMP

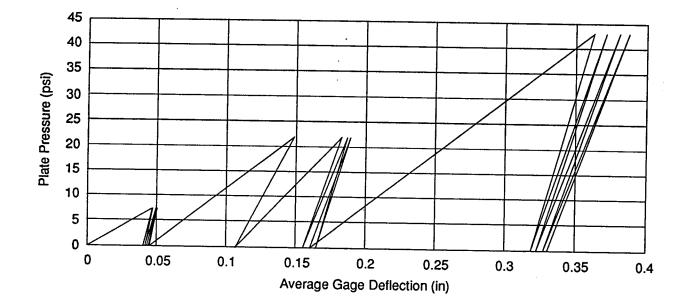
DAMES & MOORE

APPENDIX B IN-SITU TESTING

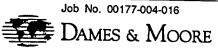
PLATE LOAD TESTS

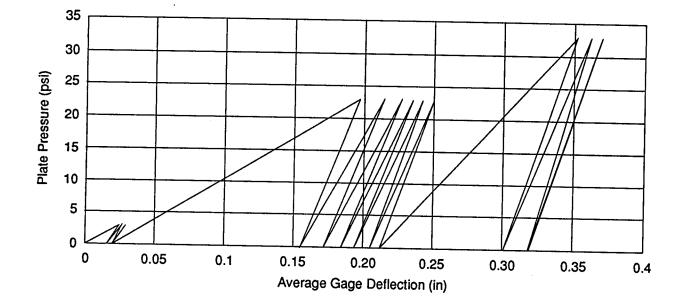
Two repetitive static plate load tests were conducted during the field investigation. Test Number 1 was located along the Southwest Leg at Station 20+00. Test Number 2 was located along the Northwest Leg at Station 84+50. Both tests were performed at a depth of approximately 2 feet on the surficial silty fine sand.

The tests were performed in accordance with ASTM D 1195-64. A 2-foot diameter (1-inch thick) loading plate was used in the tests. Stiffening plates of progressively increasing diameter were placed between the hydraulic jack and the loading plate. Applied loads were measured with a 5000 psi gauge calibrated for the 60 ton jack used in the test. Three dial gauges (accuracy 0.001 inch) attached to reference beams were used to measure the plate deflections as each load was applied. The reference beams were supported on wood blocks approximately 6 feet away from the test location.


The loads applied to the plate were developed using the hollow stem auger drill rig as the reaction vehicle. Each load was maintained until the settlement of the plate stabilized, approximately 3 minutes. Three load increments were completed for each test.

The results of the plate load tests are presented on Plates B-1 and B-2. The modulus of subgrade reaction and the elasticity modulus was obtained for the three loads cycled in each test. These values have been reported in the text of the report.


PERCOLATION TESTS


016\REPORT\L [GOI

Two percolation tests were performed to aid in the design of the leach field associated with the corner station. Test 1 was conducted next to boring DM-21-92 at Northwest Station -2+00. Test 2 was performed next to boring DM-22-92 at Southwest Station -2+00. The tests were performed in general accordance with procedures outlined in the Manual of Septic-Tank Practice, U.S. Department of Health, Education, and Welfare. At each test location a hole approximately 1 foot deep and 6 inches in diameter was excavated in the surficial material. The hole was then filled with water. The water level was maintained at the top of the hole by using a hose attached to the water tank on the drill rig. After one hour the hose was shut off and the rate of water level drop was recorded by the Dames & Moore representative. The change in water level was monitored for 5 to 10 minutes depending on how long it took the hole to drain. The percolation rate was then calculated by dividing the change in water level by the observed time increment. The test procedure was then repeated 4 times over the next 4 hours at each test location. The results of the tests are presented on Plate B-3.

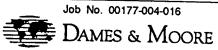


PLATE LOAD TEST DATA - TEST NO. 1 (SW LEG STA 20+00)

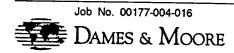


PLATE LOAD TEST DATA - TEST NO. 2 (NW LEG STA 84+50)

Adjacent Boring	Station	Time	Percolation Rate (in/min)	Percolation Rate (min/in)
DM-21-92	NW Leg -2+00			
	Ū	10:10	2.10	0.48
		11:10	0.50	2.00
		12:10	0.70	1.43
		1:10	0.60	1.67
		2:10	0.50	2.00
DM-22-92	SW Leg -2+00			<u></u>
	-	10:25	3.60	0.28
		11:25	2.50	0.40
		12:25	2.00	0.50
		1:25	2.40	0.42
		2:25	2.00	0.50

Percolation Test Results

APPENDIX C

LABORATORY TESTING

016\REPORT\LIGOHAND.FWP

:

APPENDIX C LABORATORY TESTING

LABORATORY TESTS

DIG A PORTALISO

The physical, corrosive, and thermal characteristics of the soils encountered were evaluated by conducting laboratory tests on selected soil samples. The physical testing program consisted of triaxial compression tests, collapse tests, particle size analyses, compaction tests, and moisture-density determinations. The corrosion potential of the site soil was evaluated through tests for pH, sulfates, chlorides, sulfides, resistivity, and redox potential. The thermal characteristics of the site soils was evaluated through a test in which the thermal conductivity and thermal resistance of the soil could be measured.

Two triaxial compression tests were conducted to determine the strength characteristics and deformation modulus of the soil. One test was performed on a sample of the surficial silty fine sand soil recompacted to 95 percent of the maximum dry density as determined by ASTM D 1557. A second test was performed on a relatively undisturbed sample of the lower fine to medium sand. The results of these tests are presented on Plates C-1 and C-2.

Two collapse tests were performed to evaluate the collapse potential of the silty very fine to fine sand that mantles the surface of the site. One test was conducted on a sample recompacted to 92 percent of the maximum dry density as determined by ASTM D 1557 and the second test was performed on a relatively undisturbed sample. The collapse test procedure was the modified Jennings and Knight method as described by Houston et. al, 1986. Each sample was incrementally loaded to the anticipated stress that will exist below foundation elements, approximately 2000 pounds per square inch. After allowing the soil settlement to stabilize the samples were then saturated and the settlement was measured. The amount of settlement that occurred after the soil was saturated divided by the height of the sample before saturation is the strain due to collapse. The collapse potential value is the strain due to collapse expressed as a percent. The results of the tests are presented on Plates C-3 and C-4.

Compaction characteristics of the site soils were examined by conducting modified Proctor compaction tests, ASTM D 1557. Five compaction tests were performed on samples of the site soils to provide a basis for compacted fill recommendations and to provide data used in other laboratory tests. The curve describing the dry density - moisture relationship for the soil sample from DM-7-92 at 8 feet terminates at the optimum dry density. Due to the free draining nature of the sample conditions wetter than the optimum moisture could not be evaluated. The results of the compaction tests are presented on Plates C-5 through C-7.

Particle size (sieve) analyses were conducted on samples in order to assist in classifying the soils and to provide a basis for estimating engineering performance such as strength, deformability, collapse potential, erodibility, and permeability. Curves describing the particle size gradation of tested samples are presented on Plates C-8 through C-11. The fines content of the tested samples are summarized on Plate C-12.

Moisture content and density determinations were performed on selected soil samples for correlation with soil parameters. The test results are indicated adjacent to the appropriate sample notations on the boring logs on Plates A-1 to A-73.

C-1

Tests for pH, resistivity, redox potential, and for sulfate, sulfide, and chloride content were conducted on three soil samples for estimation of corrosion potential. Sample location determined which samples were submitted for analysis. The results of the tests are presented on Plate C-13.

The thermal characteristics of the site soils were evaluated through a test in which the thermal conductivity and thermal resistance of the soil could be measured. The thermal resistivity of the soil was then calculated as the inverse of the thermal conductivity. Two soil samples were tested. The tests were performed in accordance with ASTM C 518. The results of the tests are presented on Plate C-14.

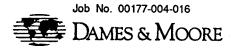
REFERENCE

Houston, S.L., Houston W.N., and Spadola, D.J. (1986). "Prediction of Field Collapse of Soils Due to Wetting."J. Geotechnical Engineering, ASCE, Vol. 114, No. 1, 40-58

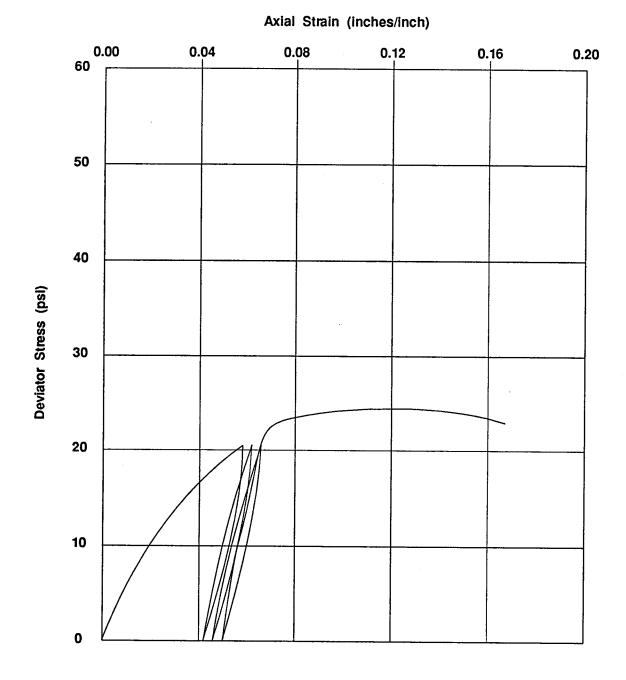
00177_12.CDR

0.00 0.04 0.08 0.12 0.16 0.20 60 50 40 Deviator Stress (psi) 30 20 10 0

Axial Strain (inches/inch)


Summary of Sample Data Moisture Content: 5.6% Wet Density: 115.4 pcf Dry Density: 109.9 pcf Initial Height: 5.97" Final Height: 5.8"

Description Boring: DM-20-92 Sample: Bag #1 Depth: 3' Summary of Test Data Confining Pressure: 2,000 psf Peak Deviator Stress: 8,940 psf Tangent Modulus: 18,653 psi Number of Cycles: 3

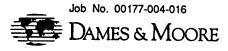

Soil

Brown fine to medium sand with some silt (recompacted to 95% maximum dry density)

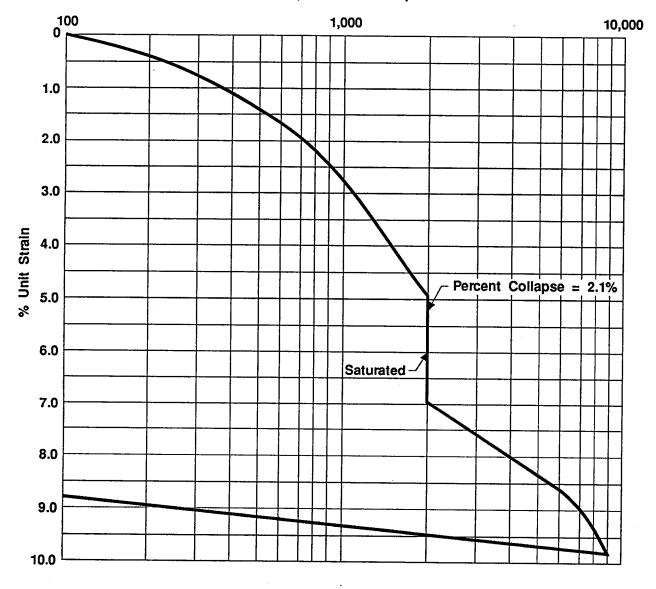
CONSOLIDATED-DRAINED TRIAXIAL TEST DATA

00177_15.CDR

Summary of Sample Data Moisture Content: 7.1% Wet Density: 106.7 pcf Dry Density: 100.3 pcf Initial Height: 6.156" Final Height: 6.046"

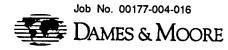

Description Boring: DM-38-92 Sample: Bag #3 Depth: 13'

Summary of Test Data

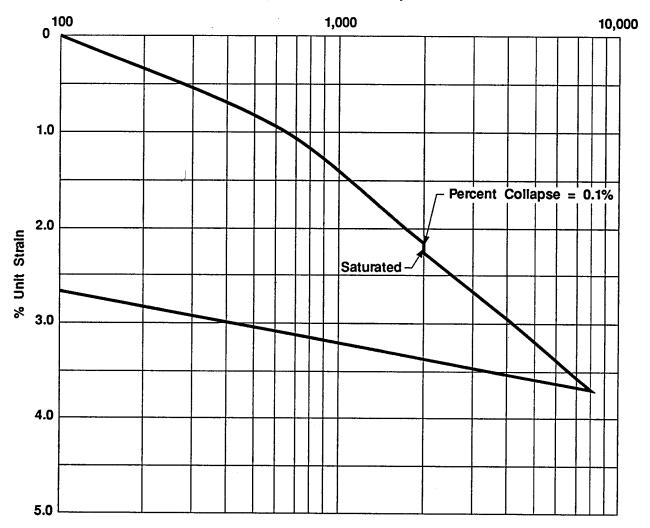

Confining Pressure: 2,000 psf Peak Deviator Stress: 7,350 psf Tangent Modulus: 13,039 psi Number of Cycles: 3

Soil Gray fine sand with trace of silt

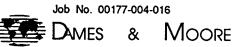
CONSOLIDATED-DRAINED TRIAXIAL TEST DATA



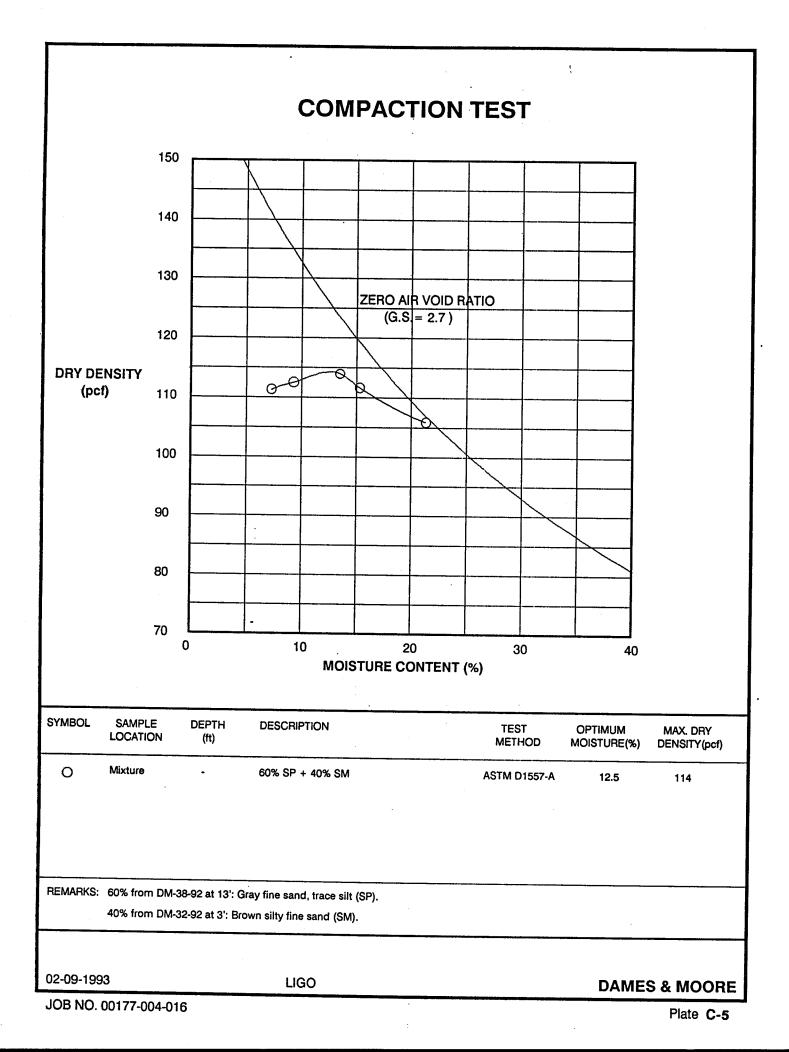
Compressive Stress psf


Sample Number: DM-20-92 Depth (FT): 3 Description: brown fine to medium sand with some silt

	Moisture Content (%)	Dry Density (pcf)
Initial:	7.1	112
Final	16.6	116


COLLAPSE TEST DATA

Compressive Stress psf



Sample Number: DM-20-92 Depth (FT): 3 Description: brown fine to medium sand with some silt recompacted to 92% maximum dry density

	Moisture Content (%)	Dry Density (pcf)
Initial:	3.9	96
Final	21.8	107

COLLAPSE TEST DATA

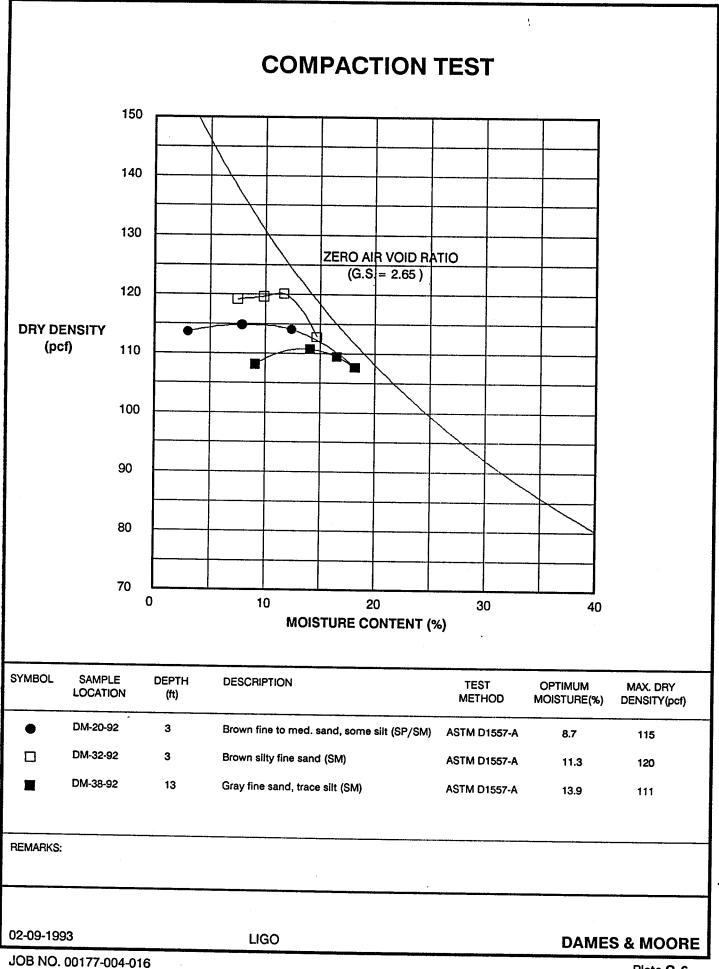
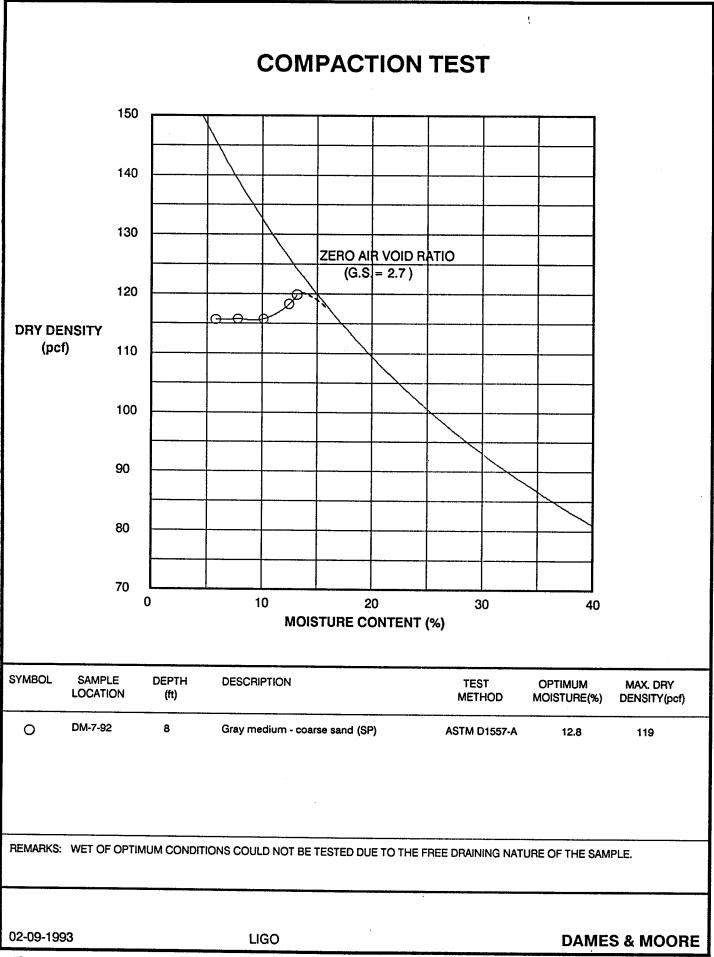
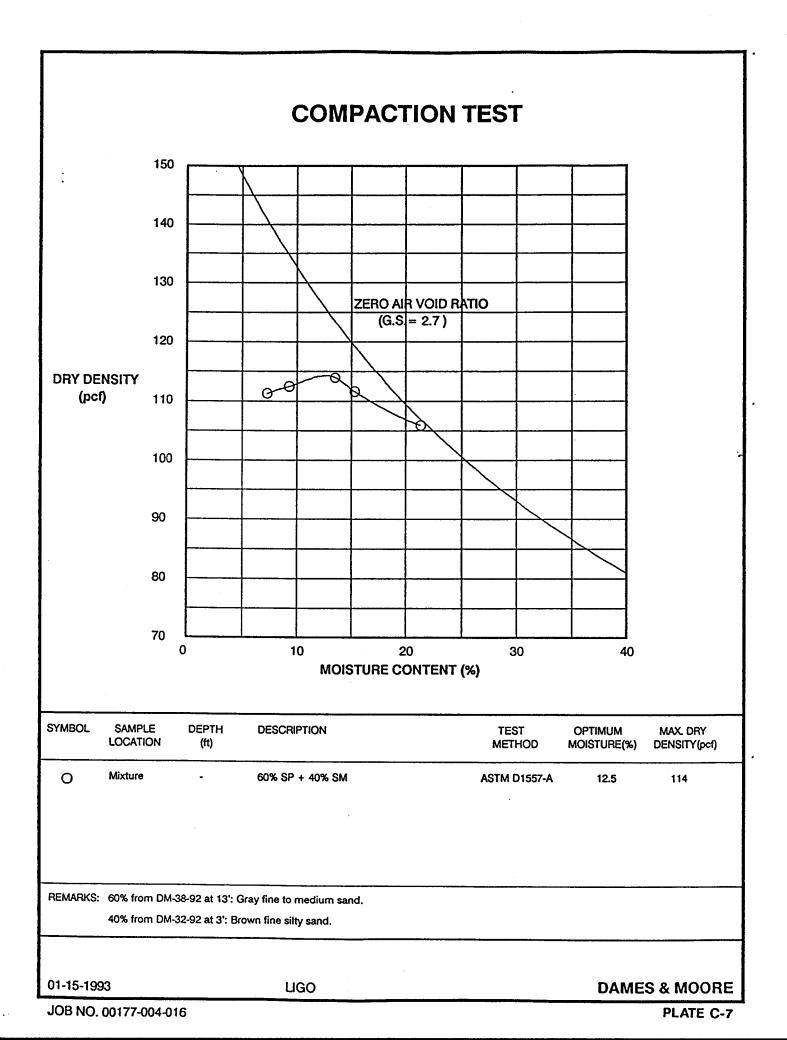
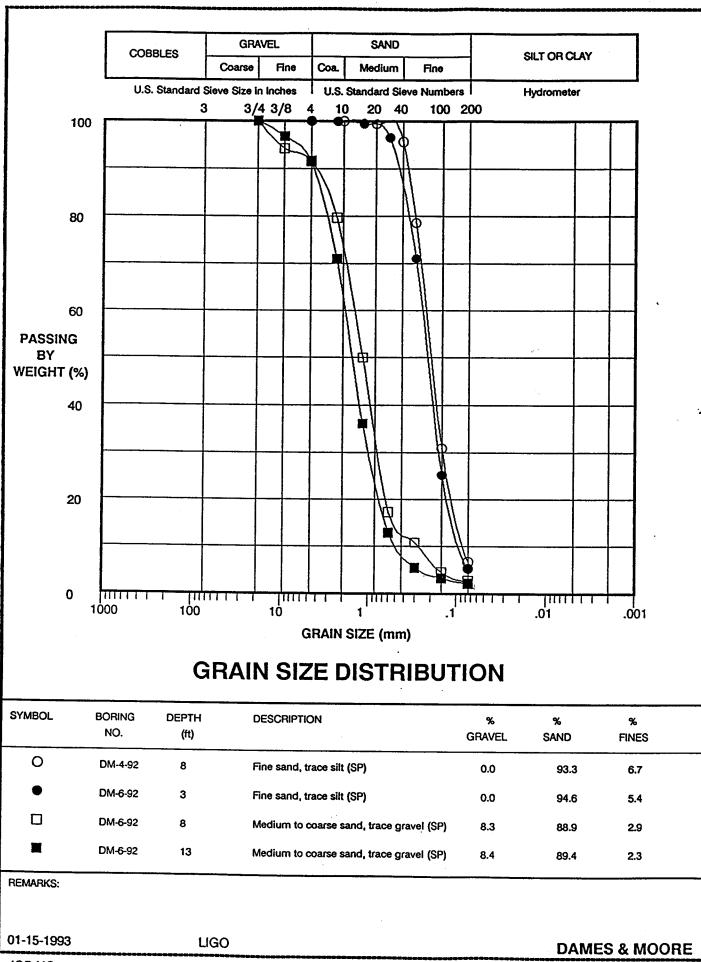
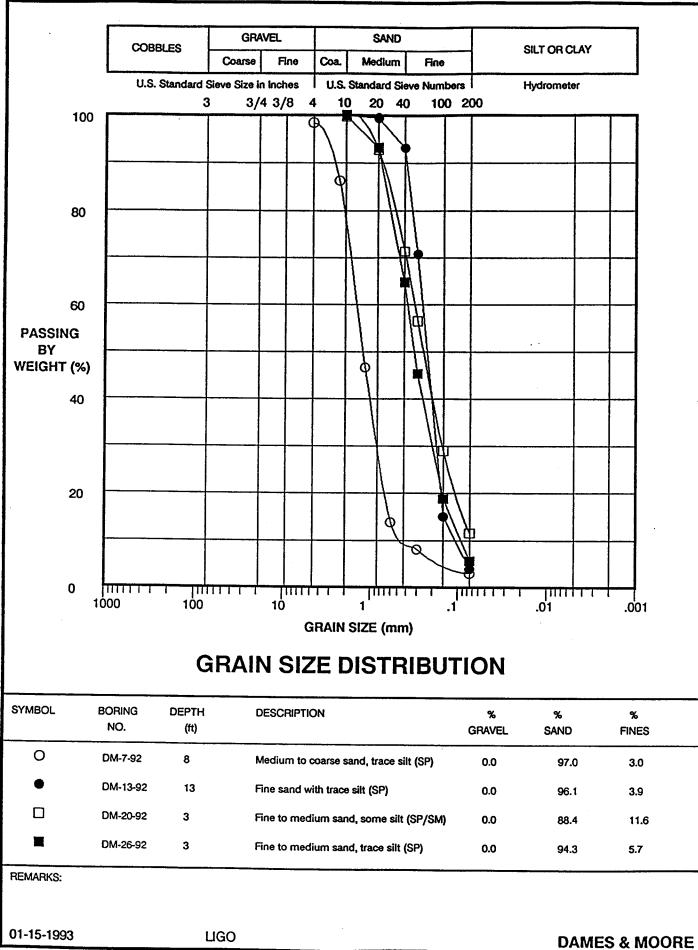
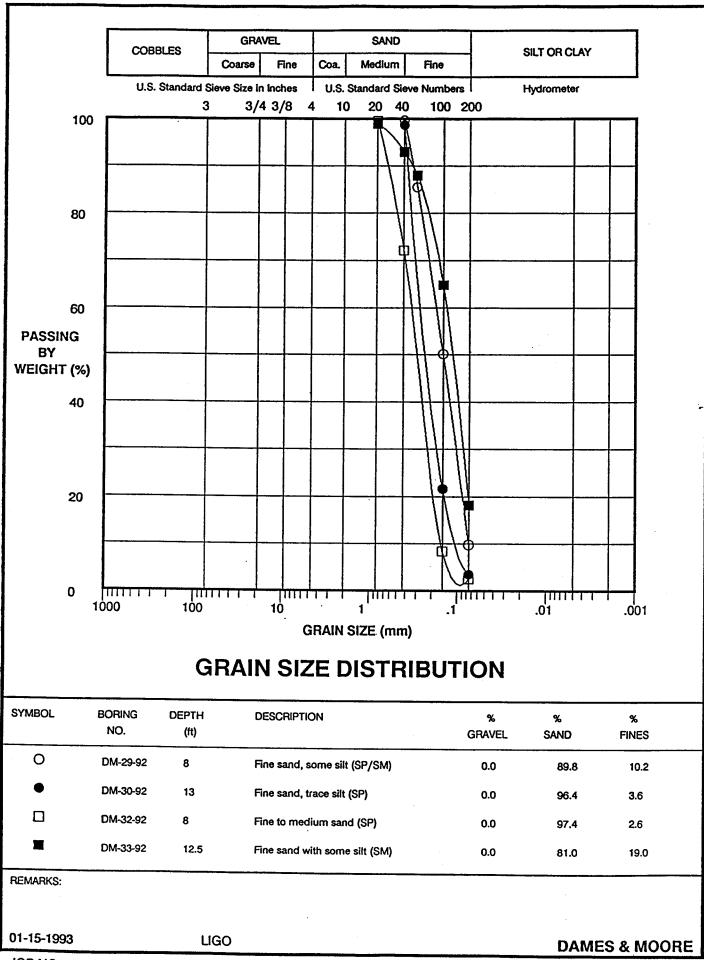





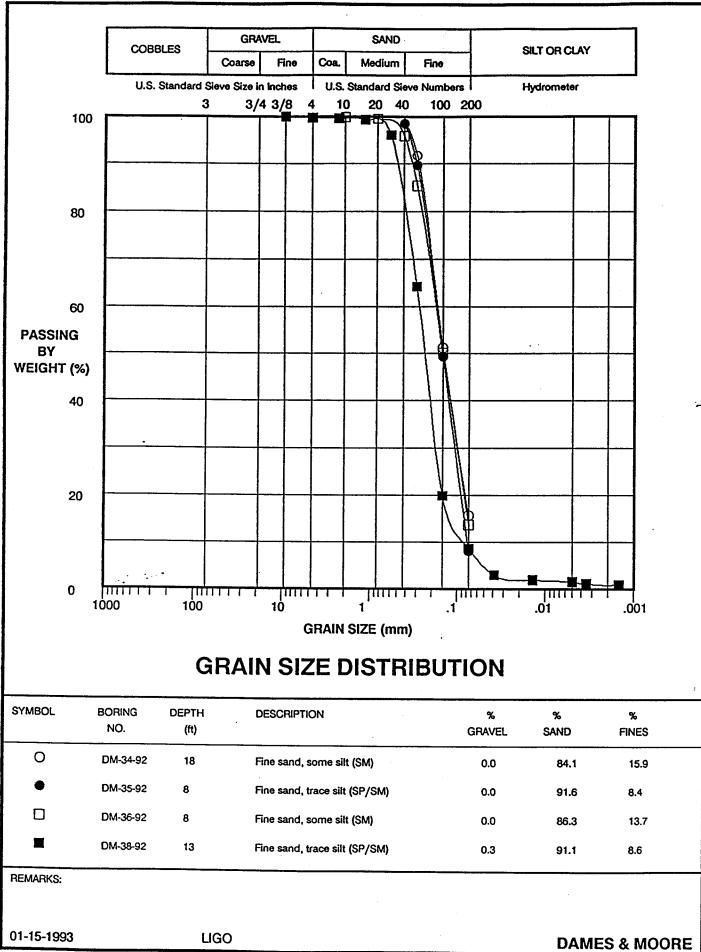
Plate C-6



JOB NO. 00177-004-016



JOB NO.00177-004-016



JOB NO.00177-004-016

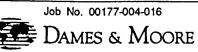
JOB NO.00177-004-016

Plate C-10

00177_18.CDH

Boring	Depth (ft)	Moisture Content (%)	Dry Density (pcf)	Fines Content (%)
DM-1-92	2.5	2.3	92	3.4
DM-4-92	3	1.8	104	1.5
DM-4-92	8	3.8	102	6.9
DM-6-92	3	2.5	102	5.4
DM-6-92	8	2.5		3.3
DM-6-92	13	3.0	109	2.4
DM-7-92	8	2.9		3.0
DM-8-92	3	1.6		1.0
DM-11-92	3	4.9	, <u></u>	13.3
DM-13-92	8	6.9	103	3.8
DM-16-92	2.5	1.8		9.6
DM-18-92	2.5	2.5		13.3
DM-20-92	3	2.4		11.6
DM-24-92	2.5	2.8		12.7
DM-25-92	3	2.8	108	10.7
DM-26-92	3	1.8	106	6
DM-29-92	8	3.6	93	10.1
DM-30-92	3	2.4	99	18.6
DM-30-92	13	2.9	95	3.8
DM-32-92	3	2.5	99	12.5
DM-32-92	8	2.8	100	3.2
DM-32-92	13	3.6	95	4.8
DM-33-92	2.5	2.2		7.5
DM-33-92	13	9.8	86	18.0
DM-34-92	18	6.3	100	15.8
DM-35-92	8	5.1	95	8.6
DM-36-92	3	2.8	97	4.8
DM-36-92	8	4.6	99	14.3
DM-38-92	3	2.8	103	8.9
DM-38-92	13	3.2		8.7

FINES CONTENT ANALYSIS


LIGO Project Hanford, Washington PLATE C-12

Job No. 00177-004-016 DAMES & MOORE 00177_18.CDR

Boring	Depth (ft)	Soil Type	Redox Potential (mv)	Moisture (%)	Sulfides (ppm)	Sulfates (ppm)	Chlorides (ppm)	Ηď	Resistivity (ohm-cm)
DM-1-92	2.5	Brown fine sand with trace silt (SP)	323	2.0	0	. 6.3	12	. 7.9	370,000
DM-20-92	ñ	Brown fine sand with some silt (SM/SP)	316	2.0	0	6.1		8.2	170,000
DM-39-92	. 13	Gray fine to medium sand, trace silt (SP)	287	3.0	0	6.0	11	8.7	68,000

SOILS CORROSIVITY TEST RESULTS

00177_18.CDR

;

THERMAL CONDUCTIVITY TEST RESULTS

Job No. 00177-004-016 🐲 Dames & Moore

GEO RECON INTERNATIONAL

applied geophysics

January 10, 1993 J92-558

Martin McCabe

Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

Re: Compressional and Shear Wave Velocity Measurements Boring DM-1; Boring DM-20 & Boring DM-41 LIGO Project Hanford, Washington

Gentlemen:

This report presents the results of Compressional and Shear Wave Velocity measurements completed in Boring DM-1; Boring DM-20 and Boring DM-41 at the proposed LIGO site Hanford, Washington. The field measurements were made on December 14 and December 15, 1992.

The borings were drilled to a depth of approximately 60 feet and cased with a 2 inch Schedule 40 PVC pipe; the 2 inch casing was grouted in the borehole with a weak cement grout. The casing was cut off even with the ground surface. The velocity measurements were made to a depth of 30 feet from ground surface. The inside bottom of the casing was approximately 60 feet from ground surface.

The measured compressional and shear wave velocities are presented on Table 1 respectively, which show the measured time arrivals, interval velocity calculations and the averaged layer velocities computed from the interval layer velocities. The measured slant-angle arrival times have been converted to vertical downhole arrival times to avoid slant range computations. Figure 1 through 3 are the time-depth plots of the corrected downhole times.

Seattle, Wa. 98155 USA

The compressional (P) wave energy was a vertical hammer blow on a padded metal plate, offset 10 feet from the boring. The zero time of the hammer blow was determined from a motion sensitive switch on the hammer handle. The receiver was a piezo-electric crystal transducer placed in the borehole casing, which was filled with water. The measurements were made at 5 foot intervals, measured from the top of the casing.

The shear (S) wave energy source as a horizontal hammer blow on the ends of a 6x6 inch plank, offset from the borehole. The plank was placed tangent to a circle with a radius of 10 feet, centered on the borehole. The plank was weighted by placing the front wheels of a vehicle on it. The zero time of the hammer blow was determined by impact to the motion sensitive switch on the hammer. The generated S wave energy was detected by two sets of transducers, separated by 10 feet, placed in the borehole. Each transducer contained 4 horizontal geophones placed on axis of 45 degrees. The measurements were made at two foot intervals measured from the top of the casing.

Two shear wave recordings were made for each measurement interval. The two separate recordings were made with reversed (polarized) energy inputs utilizing the two ends of the 6x6 inch plank (blow 1 and blow 2). The arrival of the shear wave energy was determined by comparing the times and particle motion direction of the energy arrivals from the two records. The particle motion of shear wave energy is polarized, and is dependent on the direction of the energy input. Thus on blow 1, the particle direction of the motion should be reversed from that produced by blow 2. The polarization of the energy, the corresponding wave form and time arrivals recorded, allows the interpreter to separate P wave arrivals, P to S wave conversions, tube wave arrivals and other energy arrivals (eg. casing waves) from the generated shear wave arrival.

The averaged compressional and shear wave velocities with the corresponding, calculated Poisson's ratios are shown below:

Depth	P Velocity	S Velocity	Poisson's Ratio
<u>Boring DM-1</u> 1 to 18 18 to 60	1744 5123	898 1431	0.3196 0.4577
<u>Boring DM-20</u> 1 to 20 20 to 60	2181 5033	878 1344	0.4033 0.4612
Boring DM-41 1 to 12.5 12.5 to 60	1583 4377	593 1075	0.4184 0.4679

January 10, 1993

The formula for Poisson's ratio is

$$u = \frac{(Vp/Vs)^2 - 2}{2*((Vp/Vs)^2 - 1)}$$

where:

u = Poisson's Ratio Vp = Compressional Wave Velocity Vs = Shear Wave Velocity

The time arrivals were picked using proprietary computerized picking routines. The arrival times were then converted to downhole times rather than plotting the arrival time vs the slant distance (a result of the source-borehole offset). The formula for conversion of the record time (slant distance) to the downhole time is:

DHTime=RecordTime*(cos(arctan(offset/detectordepth)))

where the DH Time is the resolved vertical travel time down the borehole.

The recording equipment used in the survey was a Geometrics digital recording 1225 seismograph, a signal enhancement recording seismograph. The shear wave records were collected at a 100 ms sweep length and the compressional wave records were collected at a 25 ms sweep length, for a sample rate of 0.1 ms and 0.025 ms (1000 samples per record) respectively. The data were field recorded on a laptop computer for later analysis. The P wave records were collected first. The P wave data was then plotted to determine optimum spacings for recording the S wave data.

We trust that the above is sufficient for your requirements. Please let us know if you have any questions or if we may be of further assistance.

For: Geo-Recon International Ltd.

(Bel A.

Clyde A. Ringstad Principal Geophysicist Downhole Compressional and Shear Wave Velocity Measurements

Borehole: DM-1

Borehole: DM-1	M-1					
Compressional	Wave Data - I	Interval Veloc	terval Velocity Computations	ns	Stickup= 0.3	
Depth Below Top of Casing 0	Recorded Time 4.6	Depth of Data	Corrected Time	Interval Time	Interval Velocity	Average Velocity
5 10 15	7.4 8.6 10.3	4.7 9.7 14.7	3.1477 5.9878 8.5163	3.1477 2.8401 2.5284	1493 1760 1977	1744
VELOCITY BREAK AT	AT 18.0 FEET	:				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 12.8 13.8 14.7 15.6 16.4 18 18	19.7 24.7 29.7 544.7 79.7 79.7 79.7 77 77 77 77 77 77 77 77 77 77 77 77 7	10.7003 11.8645 13.0786 14.1251 15.1275 16.0044 16.8621 17.7065	44402074	2289 4295 4777 5988 5702 5830 5921	
1	•	•	•	0.9338	5355	5123

Downhole Compressional and Shear Wave Velocity Measurements

10

Offset =

Borehole: DM-1

Average Velocity Stickup= 0.3 Interval Velocity 898 888 908 5.23195.62975.5094Time Interval Corrected 5.2319 10.8616 16.3711 Time Shear Wave Data - Interval Velocity Computations Data 4.7 9.7 14.7 Depth of Time 12.315.619.8Recorded 4 Top_of Casing 10 Depth Below 0 ഹ

898

VELOCITY BREAK AT 18.0 FEET

1112	1424	1435	1405	1433	1452	1425	1434	1440
4.4946	3.5122	3.4851	3.5582	3.4883	3.4424	3.5090	3.4874	3.4714
20.8657	24.3779	27.8630	31.4212	34.9096	38.3520	41.8610	45.3484	48.8199
19.7	24.7	29.7	34.7	39.7	44.7	49.7	54.7	59.7
23.4	26.3	29.4	32.7	36	39.3	42.7	46.1	49.5
20	07	30 10	3.5	40	45	50	55	60

Measurements
Velocity
Wave
and Shear
Compressional a
Downhole

DM-20	
Borehole:	

ζ ۲ ۲ É 3 ŏ

10

Offset = Stickup=

TRIIDIESSIA		VOINPI CASIONAL MAYE DAVA - INVELVAL VELOVICY VOINPUVALIONS	try comparanto	211		
Depth Below	Recorded	Depth of	Corrected	Interval	Interval	Average
Top of Casing	Time		Time	Time	Velocity	Velocity
0	1.9					
5	6.2	С О	2.7727	2.7727	1803	
10	7.2	10	5.0912	2.3184	2157	
15	9.1	15	7.5717	2.4805	2016	
20	10.5		9.3915	1.8198	2748	2181
VELOCITY	BREAK AT 20 FEET	FEET				
25	11.1	25	10.3061	0.9146	5467	
30	11.9	30	11.2893	0.9832	5085	
35	12.8	35	12.3075	1.0182	4911	
40	13.7		13.2910	0.9834	5084	

 $\begin{array}{c} 1.0102\\ 0.9959\\ 0.9860\\ 0.9788\end{array}$ 14.3011 15.2971 16.2830 17.2619 45 55 60

14.65 15.6 16.55 17.5

45 50 55 60

5033

Measurements
Velocity
Shear Wave
and
Compressional
Downhole

0
2
1
MΩ
Ω
••
Ð
L
0
L L
Ð
ы
0
മ

ξ シャ・く ١٩ , v) + 5 ¢ Dat (W o ۶ ٢ 4 Sh

10 0

Offset = Stickup=

	Average	Velocity					. 878									1344
	Interval	Velocity		1075	881	885	868		1316	1356	1329	1355	1372	1347	1320	1325
	Interval	Time		4.6510	5.6727	5.6516	5.7592		3.7985	3.6863	3.7608	3.6911	3.6451	3.7115	3.7880	3.7723
Itations	Corrected	Time		4.6510	10.3238	15.9754	21.7346		25.5331	29.2194	32.9803	36.6714	40.3165	44.0281	47.8161	51.5884
Shear wave Data - Interval Velocity Computations	Depth of	Data		5	10	15	20	FEET	25	30	35	40	45	50	55	60
a - Interval	Recorded	Time	4.5	10.4	14.6	19.2	24.3	VELOCITY BREAK AT 20 F	27.5	30.8	34.3	37.8	41.3	44.9	48.6	52.3
Shear wave Dat	Depth Below	Top of Casing	0	2	10	15	20	VELOCITY	25	30	. 35	40	. 45	. 50	55	60

Downhole Compressional and Shear Wave Velocity Measurements

Borehole: DM-41

Average Velocity Stickup= 0.3 Velocity Interval Time Interval Compressional Wave Data - Interval Velocity Computations Corrected Time Data Depth of Time 3.9 6.4 8.9 Recorded Depth Below Top of Casing 5 10

10

Offset =

VELOCIT

1583

 $\begin{array}{c} 1\,7\,2\,6\\ 1\,4\,3\,9\end{array}$

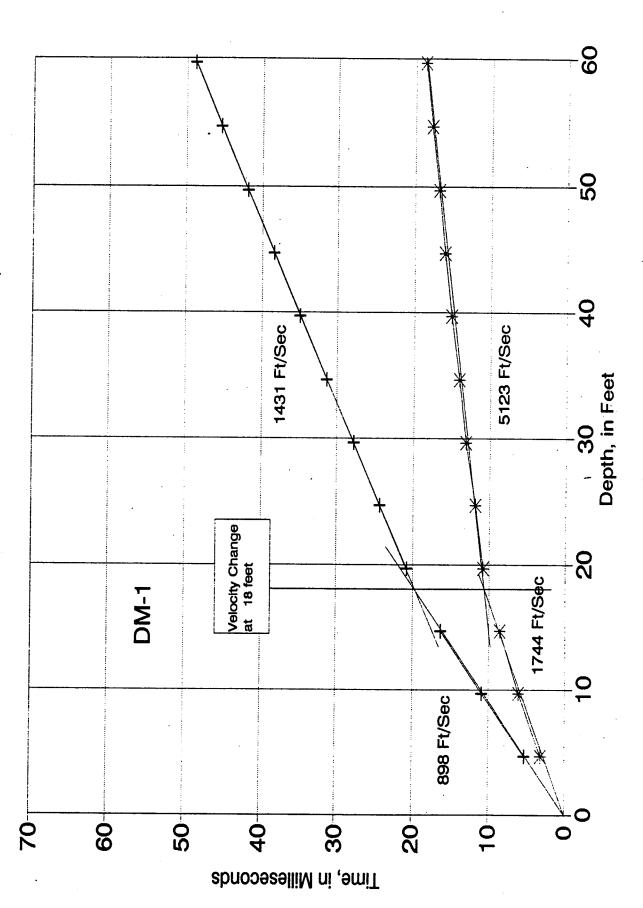
2.7223 3.4744

2.7223 6.1967

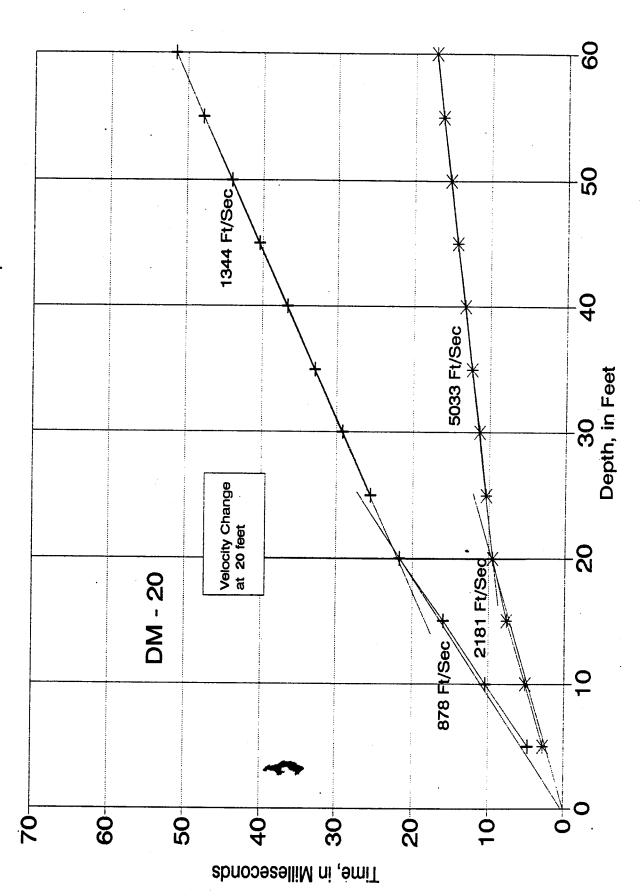
4.7 9.7

	BREAK AT 12.5 FEET	EET				
19.7 9.9870 0.9746 5130 24.7 11.4938 1.5068 3318 24.7 11.4938 1.5068 3318 29.7 12.6047 1.1109 4501 34.7 13.5486 0.9439 5297 39.7 14.5456 0.9970 5015 44.7 15.5165 0.9970 5015 49.7 16.6660 1.1495 4390 54.7 17.8049 1.0326 4342	0,		•	9 8157	1776	
13.7 9.9870 0.9746 5130 24.7 11.4938 1.5068 3318 24.7 11.4938 1.5068 3318 29.7 12.6047 1.1109 4501 34.7 13.5486 0.9439 5297 39.7 14.5456 0.9439 5297 39.7 14.5456 0.9970 5015 44.7 15.5165 0.9708 5150 49.7 16.6660 1.1495 4350 54.7 17.8049 1.0326 4342	<u> </u>		•		0/JT	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v		•	0.9746	5130	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J.	24.	•	1.5068	2210	
34.7 12.5486 0.9439 4501 34.7 13.5486 0.9439 5297 39.7 14.5456 0.9970 5015 44.7 15.5165 0.9708 5150 49.7 16.6660 1.1495 4350 54.7 17.8049 1.1389 4390 59.7 18.8376 1.0326 4842	<u>ج</u>	00	•	•	0770	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			٠	٠	4501	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	34.	٠	0.9439	5297	
44.7 15.5165 0.9708 5150 44.7 15.5165 0.9708 5150 49.7 16.66660 1.1495 4350 54.7 17.8049 1.1389 4390 59.7 18.8376 1.0326 4842 4	LC:	30.			- 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•	0166.0	GINC	
49.7 16.6660 1.1495 4350 54.7 17.8049 1.1389 4390 59.7 18.8376 1.0326 4842	0	44.	٠	0,9708	5150	
54.7 17.8049 1.1430 4.350 54.7 17.8049 1.1389 4.390 59.7 18.8376 1.0326 4842	~	49.		1 1 4 0 5		
54.7 17.8049 1.1389 4390 59.7 18.8376 1.0326 4842		•	٠	CC41.1	4350	
59.7 18.8376 1.0326 4842 ·	-		٠	38	4390	
	-	59.		1 0396		
			•	07CO.T	7404	4

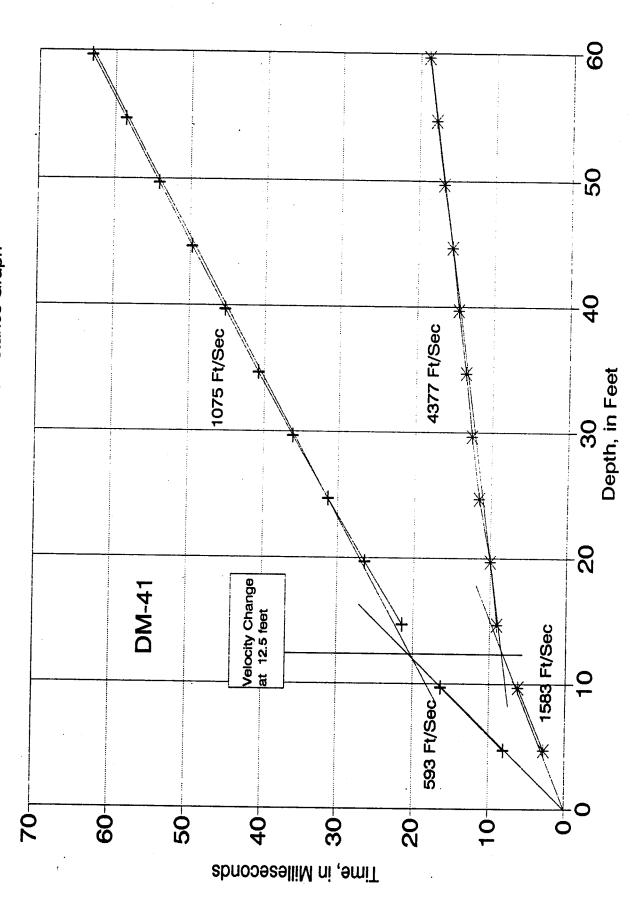
Measurements
Velocity
Wave
Shear
and
Compressional
Downhole


Borehole: DM-41

0		Average Velocity	593
Offset = 10	Stickup= 0.3	Interval Velocity	585 601
		Interval Time	8.0393 8.3227
	tations	Corrected Time	8.0393 16.3621
	- Interval Velocity Computations	Depth of Data	4.7 9.7
-41	- Interval V	Recorded Time 4.5	18.9
Borehole: DM-41	Shear Wave Data	Depth Below Top of Casing 0	10


VELOCITY BREAK AT 12.5 FEET

	974	1003	1032	1046	1079	1100	1140	1195	1108	1138
	5.1353	4.9860	4.8464	•	•	4.5435	•	•	•	• •
	21.4974	26.4833	31.3298	36.1082	40.7419	45.2855	49.6722	54.1155	58.6283	
	14.7	19.7	24.7	29.7	34.7	39.7	44.7	49.7	54.7	59.7
1444 0.444	26	29.7	33.8	38.1	42.4	.46.7	50.9	55.2	59.6	63.9
	15	20	25	30	35	40	45	50	55	60


Dames & Moore, LIGO Project Hanford, WA. Comp. & Shear Wave Time Distance Graph

Dames & Moore, LIGO Project Hanford, WA. Comp. & Shear Wave Time Distance Graph

Dames & Moore, LIGO Project Hanford, WA. Comp. & Shear Wave Time Distance Graph

,

(

(C

•

DRILL HOLE E-1	
SAMPLE TYPE Pag Project No :	9 <u>1</u> of <u>4</u>
Elevation :518.3 ft95 Core Number Indicates % Core Recovery	
Coordinates : <u>N422,718,18; E269,289,09</u> Date Completed : <u>5/15/81</u> Chemical Results Listed in Table 2R-1	
Drive Open Sample	
Unit Column Refers to General Stratigraphic Divisions Identified Within the Site Area:	
M - Missoula IV - Ringold, Unit IV Columbia River Basalt Group NOTE: Lithologies PM - Pre-Missoula III - Ringold, Unit III Tem - Elephant Mountain Member 0 to 130 ft II - Ringold, Unit II Ter - Rattlesnake Ridge Interbed driller's log I-u - Ringold, Unit I-upper Tp - Pomona Member I-b - Ringold, Unit I-basal B - Basalt, Undifferentiated	from
Elevation Depth campled Lithologic Description	
Elevation Depth (MSL) (ft.) Sampled Lithologic Description	Unit
80	
510 - 10 70X - SAND. Dark-yellowish-brown. Fine- to medium-grained. Trace	
Gravelly SAND. Dusky-yellowish-brown. Coarse-grained.	м
80×10	
silt at 25.7 ft. and 70.7 ft. Trace gravel at 35.7 ft. and 50.7-56 ft	
Gravelly from 56 to 65 ft.	
35⊠	
440 - 75 Sandy GRAVEL. Sand dark-yellowish-brown; fine- to coarse-grained.	
	PM
50X GRAVEL. Trace sand.	
Sandy GRAVEL. Sand fine- to coarse-grained.	
100XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
420 - 100 No recovery.	
410 -	
Sandy GRAVEL. Sand varicolored: fine- to coarse-grained	
75 ⊠ 33 3 35	
390 - 130 No recovery.	
PUGET SOUND POWER & LIGHT COMPANY	{
SKAGIT / HANFORD NUCLEAR PROJECT LOG OF DRILL HOLE E-1	FIGURE
	2R-A-86

(

**

(

. .

levation (MSL)	Depth (ft.)	Sampled Interval Lithologic Description	Uni
	130 20 75	Sandy GRAVEL. Weak calcareous cement on sand. Gravelly SAND. Medium-grained. 5% mafics. Weak calcareous cement.	\uparrow
380 -	100 	Sandy GRAVEL to gravelly SAND. Sand medium-grained, some fine- grained; 5% mafics. Weak calcareous cement at 142 ft. Granite and basalt clasts.	
370 -	- 150	Gravelly SAND. Medium-grained. Weak calcareous cement. No rinds.	
ļ	100	Silty sandy GRAVEL. Sand medium-grained: angular to subangular.	
360 -	100 160 95 100	Gravelly silty SAND to silty sandy GRAVEL. Yellowish-gray. Medium- grained. Angular to subangular. 5% mafics. Weak calcareous cement and micaceous at 160.8 ft.	РМ
350 -	50 - 170 ⁰⁰ 100 80	Sandy GRAVEL to gravelly SAND. Sand medium-grained, some fine- grained; angular to subangular; 5-7% mafics. Weak calcareous cement; no cement rinds. Trace silt at 177.8 ft.	
340 -	100 - 180 100	Gravelly SAND. Medium-grained. Weak calcareous cement. Trace silt.	
	90	Sandy GRAVEL. Trace silt. Clasts to cobble size. No cement rinds.	
330 -	100 190 ₀₀	Silty sandy GRAVEL to gravelly silty SAND. Sand as in 165.3 to 176.6 ft	
ŀ	100	Gravelly SAND to sandy GRAVEL. Thin weathering rinds on basalt clasts Silty sandy GRAVEL. Sand fine- to medium-grained. Very weak	
320 -	- 200 ⁹⁰	Calcareous cement and increasing silt at 196 ft. Sandy GRAVEL. Trace silt. No cement rinds.	
310 -	100 100 65 - 210 40 40	Silty sandy CRAVEL. Weak calcareous cement; no rinds. Ferruginous stai Silty SAND. Yellowish-gray. Fine- to medium-grained. Silt adheres to sar Gravelly silty CLAY to gravelly clayey SILT. Yellowish-gray. Possible ash horizon at 208 ft. Silty SAND. Yellowish-gray. Very-fine-grained, some fine-grained, fining downward. Micaceous at 214 ft.	h. d.
300 -	220	Silty clayey SAND. Dusky-yellow. Very-fine-grained, some fine.	
290	100	Silty SAND. Yellowish-gray. Fine-grained, some very-fine-grained. Angular to subangular. Micaceous. 3-5% mafics.	
280	100 230 100 100 100 100	SAND. Yellowish-gray. Medium-grained, some very-fine- to fine- grained. Angular to subangular. 5-7% mafics, with bluish cast. Slight calcareous rind.	
F	100 100	Silty SAND. Yellowish-gray. Medium-grained. 3-5% mafics. Sandy GRAVEL. Blue cast to mafics. Ferruginous stain.	-
270 -	100 25090 20	Silty SAND. Yellowish-gray to dusky-yellow. Medium-grained. Gravelly at 249 ft. Much ferruginous stain at 250 ft. Sandy clayey SILT. Yellowish-gray. Micaceous. Root casts?	IV
60 -	68 260 260	Gravelly sandy SILT to gravelly silty SAND. Yellowish-gray. Sandy SILT. Yellowish-gray. Mica flakes to fine-sand size.	
50 -	36	Silty SAND. Yellowish-gray. Medium-grained. Micaceous. 3% mafics.	
F	270 ³⁶	Silty sandy GRAVEL. Matrix yellowish-gray to dusky-yellow. Sand	
40 -	280 ⁰⁰	medium-grained, some very-fine- to fine-grained; angular to sub- angular 2-5% mafics. Calcareous cement from 267 to 276 ft. and 284 to 294 ft. Sandy rinds on gravel clasts. Some ferruginous stain at 279 ft., 282 ft., and 288 ft. Blue cast to mafics at 273 ft.	•
30 -	100 290		

(

N.1

((_____ 12/21/81

DRILI	L HOLE .		E-1	- Page	_3_of_4
Elevatio (MSL)	on Depth (ft.)	Sampled Interval	phic Log Litho	logic Description	Un
220	290 100 - 100 - 100 - 300		Silty sandy G angular to su Blue cast to r	RAVEL. Matrix yellowish-gray. Sand medium-grained; bangular; 5-7% mafics. Calcareous cement at 293 ft. nafics at 295 ft. and 297.8 ft.	
210	- 100 - 100 - 310 - 3 <u>10</u>		Silty sandy G Sandy GRAVE Silty sandy G	L. Sand yellowish-gray. Calcareous cement. RAVEL. Sand as above. Calcareous cement. L. Sand yellowish-gray; medium-grained, some fine-gra RAVEL to silty gravelly SAND. Calcareous cement. D. Yellowish-gray. Micaceous. 7-10% mafics; blue-cast.	ined.
200	- 100 100 - 320 100		Silty sandy G dusky-yellow.	RAVEL to silty gravelly SAND. Matrix yellowish-gray to Sand medium-grained, some fine-grained. Sand cemen and decreases at 317 ft. and 319 ft.	ted IV
190	- 100 - 330 100 100		Silty gravelly Silty sandy G	ish-gray. Medium-grained. 7-10% mafics. SAND. Medium-grained, some fine-grained. 10% mafics. RAVEL. Matrix yellowish-gray to dusky-yellow. Sand ebbles. Blue cast to mafics at 333 ft.	
180	- - 100 - 340 100 100		Silty SAND.	Light-olive-gray. Medium-grained. 15% mafics. Micaceou	
170	- 		some fine-grai	RAVEL. Matrix light-olive-gray. Sand medium-grained, ned; angular to subangular; 15% mafics. Matrix increas h blue cast at 352 ft.	ses
160	- 100 - 60 - 360 100		Angular to sul	y-yellow to yellowish-gray. Medium-grained. bangular. 15-20% mafics. Trace silt at 358.5 ft. to silty GRAVEL, with floating sand grains. Very-light	-
150 ·	- 100 - 100 - 370 - 370 100		SILT. Yellowis size.	sh-gray to very-light-olive-gray. Mica to very-fine-san silty SAND. Very-light-olive-gray. Micaceous.	d
140 -	100 		SAND. Very- fine- to medium Angular to sub	light-olive-gray to light-gray to yellowish-gray. Very- m-grained, mostly medium-grained, coarsening downward bangular. 10-25% mafics, decreasing with depth. Silty Aicaceous and trace silt at 382 ft.	d.
130 -	- 390		No recovery.		111
120 -	40050 50			SAND. Sand as at 382 ft. mafics, with bluish cast. Trace silt. Medium-grained.	
110 -	- 410 50		Sandy GRAVEL Silty SAND. Li	Sand as above; weakly cemented to gravel. ight-gray. Fine- to medium-grained, some very-fine- ular to subangular. 15-20% mafics. Micaceous.	
100 -	- 420 ₀₀ - 100		medium-grained	AVEL. Matrix light-olive-brown. Sand very-fine- to d; angular to subangular; 15% mafics. Sandy calcareous	;
90 -	40 - 430 ⁰⁰ 100 - 100		SILT. Very-li	ght-olive-gray to yellowish-gray.	_
80 -	- 440 ⁰⁰ 100		CLAY. Pale-of	sandy SILT. Light-olive-gray. Very-fine-grained. live to yellowish-gray. Waxy luster in part. Angular le subrounded fragments at 439.3 ft.	11
70 -	100 		Silty CLAY. Ye	ellowish-gray. Mica very-fine-sand size.	
ET SO AGIT /	UND POWE	R & LIGHT	COMPANY PROJECT	LOG OF DRILL HOLE E-1	FIGURE

.

(

(

T

12/21/81

Elevation (MSL)	Depth (ft.)	Sampled Interval Gra	phic Log		ic Description						lı
60 -	450 100 100 		Clayey Silty C CLAY. Silty C	Vellowish LAY. Ye	silty CLAY, ellowish-gray n-gray. Wax ellowish-gray	/. Waxy II y luster. /.	uster in p Nodular i	grains. Ye Dart. Dlocky frag	ilowish- ments.	gray.	
53 -	-	EOH	CLAY.	Yellowis	h-gray. Wa	ixy luster.					
		465.3'			•						
F	-										
F	-										
	_										
ſ	-							·			
ŀ	-										
	-										
								÷.			
	-										
-											
-											
-											
╞											
<u>⊢</u>											

i

SOIL PROFILE SAMPLES Stratigraphic Plot Elev PENETRATION RESISTANCE (feet) Depth Recovery Blows/foot (140 lb. weight, 30in.drop) Number Depth Type DESCRIPTION 524, 20 40 60 80 0 100 120 Loose dark yellowish brown silty 5/18 fine SAND 2 I. 17/18 515. 3 10/18 8.5 Medium dense varicolored to olive 1 10 black slightly silty fine to coarse SAND with scattered gravel 4 1 11/18 5 L 9/18 20 6 I 10/18 496. 28 Very dense varicolored to olive 7 13/18 1 30 black silty fine to medium SAND 8 I 17/18 486. 38 Very dense varicolored to olive 9 1 18/18 black slightly silty fine to medium 40 SAND with scattered gravel 10 1 18/18 11 I 16/18 50 12 I 17/18 ▲ 13 1 18/18 60 14 1 17/18 17/18 15 1 70 Very dense olive gray silty fine 16 I 17/18 . SAND 17 I 18/18 80 <u>441</u> 83 Very dense varicolored to olive black slightly silty sandy fine to coarse GRAVEL 18 1 8/18 434. 19 1 11/18 90 90 End of Hole 100 110 0 10 5 Boring Method: Hollow Stem Auger WATER CONTENT (%) Sample Type: 1 - 2" (O.D.) Drive Open Standard Penetration Resistance 11 - 4 1/2" (O.D.) Drive Open Water Content ▲ 111 - 3" Thin Walled, Push Open **Pressuremeter Test** Drill Hole Coordinates N 422800 E 2269160 NOTE: E-2 sampled to 20.14. E-2A sampled from 23.8' to 40.1' E-2B sampled from 43.6' to 89.9' PUGET SOUND POWER & LIGHT COMPANY LOG OF DRILL HOLE E-2, E-2A, E-2B SKAGIT / HANFORD NUCLEAR PROJECT FIGURE 2Q A-21

ſ

•

Elev PENETRATION RESISTANCE Deprin DESCRIPTION 221,4 DESCRIPTION 121,4 DESCRIPTION		SOIL PROFILE		S	AMF	PLES	T	
0 Very loss to loss dark yellowish trown slightly sity fine SAND 1 <td< td=""><td>Depth</td><td>DESCRIPTION</td><td>Stratigraphic Piot</td><td>Number</td><td>Type</td><td>Recovery</td><td>Depth (feet)</td><td>Biows/foot (140 lb. weight, 30in.drop)</td></td<>	Depth	DESCRIPTION	Stratigraphic Piot	Number	Type	Recovery	Depth (feet)	Biows/foot (140 lb. weight, 30in.drop)
Boring Method: Hollow Stem Auger WATER CONTENT (%) Sample Type: I = 2° (O.D.) Drive Open Standard Penetration Resistance II = 4 1/2° (O.D.) Drive Open Water Content III = 3° Thin Walled, Push Open Pressuremeter Test Drill Hole Coordinates N 422870 E 2269400	0 513.4 8 492.4 29 487.4 34 442.4 79 5 5 5	Very loose to loose dark yellowish brown slightly silty fine SAND Medium dense varicolored to olive black slightly silty fine to coarse SAND with scattered gravel Very dense dark yellowish brown to olive black silty fine to medium SAND Very dense varicolored to olive black slightly silty fine to medium SAND with scattered gravel Very dense olive gray slightly silty fine SAND Very dense varicolored to olive black slightly silty gravelly fine to coarse SAND		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		14/1 16/1 15/18 12/11 15/18 12/11 15/18 18/18 16/18 16/18 16/18 15/18 15/18 13/18 15/18 13/18	8 10 20 40 50 60 70 80 90 100	
JGET SOUND POWER & LIGHT COMPANY	Sa	ample Type: I – 2° (O.D.) Drive Open II – 4 1/2° (O.D.) Drive Open III – 3° Thin Walled, Push Open III Hole Coordinates N <u>422870</u> E <u>226</u>	I			· · · · · · · · · · · · · · · · · · ·	Ŷ	VATER CONTENT (%) Standard Penetration Resistance

(

ſ

	SOIL PROFILE		S.	AMF	PLES		
Elev Depth 516.9	DESCRIPTION	Stratigraphic Plot	Number	Type	Recovery	Depth (feet)	PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop)
0	Loose dark yellowish brown to olive	11.563	$\overline{\mathbf{H}}$		14/18		
508 0	gray slightly silty fine to medium SAND		2	1	16/18		
8	Medium dense to dense varicolored		3	1	16/18	10	
	to olive black clean fine to medium SAND		4	۱.	16/18		
1				[`			
	·		5	ľ	18/18	20	
488.9			6	1	16/18		
28	Very dense varicolored to olive		7	1	17/18	30	
	black clean fine to medium SAND		8	1	16/18		
			و	1	18/18		
						40	
			10	I	18/18		
			11	Í	18/18	50	
			12	L	18/18		
			13	1	18/18	60	
			14	1	18/18	00	
			15	1	17/18	70	
38.9			16	1	18/18		
8	Very dense varicolored to olive black	2.55	17	1	17/18	80	
	clean gravelly fine to coarse SAND		18		17/18		
26.9							
0	Very dense varicolored to olive black	20	19	п	18/18	90-	▲ · · · · · · · · · · · · · · · · · · · · · · · ·
	clean sandy fine to coarse GRAVEL	- C	20	II I	18/18		
		5.00	21	п	14/14	100	
		0.0	_				
		590	22		9/18		
		b a C	23	"	2/18	110-	
		0.00	24	11	3/18		
8	oring Method: Hollow Stem Auger Top Drive Rotary					o V	6 10 WATER CONTENT (%)
S	ample Type: 1 - 2" (O.D.) Drive Open					:	Standard Penetration Resistance
	11 - 4 1/2" (O.D.) Drive Open						Water Content
	111 - 3° Thin Walled, Push Oper	.					Pressuremeter Test
D	rlll Hole Coordinates N <u>422680</u> E <u>22</u>	69680					• •
ET S	OUND POWER & LIGHT COMPANY			<u> </u>			
AGIT	/ HANFORD NUCLEAR PROJECT	ĻŪ		75	DRILI	- H	OLE E-4

((

[

X^{EE}

12/21/81

	SOIL PROFILE	T	S	AMP	LES								
Elev Depth	DESCRIPTION	Stratigraphic Plot	Number	Type	Recovery	Depth (feet)	P Biov	ENET ws/foo			RESI: weigh		
120							1 2	0 4	0 0	60	<u>BO 1</u>	00	20
90.4	Very dense varicolored to olive black clean sandy fine to coarse GRAVEL	00	25 26		14/18		0						
126.5	End of Hole	e. O:	20	**	14/18	1							
						130	,					1	
								•			+		+
		1								<u> </u>			
										1			
										ļ	ļ	ļ	
			ĺ										
													1
			ĺ				┣───┤						
											ļ		
								.					
							-+						<u> </u>
		1											
												İ	
				ľ									
		-											
													1
							•						
Bo	oring Method: Hollow Stem Auger Top Drive Rotary					0	WATE) ONTI	ENT	(%)	L	1
Sa	ample Type: I - 2" (O.D.) Drive Open						Standa	rd Per	netrati	ion Re	sistan	ce 鱼	
	H - 4 1/2" (O.D.) Drive Open						Water						
	11 – 3" Thin Walled, Push Open						Pressu	remete	er Tes	st		>	
Dr	ill Hole Coordinates N <u>422680</u> E 220	59680										·	
	·							-					
ET SC	OUND POWER & LIGHT COMPANY	LO	G C)F I		н	OLE	 	- <u></u>				FIGUR

12/21/81

	SOIL PROFILE	·	SA	MP	LES		
Elev Depth	DESCRIPTION	Stratigraphic Piot	Number	Type	Recovery	Depth (feet)	PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop) 20 40 60 80 100 120
0 513.1 7 92.1	Loose dark yellowish brown to olive gray slightly silty <u>fine</u> to medium <u>SAND</u> Medium dense varicolored to olive black slightly silty fine to <u>medium</u> SAND and olive gray silty fine SAND		2 3 4 5 6	1 1 1	13/18 13/18 14/18 8/18 14/18 14/18	10 	
28 80.1 40	Very dense varicolored to olive gray silty fine SAND Very dense varicolored to olive black slightly silty fine to medium SAND		7 8 9 10 11		18/18 18/18 18/18 18/18 14/18	30 40	
	Very dense varicolored to olive black clean gravelly fine to coarse SAND Very dense varicolored to olive gray		12 13 14 15	1	9/18 7/18 5/18 8/18	50 60 70	
45.1 75	slightly silty fine SAND Very dense varicolored to olive black clean gravelly fine to coarse SAND		16 17 18 19 20		8/18 0/18 2/18 4/18 2/18	80 90	
	End of Hole					100- 1 10-	
	oring Method: Hollow Stem Auger ample Type: I-2°(O.D.) Drive Open	· · · · · · · · · ·					5 10 VATER CONTENT (%) Standard Penetration Resistance
De	ll- 4 1/2" (O.D.) Drive Open III- 3" Thin Walled, Push Open rill Hole Coordinates N <u>422300</u> <u>E 226</u>				۸	F	Water Content
ET SC	OUND POWER & LIGHT COMPANY / HANFORD NUCLEAR PROJECT	LO	GO	FC	DRILL	. но	DLE E-5 FIGURE

6

•.

ĺ

Ĺ

(

	SOIL PROFILE	T	S	AMF	LES		
Elev Depth 519.1	DESCRIPTION	Stratigraphic Plot	Number	Type	Recovery	Depth (feet)	
0	Loose dark vellowish brown slightly	e.	1-		16/18	1	
511.1	silty fine SAND		2	1	18/ 18		
8 506.1	Medium dense varicolored to olive gray silty fine to medium SAND		3	1	12/18	10	
13	Medium dense to very dense vari-		4	1	8/18		
	colored to olive black clean fine to coarse SAND with scattered gravel		5	1	16/18	20	
191.1			6.	1	15/18		
28	Very dense varicolored to olive black		7	1	18/18	30	
	slightly silty fine to medium SAND		8	1	18/18		
			9		18/18		
			10		18/18	40	
	Very dense varicolored to olive black clean fine to medium SAND with				18/18	50	
	scattered gravel			1	16/16		
				1	18/18	60	
			14	1	8/18	.	
46.1			15	1	8/18	70	
3	Very dense varicolored to olive black clean gravelly fine to coarse SAND		16	1	6/18		
	Side gravery fine to coarse SAND		17	1	7/18	80	
			18	1 h	9/18		
26.1			19	ı h	4/18	90	
3	Very dense varicolored to olive black	37	20	ı h	1/18		
· · ·	clean sandy fine to coarse GRAVEL	5°.8		.		100	
		09		1	6/18		
	C. C	• Q	1	- 1	2/18	ŀ	▲ . .
		\sim			8/9 0/3	110	
			·	"	0/3		
8	oring Method: Hollow Stem Auger Top Drive Rotary	<u> </u>			k -		WATER CONTENT (%)
SA	ample Type: 1-2" (O.D.) Drive Open						Standard Penetration Resistance
	li – 4 1/2" (O.D.) Drive Open						Water Content
	III - 3" Thin Walled, Push Open						Pressuremeter Test
Dr	rill Hole Coordinates N <u>422340</u> E <u>226</u>	9560				·	
		<u> </u>					
ET SC	DUND POWER & LIGHT COMPANY / HANFORD NUCLEAR PROJECT	LO	 3 0	Fr		 	OLE E-6 FIGUR

X

(

4/2/82

	SOIL PROFILE	T		-\ IVIF 	PLES	1	
Elev Depth	DESCRIPTION	Stratigraphic Plot	Number	Type	Recovery	Depth (feet)	PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop
0	Loose dark yellowish brown slightly			- -	16/18	-	
11.1	silty fine SAND		2	1	18/18		
8 06.1	Medium dense varicolored to olive gray silty fine to medium SAND		3	1	12/18	10	
3	Medium dense to very dense vari- colored to olive black clean fine to coarse SAND with scattered gravel		4 5		8/18 16/18	20	
91.1			6		15/18		
8	Very dense varicolored to olive black slightly silty fine to medium SAND		7 8		18/18 18/18	30	
			9	1	18/18	40	
			10		18/18		
	Very dense varicolored to olive black clean fine to medium SAND with scattered gravel		11 12	1	18/18 16/16	50	
	5.2.2		13		18/18	60	
					18/18 18/18	70	
<u>16.1</u> 3	Very dense varicolored to olive black clean gravelly fine to coarse SAND		17 18	1 1	16/18 17/18 19/18 14/18	80	
6.1	Vory dance upricely date the				11/18	90	
	Very dense varicolored to olive black clean sandy fine to coarse GRAVEL		21 22 23	11	16/18 12/18	100-	
B	Boring Method: Hollow Stem Auger					0 \	5 10 WATER CONTENT (%)
	Top Drive Rotary			:			
S	ample Type: I - 2" (O.D.) Drive Open II - 4 1/2" (O.D.) Drive Open						Standard Penetration Resistance
	III - 3" Thin Walled, Push Open						Water Content
D	Drill Hole Coordinates N <u>422340</u> E <u>226</u>						
ET S	OUND POWER & LIGHT COMPANY				DRILI		

(

6

	SOIL PROFILE		S/	MP	LES		
Elev Depth	DESCRIPTION	Stratigraphic Plot	Number	Type	Recovery	Depth (feet)	PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop)
0	Loose dark yellowish brown to olive		-		 15/18		
3.2	gray silty fine SAND Medium dense varicolored to olive black slightly silty fine to coarse SAND and varicolored to olive gray silty fine to medium SAND with scattered gravel		2 3 4 5 6 7	1. 1	13/18 11/18 10/18 3/18 8/18 8/18		
05.6	AA - 1 ¹		8	1	13/ 18		
92.6	Medium dense to dense varicolored to olive black slightly silty fine to coarse SAND with scattered gravel and silty layers		9 10 11 12 13 14 15		9/18 14/18 6/18 13/18 17/18 18/18 16/18	20	
5.5	Very dense to olive black silty <u>fine</u> to medium SAND		16 17 18 19 20 21 22		14/18 18/18 18/18 18/18 18/18 18/18 18/18	30	
81.6	Very dense varicolored to olive		23	. 1	18/18		
	black slightly silty fine to medium SAND Very dense varicolored to olive black slightly silty fine to coarse		24 25 26 27 28 29 30 31		18/18 7/18 6/18 6/18 7/18 8/18 8/18 5/18	40	
	black slightly silty fine to coarse SAND with scattered gravel		32 33 34 35 36 37		7/18 6/18 8/18 8/18 5/18 8/18	50 60	
8	loring Method: Hollow Stem Auger Mud Rotary for Pressu	remete	r Te	estir	ng E-:		5 10 WATER CONTENT (%)
S	ample Type: I - 2" (O.D.) Drive Open				-		Standard Penetration Resistance
	ll - 4 1/2" (O.D.) Drive Open			•		•	Water Content
	III - 3" Thin Walled, Push Oper	1				l	Pressuremeter Test
D	orill Hole Coordinates N <u>422700</u> E <u>2</u>	26916(<u> </u>			NO	TE: Pressuremeter tests performed in E-7. Standard penetration testing performed in E-7A
ET S	OUND POWER & LIGHT COMPANY / HANFORD NUCLEAR PROJECT	LO	G C)F (ORILI	_ H(OLE E-7 FIGUR

C

.....

12/21/81

		SOIL PROFILE		S	AMF	LES]	
00 Very dense varicolored to olive black slightly silty fine to coarse SAND with scattered gravel 33 1 60 20 40 60 80 100 120 Very dense varicolored to olive gray slightly silty fine SAND 1 1 18/18 1 18/18 1 1 18/18 1 18/18 1 1 18/18 1 1 18/18 1 1 18/18 1 1 18/18 1 1 18/18 1 1 1 18/18 1 1 18/18 1 </th <th>Depth</th> <th></th> <th>Stratigraphic Plot</th> <th>Number</th> <th>Type</th> <th>Recovery</th> <th>Jepth (feet)</th> <th>PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop)</th>	Depth		Stratigraphic Plot	Number	Type	Recovery	Jepth (feet)	PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop)
SAND 51 1 15/18 80 52 1 14/18 4 4 53 1 14/18 4 4 54 1 14/18 4 4 55 1 9/18 90 4 4 90 End of Hole 57 1 9/16 90 100	60 441.6 76.5	slightly silty fine to coarse SAND with scattered gravel Very dense varicolored to olive gray slightly silty fine SAND	1	38 39 40 41 42 43 44 45 46 47 48		5/18 8/18 18/18 18/18 18/18 18/18 18/18 18/18 18/18 18/18 18/18	60 70	
Boring Method : Hollow Stem Auger WATER CONTENT (%) Sample Type : 1 - 2" (O.D.) Drive Open Standard Penetration Resistance II - 4 1/2" (O.D.) Drive Open Water Content III - 3" Thin Walled, Push Open Pressuremeter Test	428.1	SAND		51 52 53 54 55 56		13/18 15/18 14/18 15/18 13/18 9/18 12/18 9/16	90	
Boring Method : Hollow Stem Auger WATER CONTENT (%) Sample Type : 1 - 2" (O.D.) Drive Open Standard Penetration Resistance II - 4 1/2" (O.D.) Drive Open Water Content III - 3" Thin Walled, Push Open Pressuremeter Test								
	Sa	ample Type: [- 2" (O.D.) Drive Open II - 4 1/2" (O.D.) Drive Open III - 3" Thin Walled, Push Open	69160)				WATER CONTENT (%) Standard Penetration Resistance

(

<u>7</u>-

(______

12/21/81

	SOIL PROFILE		S	AMF	PLES		
Elev Depth	DESCRIPTION	Stratigraphic Plot	Number	Type	Recovery	Depth (feet)	PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop)
<u>21.5</u> 0	Loose to medium densedark yellowish	5200	-	-	4/18		20 40 60 80 100 120
<u>13.5</u> 8 97.5 24	brown slightly silty fine SAND		2 3 4 5 6 7		18/18 14/18 9/18 18/18 12/18 0/4	10 20	
<u>83.5</u> 38	Very dense varicolored to olive black clean fine to <u>medium</u> SAND with scattered silty layers		8 9 9A 10 11	1 111 1	18/18 16/18 10/10 10/10 13/18	40 50	
	Very dense varicolored to olive gray slightly silty <u>fine</u> to medium SAND		15 16 16 17	1 1 1 1 1 1 1 1 1	15/18 0/18 15/18 17/18 9/10 6/6 18/18	60	
3.5	Very dense varicolored to olive black fine to coarse GRAVEL and gravelly fine to coarse SAND		19 20		6/6 7/18 18/18 12/18	80 90	
11.4	Very dense varicolored to olive black clean sandy fine to coarse GRAVEL End of Hole	2:05	22	1		100 110	
8	oring Method: Hollow Stem Auger	L		A.	k	I 0 1	WATER CONTENT (%)
S	ample Type: I - 2" (O.D.) Drive Open						Standard Penetration Resistance
D	II - 4 1/2" (O.D.) Drive Open III - 3" Thin Walled, Push Open rill Hole Coordinates N <u>422900</u> <u>E220</u>						Water Content A Pressuremeter Test
ET SC	DUND POWER & LIGHT COMPANY / HANFORD NUCLEAR PROJECT	LO	GC)F 1	DRIL		OLE E-8

((

•...*

(

	SOIL PROFILE	T	S/	AMF	LES	-	
Elev Depth 520.6	DESCRIPTION	K Stratigraphic	Number	Type	Recovery	Depth (feet)	PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop 20 40 60 80 100 120
512.6 8 497.6 23 482.6 38 482.6 78	Medium dense varicolored to olive black fine to coarse SAND with scattered silty layers Very dense varicolored to olive black silty fine to medium SAND with scattered gravel Very dense varicolored to olive black clean fine to medium SAND		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		14/18 10/18 13/18 10/18 18/18 18/18 18/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18	10 20 30 40 50 60	
D D GET SC	Soring Method: Hollow Stem Auger Mud Rotary for Pressur ample Type: 1 - 2" (O.D.) Drive Open II - 4 1/2" (O.D.) Drive Open III - 3" Thin Walled, Push Open rill Hole Coordinates N <u>422800</u> E <u>2</u> : OUND POWER & LIGHT COMPANY / HANFORD NUCLEAR PROJECT	26930	0		NC E- for	9A 9A a rmed	5 10 WATER CONTENT (%) Standard Penetration Resistance • Water Content • Pressuremeter Test • Pressuremeter test performed in it 25.9'. Pressuremeter tests per- in E-9B at 36.1, 55.7 and 65.6'. OLE E-9, E-9A, E-9B FIGUR

(

(

SOIL PROFILE		S	AM	PLES		
Elev Depth 517, 2	Stratigraphic Plot	Number	Type	Recovery	Depth (feet)	
 14.0 2 Loose dark yellowish brown slightly silty fine to medium SAND Dense varicolored to olive black and Ugray silty fine to medium SAND Medium dense to dense varicolored to olive black clean medium to coarse SAND with scattered gravel 91.2 Very dense varicolored to olive black silty fine to medium SAND Very dense varicolored to olive black clean fine to medium SAND Very dense varicolored to olive gray Very dense varicolored to olive black clean fine to medium SAND Very dense varicolored to olive black clean fine to medium SAND Very dense varicolored to olive black clean fine to medium SAND Very dense varicolored to olive gray Very dense varicolored to olive gray Very dense varicolored to olive black clean gravelly fine to coarse SAND Very dense varicolored to olive black clean gravelly fine to coarse SAND End of Hole 		10 11 12 13 14 14 15 15A 16 17 18		13/18 12/12 18/18 14/18 17/18 17/18 16/18 12/13 18/18 10/10 12/18 4/18 2/18 3/18 3/18	8 8 8 8 1 3 3 3 4 50 60 70	
Boring Method: Hollow Stem Auger Sample Type: 1 - 2" (O.D.) Drive Open 11 - 4 1/2" (O.D.) Drive Oper 111 - 3" Thin Walled, Push Ope Drill Hole Coordinates N <u>422620</u> E_2	en	-			Ī	0 5 10 WATER CONTENT (%) Standard Penetration Resistance • Water Content • Pressuremeter Test •

•

ſ

K

4/2/82

	SOIL PROFILE	T	s	AMF	PLES		
Elev Depth 518.4	DESCRIPTION	Stratigraphic Plot	Number	Type	Recovery	Depth (feet)	PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop)
0 510.4 8	Loose dark yellowish brown and olive gray silty fine SAND Medium dense to dense clean medium		1 2 3		9/18 16/18 12/18		
495.4	to coarse SAND with scattered gravel		4 5	1	12/18 8/18		
23	Very dense varicolored to olive black silty <u>fine</u> to medium SAND		6 7 8	1	18/18 18/18 17/18	30	
180.4 38	Very dense varicolored to olive black clean fine to medium SAND		9 10 11 12	1	16/18 18/18 15/18 0/18	40 50	
<u>46.4</u> 72	Very dense varicolored to olive gray slightly silty fine to med- ium SAND		13 14 14A 15 15A 16	1 111 1 111 1	13/18 15/18 7/7 12/18 13/13 17/18	60 70	
	Very dense varicolored to olive black clean gravelly fine to coarse SAND		17 18 19 20 21 22	I L L	13/18 13/18 15/18 13/18 13/18 14/18	80 90-	
7.1	End of Hole	4:	22			100 110	
B	oring Method: Hollow Stem Auger	<u> </u>	4	4		0 V	VATER CONTENT (%)
S	ample Type: I - 2" (O.D.) Drive Open II - 4 1/2" (O.D.) Drive Open III - 3" Thin Walled, Push Open					•	Standard Penetration Resistance • Water Content • Pressuremeter Test •
De	rill Hole Coordinates N <u>422740</u> E <u>226</u>	59400					
ET SC AGIT	DUND POWER & LIGHT COMPANY / HANFORD NUCLEAR PROJECT	LO	GC	DF I	ORILI	_ H(OLE E-11 FIGUR

ſ

((

I,

(

	SOIL PROFILE		S	AMF	PLES		· · · · · · · · · · · · · · · · · · ·
Elev Depth	DESCRIPTION	Stratigraphic Plot	Number	Type	Recovery	Depth (feet)	PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop)
<u>505.6</u> 11 <u>493.6</u> 23 <u>483.6</u> 33 <u>483.6</u> 33	DESCRIPTION Loose dark yellowish brown silty fine to medium SAND Medium dense varicolored to olive gray silty fine to medium SAND and clean fine to coarse SAND Medium dense to very dense vari- colored to olive black clean fine to coarse SAND with scattered gravel Very dense varicolored to olive gray silty fine to medium SAND Very dense varicolored to olive black clean fine to medium SAND Very dense varicolored to olive black clean fine to medium SAND /very dense varicolored to olive black clean fine to medium SAND /very dense varicolored to olive black clean gravelly fine to coarse SAND ind sandy fine to coarse GRAVEL End of Hole		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		2013/18 13/18 14/18 16/18 12/18 12/18 18/18 18/18 18/18 18/18 18/18 17/18 12/18 6/18 6/18 6/18 6/18 5/18 3/18 5/18 3/18 5/18	10	
Sa	pring Method: Hollow Stem Auger E-12E Mud Rotary for Pressure mple Type: 1 - 2° (O.D.) Drive Open 11 - 4 1/2° (O.D.) Drive Open 111 - 3° Thin Walled, Push Open 111 Hole Coordinates N <u>422620</u> E <u>220</u>	meter	Tes	ting	1 E-12 E-12	A S V P NOTI 36.5' E-12. perfo	5 10 /ATER CONTENT (%) Standard Penetration Resistance • Vater Content • ressuremeter Test • E: Pressuremeter Tests at 26.8', , 46.7' and 56.3' performed in Pressuremeter Test at 66.7' ormed in E-12A. Standard penetration 10 performed in E-12B.
iet so Agit /	UND POWER & LIGHT COMPANY HANFORD NUCLEAR PROJECT	LOC	G 0	FC			LE E-12 FIGURE 2Q A-3

Ç

•.:

 $\left(\begin{array}{c} \end{array} \right)$

3.5 1.5il Med to c 503.3 SAN 14 Med blac 493.3 SAN 24 Ver sligi 484.3 33 Ver clea scat 73 Very clear 34.3 83 Very	DESCRIPTION ose dark yellowish brown slightly lity fine SAND dium dense to dense varicolored olive gray silty fine to medium ND and clean fine to coarse SAN dium dense varicolored to olive teck slightly silty fine to medium ND ry dense varicolored to olive blac ghtly silty fine to medium SAND ry dense varicolored to olive blac an fine to medium SAND with titered gravel	<u>- а а а а а а а а а а а а а а а а а а а</u>	Jequiny 1 2 3 4 5 6 7 8 9 10 11 12	1 1 1 1 1	Lis/18 18/18 18/18 18/18 12/18 18/18 18/18 16/18 16/18 18/18 17/18 18/18	3 1(3 2(30 40		ot (1	40 lb.	weight	t, 30in	
0 513.8 Loo 513.8 Sil 3.5 Sil 503.3 SAN 14 Med blac 493.3 SAN 24 Ver sligi 484.3 33 Very clear 34.3 83 Very	Ity fine SAND dium dense to dense varicolored olive gray silty fine to medium ND and clean fine to coarse SAN dium dense varicolored to olive tock slightly silty fine to medium ND ry dense varicolored to olive blac ghtly silty fine to medium SAND ry dense varicolored to olive blac an fine to medium SAND with		1 2 3 4 5 6 7 8 9 10 11	1 1 1 1 1 1 1	18/18 18/18 15/18 12/18 18/18 18/18 16/18 18/18	3 3 20 30 40						
89 End	ry dense varicolored to olive blach an gravelly fine to <u>medium</u> SAND y dense varicolored to olive blach <u>in sandy fine to coarse GRAVEL</u> of Hole	Š.	14 15 16 17 18	 	17/18 12/18 12/18 17/18 15/18 15/18 14/18 4/4	60 70 80						
Sample	g Method: Hollow Stem Auger le Type: 1 - 2" (O.D.) Drive Open II - 4 1/2" (O.D.) Drive Oper III - 3" Thin Walled, Push Ope Hole Coordinates N <u>422780</u> E)				WATE Standa Water	ONTE netrati nt	ion Re:		20 • •	

(

•••

- <u>`</u>

	SOIL PROFILE		S.	AMF	LES		
Elev Depth	DESCRIPTION	Stratigraphic Plot	Number	Type	Recovery	Depth (feet)	PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop)
493.4 23 188.4 28 48.4 68	Loose dark yellowish brown silty fine to medium SAND Medium dense to very dense vari- colored to olive black clean fine to medium SAND		1 2 3 4 5 5 6 7 8 8 8 4 9 10 4 11 11 2 2 10 4 11 11 2 12 4 11 11 14 11 14 15		¢ 12/18 12/18 12/18 15/18 18/18 13/18 13/18 18/18	10 20 30 40 50-	
83 131.41 85	Very dense varicolored to olive black clean sandy fine to coarse GRAVEL End of Hole		18	1		90 100 110	
Sa	oring Method: Hollow Stem Auger ample Type: 1 - 2" (O.D.) Drive Open 11 - 4 1/2" (O.D.) Drive Open 111 - 3" Thin Walled, Push Open rill Hole Coordinates N <u>422680</u> E <u>22</u>		0			ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч	WATER CONTENT (%) Standard Penetration Resistance • Water Content • Pressuremeter Test ····· TE: E-14 sampled to 25.0' 4A sampled from 28.0 - 85.0'
ET SC AGIT	DUND POWER & LIGHT COMPANY / HANFORD NUCLEAR PROJECT	LO	GC	DF I	ORILI	- Hợ	OLE E-14 FIGUR 20 A-3

...

(

ſ

	SOIL PROFILE	r	S	AMF	LES		
Elev Depth	DESCRIPTION	Stratigraphic Plot	Number	Type	Recovery	Depth (feet)	PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop)
39.5 78 34.5 83 30.5 37	Loose to medium dense dark yellowish brown silty fine to medium SAND Loose to dense varicolored to olive black clean fine to coarse SAND Very dense varicolored to olive black and gray clean fine to medium SAND Very dense varicolored to olive gray clean gravelly fine to medium SAND Very dense varicolored to olive gray clean gravelly fine to medium SAND Very dense varicolored to olive black clean sandy fine to coarse GRAVEL End of Hole		1 2 3 4 4 4 5 6 6 7 8 9 10 7 8 9 10 7 10 7 11 12 13 14 15 16 17		12/18 12/18 12/18 8/18 9/18 16/16 15/18 13/13 14/18 16/18 14/18 14/18 14/18 14/18 14/18 14/18 14/18 14/18 14/18	10 20 30 40 50	
Sa	oring Method : Hollow Stem Auger Imple Type: I - 2" (O.D.) Drive Open II - 4 1/2" (O.D.) Drive Open III - 3" Thin Walled, Push Open III Hole Coordinates N <u>422780</u> <u>E 226</u>	9680					5 10 WATER CONTENT (%) Standard Penetration Resistance • Water Content • Pressuremeter Test ····
ET SO AGIT /	UND POWER & LIGHT COMPANY HANFORD NUCLEAR PROJECT	LO	G O	FC	RILL	. H	DLE E-15 FIGURE

Ű

9

SAMPLES SOIL PROFILE Stratigraphic Piot PENETRATION RESISTANCE Depth (feet) Elev Recovery Depth Blows/foot (140 lb. weight, 30in.drop) Number Type DESCRIPTION 519.8 20 40 100 120 60 80 Loose dark yellowish brown clean 0 4/18 fine SAND 2 14/18 1 510.8 3 1 16/18 9 Medium dense varicolored to olive 10 black clean fine to coarse SAND 4 ſ 5/18 5 I 13/18 20 495.8 6 L 15/18 ۸ 24 Very dense varicolored to olive gray silty fine to medium SAND 7 ŀ 8/18 30 8 T 17/18 4 479.8 9 1 1/18 40 40 Very dense varicolored to olive black clean fine to medium SAND 10 L 16/18 11 1 h6/18 50 Very dense varicolored to olive black 12 I 18/18 ▲ clean gravelly fine to coarse SAND 13 L 16/18 60 14 1 6/18 Very dense varicolored to olive gray 15 8/18 1 70 slightly silty fine SAND 443.8 16 I 18/18 ۸ 76 Very dense varicolored to olive black 17 8/8 I. clean gravelly fine to coarse SAND 80 with silty layers 5/18 18 1 ▲ 19 L 5/18 90 20 1 4/18 419.6 13/18 100 21 I. 100.2 End of Hole 110 5 10 0 WATER CONTENT (%) Boring Method: Hollow Stem Auger Standard Penetration Resistance Sample Type: 1 - 2" (O.D.) Drive Open . II - 4 1/2" (O.D.) Drive Open Water Content III - 3" Thin Walled, Push Open **Pressuremeter Test** Drill Hole Coordinates N 422440 E 2269120 PUGET SOUND POWER & LIGHT COMPANY FIGURE E-16 LOG OF DRILL HOLE SKAGIT / HANFORD NUCLEAR PROJECT 2Q A-35

4/2/82

(

و مو

. . .

12/21/81

ſ						1	
	SOIL PROFILE	1	5/	ami T	PLES	4	
Elev Depth 515.6	DESCRIPTION	Stratigraphic Plot	Number	Type	Recovery	Depth (feet)	PENETRATION RESISTANCE Blows/foot (140 lb. weight, 30in.drop) 20 40 60 80 100 120
5 505.6 10 492.6 23 482.6 33 482.6 33	Loose dark yellowish brown slightly silty fine to medium SAND Medium dense varicolored to olive gray silty fine SAND Medium dense to dense varicolored to olive black clean fine to coarse SAND with scattered gravel Very dense varicolored to olive gray slightly silty fine SAND Very dense varicolored to olive gray clean fine to medium SAND with scattered gravel Very dense varicolored to olive gray slightly silty fine SAND Very dense varicolored to olive gray slightly silty fine SAND Very dense varicolored to olive black clean gravelly fine to coarse SAND		14 15 16 17 18			10 20 30 40	
Sa	oring Method : Hollow Stem Auger ample Type: I - 2" (O.D.) Drive Open II - 4 1/2" (O.D.) Drive Open III - 3" Thin Walled, Push Open rill Hole Coordinates N <u>422300</u> E <u></u>	22692	<u>40</u>		· .		5 10 WATER CONTENT (%) Standard Penetration Resistance Water Content Pressuremeter Test
UGET SC SKAGIT /	DUND POWER & LIGHT COMPANY HANFORD NUCLEAR PROJECT	LO	GO	F I	DRILI	L H	OLE E-17 FIGURE 2Q A-36

.....

 $\left(\right)$

((14) and 211

٠.

19 Very dense varicolored to olive black slightly silty fine to medium SAND 5 1 18/18 20 26 Very dense varicolored to olive black clean fine to medium SAND with scattered silty layers 7 1 18/18 30 9 1 18/18 1 17/18 30 9 1 18/18 30 40 10 1 18/18 40 40 10 1 18/18 40 40 11 1 1/1 18/18 40 10 1 18/18 40 40 11 1 1/1 18/18 40 10 1 18/18 40 40 12 1 16/18 60 40 12 1 16/18 60 40 14 1 18/18 11 15 15 1 14/18 70 40 18 1 12/18 40 40 19 1 14/18 90 40 90.5 20 <th></th> <th>SOIL PROFILE</th> <th></th> <th>S</th> <th>AMF</th> <th>PLES</th> <th></th> <th></th>		SOIL PROFILE		S	AMF	PLES		
Loose to medium dense dark yellowish prown to olive black sity fine to prown to olive black sity fine to medium SAND Image: 100 medium SAND Image: 100 medium SAND 8 Medium dense to very dense clean fine to medium SAND Image: 100 medium SAND Image: 100 medium SAND 19 Very dense varicolored to olive black clean fine to medium SAND with scattered silty layers Image: 100 medium SAND Image: 100 medium SAND 19 Very dense varicolored to olive black clean fine to medium SAND with scattered silty layers Image: 100 medium SAND Image: 100 medium SAND 10 Image: 100 medium SAND Image: 100 medium SAND Image: 100 medium SAND 11 Image: 100 medium SAND Image: 100 medium SAND Image: 100 medium SAND 11 Image: 100 medium SAND Image: 100 medium SAND Image: 100 medium SAND 11 Image: 100 medium SAND Image: 100 medium SAND Image: 100 medium SAND 11 Image: 100 medium SAND Image: 100 medium SAND Image: 100 medium SAND 11 Image: 100 medium SAND Image: 100 medium SAND Image: 100 medium SAND 12 Image: 100 medium SAND Image: 100 medium SAND Image: 100 medium SAND 11 Image: 100 medium SAND Image: 100 medium SAND Image: 100 medium	Depth	DESCRIPTION	Stratigraphic Plot	lumber	ype	lecovery	epth (feet)	
Very dense varicolored to olive black scattered silty layers 7 1 18/18 30 9 1 18/18 40 4 4 9 1 18/18 40 4 4 9 1 18/18 40 4 4 10 1 18/18 40 4 4 11 1 18/18 40 4 4 12 1 16/18 60 4 4 4 12 1 16/18 60 4 4 4 4 13 1 18/18 1 17/18 1 6/18 80 4	508.5 8 497.5 19 490.5	Medium SAND Medium dense to very dense clean fine to medium SAND		3 4 5 5A	1	12/18 12/18 14/18 18/18 14/14	10 20	
Boring Method: Hollow Stem Auger WATER CONTENT (%) Sample Type: + 2" (O.D.) Drive Open Standard Penetration Resistance II- 4 1/2" (O.D.) Drive Open Water Content III- 3" Thin Walled, Push Open Pressuremeter Test	38.5 78 \ 19.5	Very dense varicolored to olive black lean gravelly fine to coarse SAND		8 9 10 11 12 13 14 15 16 17 18 18 19		18/18 17/18 18/18 18/18 14/18 16/18 15/18 1/5 6/18 2/18 4/18 5/18	30 40 50 60 70 - 80 - 90 -	
	Sa	mple Type: †-2" (O.D.) Drive Open II-4 1/2" (O.D.) Drive Open III-3" Thin Walled, Push Open	9560				V s v	VATER CONTENT (%) Standard Penetration Resistance

Ę

DRILL HOLI		_
Project No : _	803-1701H	_ of <u>_6</u> _
Elevation :	519.3 ft. 95 Core, Number Indicates % Core Recovery	
Total Depth : Coordinates :	N422,711,45: E269,239,60 C2015 XRF, With Sample Number	
Date Complete	d : 7/11/81 Chemical Results Listed in Table 2R-1	
	fers to General Stratigraphic Divisions Identified Within the Site Area:	
M - Missoula	IV - Ringold, Unit IV Columbia River Basalt Group NOTE: Lithology	
PM - Pre-Mis	soula III – Ringold, Unit III 🛛 Tem – Elephant Mountain Member from 753 to 7	
	II - Ringold, Unit II Ter - Rattlesnake Ridge Interbed feet taken fro I-u - Ringold, Unit I-upper Tp - Pomona Member driller's log.	om
	I-b - Ringold, Unit I-basal B - Basalt, Undifferentiated	
Elevation Dept		Unit
(MSL) (ft.)	Inte Graph.	
	Z	
510 -10	Silty SAND. 60-70% basalt grains. Very-coarse-grained. Angular	
		м
50020		
	Gravelly silty SAND to silty sandy GRAVEL. Basaltic. Sand very-fine-	
	and coarse- to very-coarse-grained.	
49030	Silty GRAVEL. 55% basalt clasts.	
	Gravelly silty SAND. Very-fine-grained, some coarse- to very-coarse- grained. Angular to subangular. 30% mafics. 40% basalt clasts.	
480 -40	Z	
480 -40	SAND Copress to users and and the literation	
	SAND. Coarse- to very-coarse-grained, some medium-grained. Angular to subangular. 25-30% mafics. Trace silt at 50-55 ft.	
470	N	
46060	Gravelly silty SAND. Coarse- to very-coarse-grained, some medium-	
	grained. Angular to subrounded. 20% mafics.	
45070		
-10	SAND. Very-fine- to very-coarse-grained, mostly fine- to medium-	
	grained. Angular to subangular. 7-10% mafics. Trace gravel. Gravelly SAND. Very-fine- to coarse-grained, mostly fine-grained.	РМ
44080	Angular to subangular. 10% mafics. Trace silt.	
430	GRAVEL. Trace silt. 55-60% basalt clasts.	1
43090	Gravelly SAND to sandy GRAVEL. Sand very-fine- to coarse-grained;	1
	15% mafics. Gravel 50% basalt clasts. Trace silt. Sandy GRAVEL. 40% basalt clasts. Sand very-fine- to coarse-grained,	
420 -100	mostly coarse-grained.	
410 - 110	GRAVEL. 10-25% basalt clasts. No matrix from 100 to 110 ft. and	
{ }	115 to 130 ft. Trace sand at 110-115 ft. No cement rinds.	
400 - 120		
1 1		
390 -130		
		i
UGET SOUND PO	RD NUCLEAR PROJECT LOG OF DRILL HOLE E-19	GURE
SNAGIL / MANEC		-A-87

(

N.

12/21/81

		<i>/</i> _
Elevation Depti (MSL) (ft.)	Sampled Sampled Lithologic Description	Un
130 - 380 - 140		
370 - 150		
360 - 160	GRAVEL. No matrix to 170 ft. Trace sand below 170 ft. Trace silt at 200-205 ft. No cement rinds.	P
350 - 170		
340 - 180 -		
330 - 190		ł
320 - 200 -		
310 - 210	Gravelly silty SAND to gravelly sandy SILT. Light-olive-gray. Sand very-fine-grained, some fine-grained.	
300 - 220	Sandy SILT to silty SAND. Light-olive-gray to yellowish-gray. Sand very-fine- to fine-grained. Micaceous at 210-215 ft. Clayey at 220-225 ft.	
290 - 230	Gravelly silty SAND. Yellowish-gray. Fine-grained, some very-fine- grained. Angular to subangular. 3% mafics. Gravelly SAND. Yellowish-gray. Fine-grained some vorus fine-grained	
280 - 240	Gravelly SAND. Yellowish-gray. Fine-grained, some very-fine-grained. Angular to subrounded. 3% mafics.	11
270 - 250	Gravelly silty SAND. Yellowish-gray to dusky-yellow. Very-fine- to medium-grained, mostly fine-grained. Angular to subrounded. Ferruginous stain at 245-250 ft.	
260 - 260	Sandy silty CLAY. Yellowish-gray. Sand very-fine-grained. Sandy CLAY. Yellowish-gray.	
²⁵⁰ – 270	Sandy silty CLAY. Yellowish-gray. Sand very-fine- to medium- grained. Gravelly sandy CLAY. Yellowish-gray. Sand very-fine- to medium- grained.	
240 - 280	Gravelly silty SAND. Yellowish-gray. Very-fine- to medium-grained. Angular to subangular. 5% mafics. Silt increases at 280-285 ft. Yellow sandy cement rinds at 275-280 ft.	
230 - 290	Sandy GRAVEL. Sand yellowish-gray; very-fine- to medium-grained. Yellow sandy cement rinds.	

•

(

....

****.

Ć

. .

Elevation (MSL)	(ft.)	Sampled Interval	aphic L09 Lithologic Description	U
220 -	290 - 300 -		Silty sandy GRAVEL. Sand very-fine- to medium-grained, mostly fine-grained. Yellow sandy cement rinds to 315 ft.; rinds calcareous at 295-300 ft.	
210 -	310 320		· · · · · · · · · · · · · · · · · · ·	
190 -	- 330 [°]		Sandy GRAVEL. Sand yellowish-gray; very-fine- to medium-grained, mostly fine-grained; angular to subangular; 3% mafics.	IN
180 -	- 340		Silty sandy GRAVEL. Matrix yellowish-gray to light-olive-gray. Sand very-fine- to medium-grained, mostly fine-grained; angular to sub- angular; 3% mafics. Matrix increases from 350 to 365 ft. Thick basalt weathering rind at 325-330 ft.	
170 -	- 350 - 360			
150 -	- 370		Gravelly sandy SILT. Yellowish-gray. Sand very-fine-grained, some fine-grained.	
140 -	- 380 - 390			
120 -	400		Gravelly silty SAND. Off-white grading downward to yellowish-gray. Very-fine- to fine-grained; angular to subrounded; 3-5% mafics. Silt increases at 395-400 ft.	111
110	410		Silty sandy GRAVEL. Matrix yellowish-gray to dusky-yellow. Sand very-fine- to medium-grained, coarsening downward.	
90	420 100 100 430 ⁰⁰		Gravelly silty CLAY and SAND. Dusky-yellow. Very-fine- to fine- grained. Silty CLAY, with floating sand grains. Light-olive-gray.	
80 -	100 100 440 100		CLAY. Light-olive-gray. Waxy luster.	11
70	100 100 450		Silty CLAY. Light-olive-gray. Floating sand grains at 445 ft. Sandy silty CLAY. Light-olive-gray.	

(

NF 1 11 mm	HOLE	<u>E-19</u>	Page4 of 1
levation (MSL)	Depth	Sampled Interval Graphic Log Lithologic Description	
(MSL)	(ft.) 450	HIL GIBY	
	450 100 100 100	Sandy silty CLAY. Light-olive-gray.	ecreases with depth.
60 -	- 460		
ł	85 85	CLAY. Light-olive-gray. Waxy luster.	
50 -	- 470 ⁰⁰ 100	Clayey SILT. Yellowish-gray.	
.]		SILT. Yellowish-gray. Ferruginous stain at 473 ft.	and 478 ft.
40 -	- 480 ₅₀	Vuggy porosity: root casts.	
30 -	30	Sandy SILT. Yellowish-gray. Sand very-fine- to fi	ine-grained.
Ĩ	- 490	Sandy clayey SILT. Yellowish-gray.	-
20 -	- 100 100 - 500 ₉₅	Silty SAND to sandy SILT. Yellowish-gray. Sand v some fine-grained.	very-fine-grained,
ļ	- 500 ₉₅	Silty SAND. Very-light-olive-gray. Fine- to medium	n-grained.
10 -	- 5 10 ⁰⁰	Angular to subangular. 10-15% mafics.	
ŀ	100 0 100	Silty sandy GRAVEL. Matrix yellowish-gray to light	-olive-gray. Sand
• +	- 520	very-fine- to medium-grained. Matrix increases at 5	22 ft.
ł	100	Gravelly silty SAND, with clay. Light-olive-gray.	Variation to
-10 -	100 - 530 100	medium-grained, mostly medium-grained. Angular to	subangular.
-20	100	Silty sandy GRAVEL to gravelly silty SAND. Light- Yellow sandy cement rinds on gravel at 534 ft.	
- <u>-</u>	- 54090 100	Silty sandy GRAVEL, with olive-gray clay fragments. Silty sandy GRAVEL to gravelly silty SAND. Ferrug	, inous stain.
-30	°0 8 650 ⁸⁹ -	Gravelly SAND. Medium-gray. Medium-grained. 10 SAND. Medium-gray. Fine- to medium-grained. Mi	-15% mafics. caceous.
ŀ	7 100	Silty SAND. Light-olive-gray. Fine-grained. Micac Sandy clayey SILT. Yellowish-gray. Sand very-fine	eous. 10-15% mafics
-40	- 560 100	Clayey silty SAND. Very-light-olive-gray. Very-fin Clayey SILT. Pale-olive. Some ferruginous stain. Po	ne- to fine-grained.
ŀ	100	SILT. Light-olive-gray to olive-gray.	
- 50	- 570 100	Silty SAND. Light-olive-gray. Very-fine- to fine-grav. Subangular. 15-20% mafics. Micaceous. Silt increase	rained. Angular to es at 570 ft.
†	100	Sandy SILT. Light-olive-gray. Sand very-fine-grain	ned.
-60 -	- 580 100	SILT. Light-olive-gray, SAND, with pyritized clay stringer. Medium-gray.	Micaceous.
†	100	Silty SAND to sandy SILT. Light-olive-gray. Very- grained. 20-25% mafics. Micaceous. Silt decreases	fine- to fine-
-70 -	- 590 100	SILT. Light-olive-gray.	at 500 IL.
-80 -	100 600 100	Silty SAND. Light-olive-gray to medium-gray. Very some fine-grained. Angular to subangular. 15-20% n from 496 to 604 ft.	-fine-grained, mafics. Micaceous
-90 -	100 100 100 100 100	Sandy SILT. Light-olive-gray. Sand very-fine-grain 	ned.
-	<u> </u>		

12/21/81

DRILL HOLE ____ E-19 Page_5_of_6_ Graphic Log Sampler interval Elevation Depth Lithologic Description Unit (MSL) (ft.) 6100 Silty CLAY. Light-olive-gray. 100 SILT. Light-olive-gray. 100 62Ò -100 ASH. White. 10 SILT. Light-olive-gray. Organic matter. 10 -110 30,00 Clayey SILT. Light-olive-gray. SILT. Light-olive-gray. 10 1-u Clayey SILT to silty CLAY. Light-olive-gray, with white laminations. 10 Two ash horizons separated by a 2-inch layer of silt and clay at 638 ft. Sandy SILT to silty SAND. Light-olive-gray. Sand very-fine-grained. 400 -120 100 Organic matter at 639 ft. 100 96 Silty SAND. Light-olive-gray. Very-fine- to fine-grained. Angular -130 650₉₆ to subangular. 15-20% mafics. 100 100 -140 66000 100 Silty sandy GRAVEL. Matrix light-olive-gray. Sand medium- to coarse-100 grained, some very-fine-grained; angular to subangular; 25% mafics at 670¹⁰⁰ -150 681.5 ft. Mafics with blue cast from 655.4 ft. to 682.7 ft. Yellowishbrown cast to quartz grains at 657.1 ft. Well cemented (noncalcareous) 100 from 655.4 ft. to 685.5 ft. Matrix increases at 687 ft. 100 -160 680 100 100 І-ь 100 690⁰⁰ -170 100 100 Silty SAND. Bluish cast to mafics. Weakly cemented. odoa -180 Silty sandy GRAVEL. Matrix off-white. Medium-grained. 7% mafics. 100 Clayey SILT. Pale-olive. -190 900 CLAY. Medium-gray to pale-olive to light-olive-gray. Waxy luster from 712.5 ft. to 718.6 ft. Clay is weathered basalt. 100 100 20⁰⁰ -200 100 '30¹⁰⁽ -210 100 10 100 ~220 900 BASALT. Strongly weathered to 742 ft. Moderately weathered to 100 753 ft. Vesicular at 729 ft. and 738 ft. Clay at 732 ft. and 735 ft. 10 Ferruginous stain at 750 ft. Bluish coating at 753 ft. 750⁰⁰ в -230 100 -240 - 760 -250 - 770 PUGET SOUND POWER & LIGHT COMPANY FIGURE LOG OF DRILL HOLE E-19 SKAGIT / HANFORD NUCLEAR PROJECT 2R-A-87

⁻S/HNP-PSAR

i(

N.

<u>(</u>

Elevation Depth	Sampled Sampled Interval Graphic Log Lithologic	Description	· · ·
(MSL) (ft.)	Sampled Sampled Interval Graphic Log Lithologic		
-253.7 770	EOH		
	773'		
-			
-			
-			
-			
_			
Γ			
F			
<u> </u>			
			1
-			
<u></u>			
			1
SKAGIT / HANFOR	VER & LIGHT COMPANY	LOG OF DRILL HOLE E-19	FIG 2R-

((

DRILL HOLE	<u> </u>		
Project No : 🔔	803-1701H		Page 1 of _
Elevation :	521.3 ft.	- 🛛 Cuttings - 95 🖬 Core, Number Indicates % Core Recovery	
Total Depth :	785 ft.		
Coordinates : Date Completed	1422, 758. 39; E270, 388. 15 :	C 2015 • XRF, With Sample Number Chemical Results Listed in Table 2R-1	
		Divisions Identified Within the Site Area:	
M - Missoula PM - Pre-Miss	IV - Ringold, Unit IV oula III - Ringold, Unit III II - Ringold, Unit II I-u - Ringold, Unit I-t I-b - Ringold, Unit I-t	Tem – Elephant Mountain Member Ter – Rattlesnake Ridge Interbed upper Tp – Pomona Member	
Elevation Depth (MSL) (ft.)	Sampled Sampled Log Graphic Log	Lithologic Description	Unit
520 -	Silty sandy grained; sub	GRAVEL. Basalt clasts. Sand very-fine- and very-optimized and very-opt	coarse-
51010	Silty SAND. grained. Su	Basalt grains. Very-fine- and coarse- to very-coars ubangular to subrounded.	ie- M
20	SAND. Basa coarse-graine	alt grains. Medium- to very-coarse-grained, mostly ed.	
500 -	Silty SAND.	Basalt grains. Light-olive-brown. Medium- to ver ed.	y-
490 - 30	Silty SAND. fine-grained.	Light-olive-brown. Very-fine- to medium-grained, 50% mafics.	
480 - 40	SAND. Coar 50% mafics.	rse- to very-coarse-grained. Angular to subrounded.	
47050	Silty gravelly coarse- to ve depth.	y SAND. Very-fine- to very-coarse-grained, mostly ery-coarse-grained. 30-50% mafics, decreasing with	
460 -60			
45070	SAND. Very- to subangular	-fine- to coarse-grained, mostly coarse-grained. Ang r. 25% mafics.	ular
44080	Silty SAND. 30% mafics.	Coarse- to very-coarse-grained, mostly coarse-grain Gravelly at 80-85 ft.	ed.
430 -90	Silty sandy C	SRAVEL. $<$ 50% basalt clasts. Sand coarse- to very- ed.	
420 -100	Gravelly silty fine- to media	y SAND. Very-fine- to very-coarse-grained, mostly um-grained.	РМ
410 -110	Silty GRAVEL	L	
400	[]]] medium-grain	GRAVEL. Matrix yellowish-gray. Sand very-fine- to ed; angular to subrounded. Matrix increases from 12 ilt adheres to gravel clasts from 120 to 130 ft.	20
-130			
GET SOUND PO	WER & LIGHT COMPANY		
KAGIT / HANFO	RD NUCLEAR PROJECT	LOG OF DRILL HOLE S-2	FIGURE

(

(

12/21/81

.

Elevati (MSL)) (ft.)	Sampled Sampled Grephic Log Lithologic Description	
390	- 140	Silty sandy GRAVEL. Sand medium-grained; angular to subangular; 5% mafics. Silty sand adheres to clasts.	
370	- 150	Sandy GRAVEL. Sand fine- to medium-grained, mostly medium- grained. Calcareous cement.	
360	- 160	Gravelly SAND. Fine- to coarse-grained. Angular to subangular. 5-10% mafics. Weak calcareous cement at 150-155 ft. and 160-165 ft. Ferruginous stain at 155-160 ft.	
350	170	SAND. Fine- to medium-grained, mostly medium-grained. Ferruginou stain. 7% mafics.	s
340	- 180		
330	190 	Gravelly SAND. Fine- to coarse-grained, mostly medium-grained.	
320	200 	Angular. 5-10% mafics. Gravel increases at 190-195 ft. Golden mica at 180-185 ft.	
310	210 	Gravelly sandy SILT. Yellowish-gray. Sand medium-grained.	-+
300	- 220	Silty SAND, with silt fragments. Yellowish-gray to dusky-yellow.	
290	- 230	Very-fine- to medium-grained, mostly medium-grained. 3-5% mafics. Gravelly at 220-225 ft.	
280	240 -	SAND, with minor silt fragments. Yellowish-gray. Medium- to coarse grained. Angular to subangular. 3-5% mafics. Very clean.	-
270	- 250 -	grained. Angular to subangular. 3-5% mafics. Very clean. SAND. Medium-grained. Angular to subangular. 3% mafics. Clean. Micaceous at 250-255 ft.	
260	- 260	Silty SAND. Light-olive-brown, Very-fine- to medium-grained	
250	- 270	The formation of the fo	
240	- 280	Silty sandy GRAVEL. Matrix light-olive-gray. Sand fine- to medium- grained. Yellow calcareous rinds on some clasts, increasing down- ward.	

Ć

77. N

(

• •

DRILL	HOLE	S-2Page	<u>3</u> of <u>6</u>
levation (MSL)	Depth (ft.)	Sampled Sampled Lithologic Description Graphic Log	Uni
230 -	290 -	Silty sandy GRAVEL, as above.	
220 -	300 -	Gravelly SAND. Light-olive-gray. Fine- to medium-grained.	
210	— 310	3-5% mafics.	
200 -	- 320	Sandy GRAVEL. SAND. Very-light-olive-gray. Very-fine- to medium-grained, mostly	,
190 -	330	fine- to medium-grained. 10% mafics. Some mica mats.	IV
180 -	- 340	Sandy GRAVEL. Basalt clasts predominate.	
ŀ	050	GRAVEL. Basalt clasts. No matrix.	
170 -	- 350		
160 -	- 360	Sandy GRAVEL. Basalt clasts. Sand light-olive-gray; very-fine- to medium-grained, mostly fine-grained; 25-30% mafics. Trace silt and yellow calcareous rind at 355-360 ft. No matrix.	
150 -	- 370		-
140 -	- 380	Silty SAND. Very-light-olive-gray. Very-fine- to fine-grained. 3% mafics. Gravelly at 375-380 ft. Micaceous at 380-385 ft.	
130 -	- 390		
120	- 400	Silty SAND, with silt fragments. Light-olive-gray. Very-fine- to fine-grained. Angular to subangular. 7-10% mafics. Ferruginous stain at 400-405 ft.	
110 -	- 410	Gravelly silty SAND. Light-olive-gray. Very-fine- to medium-	111
100 +	- 420	grained. Gravel increases at 415-420 ft.	
90	- 430	Sandy GRAVEL. Sand fine-grained.	
	- 440	Silty sandy GRAVEL. Sand very-fine- to fine-grained. Ferruginous stain at 435-440 ft.	
80 -		GRAVEL. No matrix. Ferruginous stain. Gravelly clayey SAND. Sand light-olive-gray. Clay green. Very-fin to fine-grained, mostly fine-grained. Ferruginous stain.	11 ne-
C	- 450		
GET SOU	IND POV	D NUCLEAR PROJECT LOG OF DRILL HOLE S-2	FIGUF 2R-A-

(

(

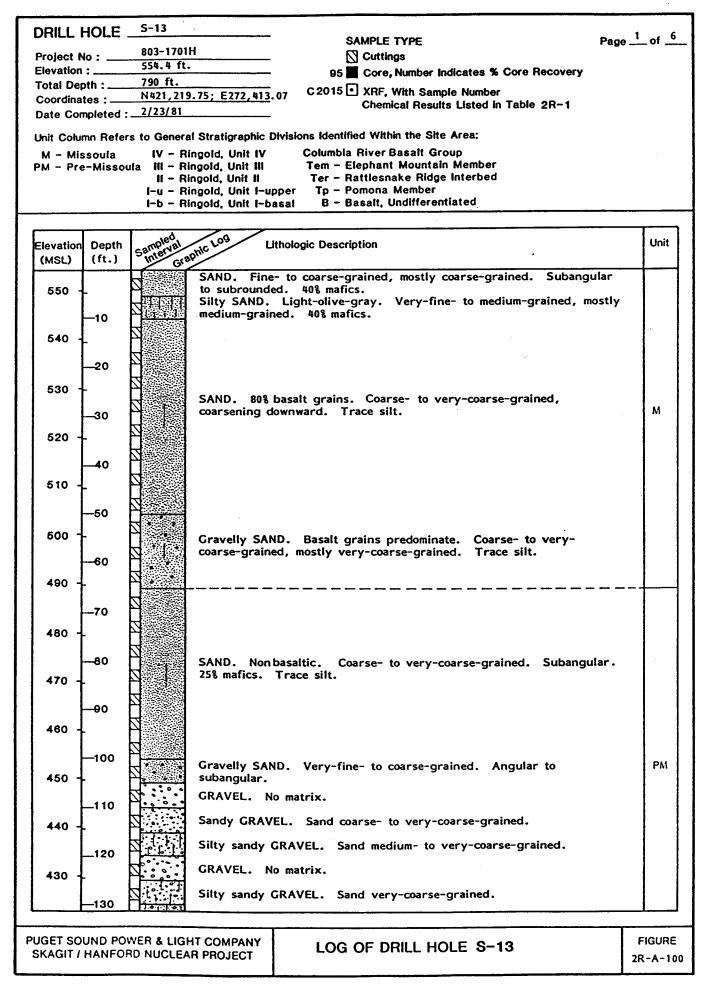
• •

DRILL	HOLE	S-2 Page_	4 of
ilevation (MSL)	Depth (ft.)	Sampled Sampled Interval Crephic Log Lithologic Description	Unit
70 -	450 -	SAND, with gray CLAY. Light-olive-gray. Fine- to medium-grained. Angular to subangular. Ferruginous stain.	
60 -	- 460	Sandy CLAY. Very-light-olive-gray. Ferruginous stain.	
		Clayey SAND. Light-olive-gray. Very-fine- to medium-grained. Silt at 465-470 ft. Ferruginous stain.	
50 -	- 470 -	Sandy SILT to silty SAND. Yellowish-gray to very-light-olive-gray. Sand increases from 475 to 480 ft. Ferruginous stain.	
40 -	- 480 -	SAND, with clay fragments. Light-olive-gray. Very-fine- to fine- grained.	
30 -	- 490	Sandy silty CLAY. Light-olive-gray. Ferruginous stain.	11
	-	Sandy CLAY. Light-olive-gray.	
20 -	- 500 -	Silty CLAY. Light-olive-gray.	
10 -	- 510	CLAY, with floating sand grains. Light-olive-gray. Ferruginous	
0 -	- 520	SILT. Light-olive-gray.	
Ŭ	-	Sandy clayey SILT. Light-olive-gray. Ferruginous stain.	
-10 -	— 530 -		
-20 -	— 540 -	GRAVEL. No matrix.	
-30 -	- 550		
-40 -	- 560	Sandy GRAVEL. Sand fine- to medium-grained. Ferruginous stain.	
- 50 -	- 570	No sample. Gravelly SAND. Very-fine- to fine-grained. Angular to subangular. 10-15% mafics.	
-60 -	- 580	Sandy GRAVEL.	
-70 -	- - 590	CLAY. Greenish-gray. Waxy luster.	-1
-80 -	- — 600	Sandy GRAVEL, with green waxy clay fragments. Silty at 600- 605 ft.	,
	- 610	Silty SAND, with clay fragments. Light-olive-gray. Very-fine- to fine-grained, mostly very-fine-grained. 25-30% mafics.	
		NER & LIGHT COMPANY RD NUCLEAR PROJECT LOG OF DRILL HOLE S-2	FIGUF 2R-A-

6

*

(,


(

DRILL HOLI	ES-2Page_	5_of_6
Elevation Depti (MSL) (ft.)		Uni
-90 - 610 -100 - 620	Silty SAND to sandy SILT. Light-olive-gray. Very-fine- to fine- grained, mostly very-fine-grained. Gravelly at 610-615 ft. Silt	
-110 - 630	No sample. Silty gravelly SAND, with minor clay fragments. Light-olive-gray. Very-fine-grained. Ferruginous stain.	
-120 - 640	Sandy GRAVEL, with clay fragments. Silty sandy GRAVEL. Sand very-fine- to medium-grained, mostly fine-grained.	1-1
-130 - 650	Sandy GRAVEL.	
-140 - 660	Silty sandy GRAVEL.	
-150 - 670	CLAY. Grayish-olive. Waxy luster.	
-160 - 680	GRAVEL, with green clay fragments.	
-170 - 690	GRAVEL. No matrix. 50% basalt clasts.	I-t
-180 - 700	Sandy GRAVEL. Ferruginous stain. Sand fine-grained.	
-190 - 710	GRAVEL. No matrix. Ferruginous stain. 45-50% basalt clasts.	
-200 - 720	Gravelly silty SAND, with silt fragments. Light-olive-gray. Very-	
-210 - 730	Clayey sandy GRAVEL. Ferruginous stain.	,
-220 - 740		
-230 - 750	BASALT. Weathered. Ferruginous stain from 730-735 ft.	Te
-240 - 760 C6577[
- 770		
GET SOUND PO KAGIT / HANFO	RD NUCLEAR PROJECT LOG OF DRILL HOLE S-2	FIGUR 2R-A-

(

 $\left(\right)$

	epth S	ampled Interval Gra	phic Log L	thologic Description		Unit
-250 - 7	1.) ³ 70 80	GTP		Weathered.		Te
-263.7 -		EOH 785'				
_						
-						
-						
GET SOUNE KAGIT / HAI	POWER	R & LIGH	T COMPANY	LOG OF DRILL HOLE S	6-2	FIGUR 2R-A-

ſ

(

Contraction of the second

•

12/21/81

evation (MSL)	Depth (ft.)	Sampled Interval	phic Log Lithologic Description	Uni
	130		Gravelly silty SAND. Coarse- to very-coarse-grained, mostly	
420 -	-		coarse-grained. 25% mafics. GRAVEL. No matrix.	
	- 140			
410 -	-		Silty GRAVEL. Silt adheres to gravel.	
	- 150			
400 -	-		Silty sandy GRAVEL. Sand very-fine- to fine-grained. Silty sand	
	- 160		adheres to gravel.	
390 -	-		Silty GRAVEL. Silt adheres to gravel.	
	- 170		Silve and CRAVEL - Send redius assigned and a subservice	
380 -	- ·		Silty sandy GRAVEL. Sand medium-grained; angular to subangular. Silt or silty sand adheres to gravel.	Pl
	- 180			
370 -	-			
	190		Silty SAND. Light-olive-brown. Medium-grained.	
360 -	•		Sandy GRAVEL. Sand fine- to medium-grained; angular; 5-7% mafics. Silty sandy GRAVEL. Sand fine- to medium-grained. Silty sand	
	- 200		adheres to gravel.	
350 -	-			
	- 210			
340 -	-			
	- 220		GRAVEL. No matrix. Thin weathering rinds on some basalt clasts.	
330 -	-		No cement.	
ļ	230			
320 -	-		`	
	- 240			
310 -	-		Gravelly SILT. Yellowish-gray.	
ŀ	- 250		Silty GRAVEL. Silt yellowish-gray.	
300 -	-		SILT. Yellowish-gray.	
ļ	- 260		Sandy SILT. Yellowish-gray. Sand very-fine- to fine-grained.	
290 -	-		Gravelly SILT to silty GRAVEL. Yellowish-gray.	11
ļ	- 270		Sandy GRAVEL. Sand very-fine- to fine-grained.	
280 -			Silty sandy GRAVEL. Sand very-fine- to medium-grained. Yellow sandy calcareous rinds on gravel.	
	- 280		Silty GRAVEL. Yellow sandy calcareous rinds on gravel.	
270 -			Gravelly sandy SILT. Yellowish-gray. Sand fine-grained.	
	- 290		Gravelly silty SAND. Yellowish-gray. Very-fine- to fine-grained. Angular to subangular. 2-3% mafics.	

S/HNP-PSAK

(

 $\left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right)$

••

T5/51/8T

levation (MSL)	Depth (ft.)	Sampled Sampled Interval Graphic Log Lithologic Descript	ion	Unit
260 -	290 -	Gravelly sandy SILT. Ye	ellowish-gray.	
250 -	300			
250	- 		-lessous rinds	
240 -	-	GRAVEL. Yellow sandy	calcareous rinus.	
230 -	320 -			
	- 330	Sandy GRAVEL.		IV
220 -	- 340	Silty sandy GRAVEL. Sa	and very-fine- to medium-grained, mostly fine-	
210 -		grained. Silty sand incr rinds.	eases at 345-350 ft. Yellow sandy calcareous	
200 -	350 -			
190 -	- 360	Sandy GRAVEL. Yellow	sandy calcareous rinds at 360-365 ft.	
	- 370			
180 -	- 380	Silty sandy GRAVEL. M grained; angular to suba at 385-390 ft.	atrix light-gray. Sand fine- to medium- ngular; 3-5% mafics. Silty sand increases	
170 -				-
160 -	- 390	Silty SAND. Light-gray	. Fine- to medium-grained. Angular ics. Gravelly from 390 to 400 ft.	
	- 400			
150 -	410	Silty sandy GRAVEL. S medium-grained. Silt inc	and medium- to coarse-grained, mostly	
140 ·		GRAVEL. No matrix.		1
130 ·	- 420 -	Silty sandy GRAVEL. Y	ellow sandy calcareous rinds at	
120	- 430	Gravely sandy SILT. L	ight-olive-gray.	
. 20	- 440	Silty sandy GRAVEL. N	latrix light-olive-gray. Sand very-fine- to	
110	450	Medium-grained; angular	to subangular; 20-25% mafics.	1
	·			FIGU

(

• •

450 - 460 - 470 - 480	Samplera C	Rhic Log Lithologic Description Gravelly sandy CLAY. Light-olive-gray. Gravelly clayey SAND. Light-olive-gray. Clayey sandy GRAVEL. Matrix light-olive-gray. Gravelly sandy CLAY. Light-olive-gray. Clay fragments rounded.	
- 470		Clayey sandy GRAVEL. Matrix light-olive-gray.	
- 470		Clayey sandy GRAVEL. Matrix light-olive-gray.	
	Z	ordering sandy certi. Eight one gray. Clay it agains rounded.	
- 480			
- 480		Clayey SAND. Light-olive-gray. Very-fine- to medium-grained. Angular to subangular. 20-25% mafics. Gravelly from 475 to 485	
		ft.	
- 490		Sandy CLAY. Light-olive-gray. Sand fine- to medium-grained;	
		15-20% matics. Rounded clay fragments. Ferruginous stain.	
- 500			
F 1 0		CLAY. Light-olive-gray. Gravelly at 510-515 ft. Rounded fragments.	11
- 510			
	Z	Gravelly clayey SAND. Very-fine- to medium-grained. Ferruginous	
- 520			
		· · · · · · · · · · · · · · · · · · ·	
- 530			1
- 540			
		GRAVEL. Yellow sandy calcareous rinds. Ferruginous stain at	
550		560-565 ft.	
- 560	Z		
	Z		1
570	Z		
	Z III	Silty clayey GRAVEL. Matrix light-olive-gray.	
	Z	Sandy clavery CRAVEL Matrix olive-gray Sandy clav increases	
· 580		at 580-585 ft.	Υ
	Z	Gravelly clayey SAND. Olive-gray. Fine- to medium-grained.	
590	2 - المالة		
			1-1
· 600			
		Sandy silty CLAY to sandy clayey SILT. Olive-gray.	
610			
•	500 510 520 530 540 550 560 570 580 590 600	500 510 520 530 540 550 560 560 560 570 580 590 600	 15-20% mafics. Rounded clay fragments. Ferruginous stain. 15-20% mafics. Rounded clay fragments. Ferruginous stain. CLAY. Light-olive-gray. Gravelly at 510-515 ft. Rounded fragments. Gravelly clayey SAND. Very-fine- to medium-grained. Ferruginous stain. Clayey sandy CRAVEL. Sand very-fine- to medium-grained. GRAVEL. Yellow sandy calcareous rinds. Ferruginous stain at 560-565 ft. Silty clayey GRAVEL. Matrix light-olive-gray. Sandy clayey CRAVEL. Matrix olive-gray. Sandy clay increases at 580-585 ft. Gravelly clayey SAND. Olive-gray. Fine- to medium-grained. Gravelly clayey SILT. Olive-gray. Sandy clayey SILT. Olive-gray. Sandy silty CLAY to sandy clayey SILT. Olive-gray.

ĺ

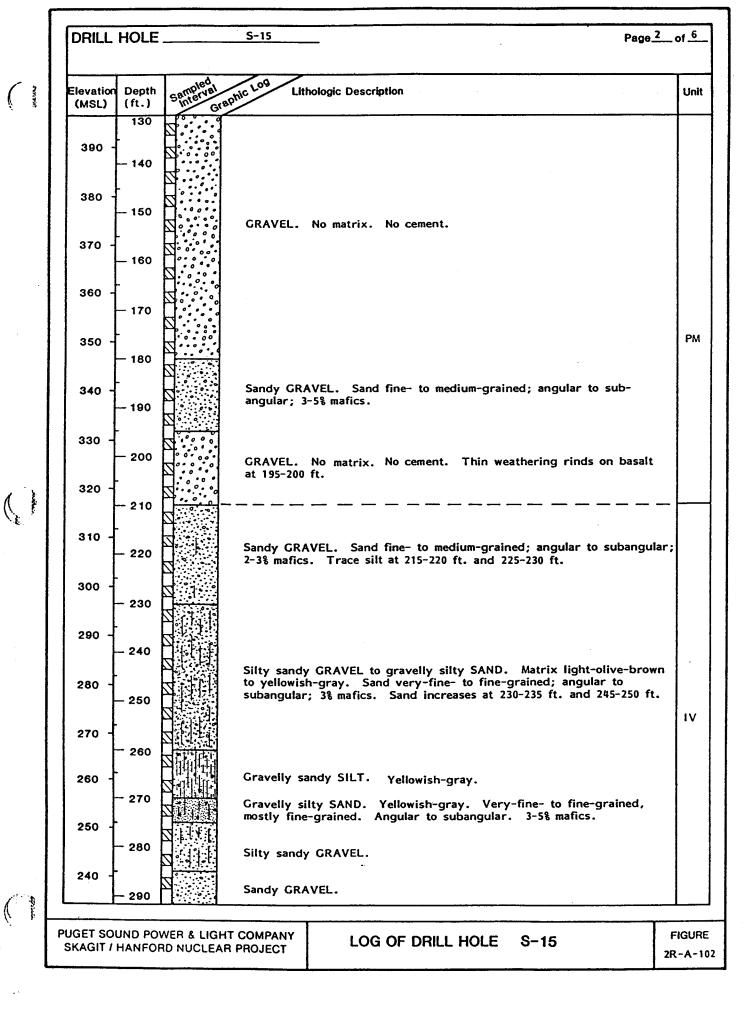
(

(

610	Sampled Sampled Graphic Log Lithologic Description	
	Sandy silty CLAY to clayey SILT. Olive-gray.	
- 620	Sandy CLAY, with white ash fragments. Olive-gray.	
- 630		
	CLAY to silty clay, with white ash fragments. Olive-gray.	1-1
-640	Gravelly silty CLAY. Olive-gray.	
- 650	SAND, with rounded clay and silt fragments. Olive-gray to light- olive-gray. Very-fine- to medium-grained. Angular to sub- angular. 30-40% mafics.	
- 660	SILT to clayey silt. Light-olive-gray. Rounded fragments. Some	
	Sandy GRAVEL, with silt and clay fragments.	
- 670	GRAVEL. No matrix. Some yellow sandy calcareous rinds at	
680		
690		
	Sandy GRAVEL. Yellow sandy calcareous rinds on some clasts.	1-1
700		
710		
720	Sandy GRAVEL, as above.	
	Silty GRAVEL. Yellow sandy calcareous rinds.	\uparrow
730	fine-grained. Sandy clayey GRAVEL to gravelly clayey SAND. Olive-gray.	
740		
750		Te
	BASALT. Weathered.	
760		
770		
	- 640 - 650 - 660 - 670 - 680 - 690 - 700 - 710 - 720 - 730 - 730 - 740 - 750 - 760	CLAY to silty clay, with white ash fragments. Olive-gray. CLAY to silty clay, with white ash fragments. Olive-gray. Gravelly silty CLAY. Olive-gray. SAND, with rounded clay and silt fragments. Olive-gray to light- olive-gray. Very-fine- to medium-grained. Angular to sub- angular. 30-408 mafics. SILT to clayey silt. Light-olive-gray. Rounded fragments. Some sand and ferruginous stain at 660-665 ft. Sandy GRAVEL, with silt and clay fragments. GRAVEL, No matrix. Some yellow sandy calcareous rinds at 675-680 ft. Sandy GRAVEL. Yellow sandy calcareous rinds on some clasts. No sample. No sample. Sandy GRAVEL, Yellow sandy calcareous rinds. Gravelly clayey SAND. Very-fine- to very-coarse-grained, mostly fine-grained. Sandy clayey GRAVEL to gravelly clayey SAND. Olive-gray. BASALT. Weathered.

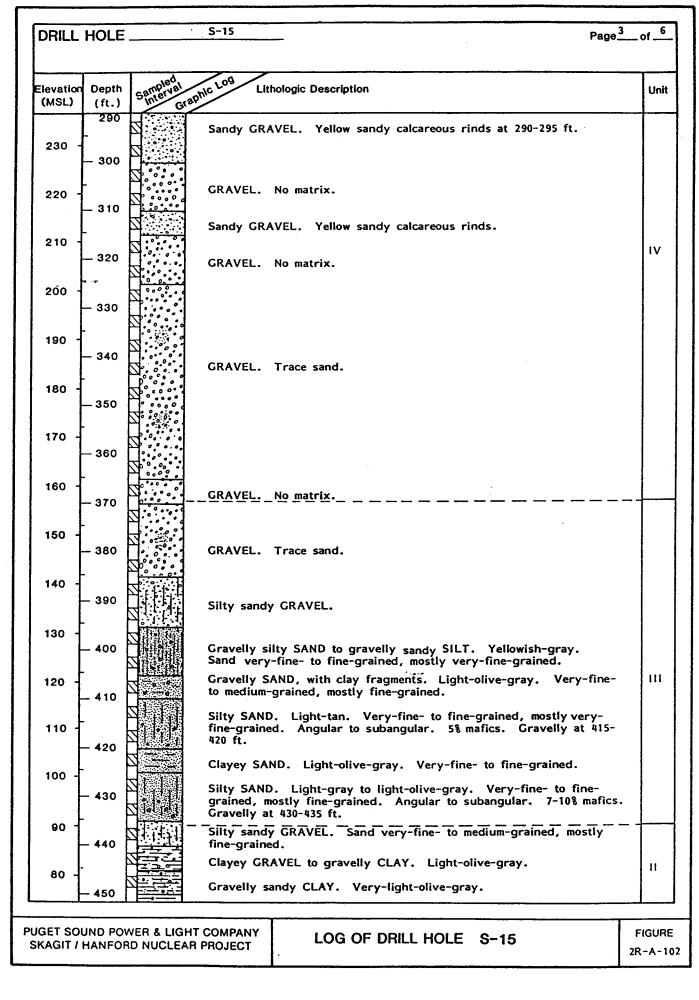
-

(


	r	·						<u> </u>
Elevation (MSL)		sampled Interval Gr	aphic Log	Lithologic Description	n			U
-220 -	770							
	— 780 C6591⊡		BASALT	•		. *		т
-230 - -235.6	- 790			·		- <u> </u>		
		EOH 790 ⁴						
					·			
	-							
	-							
	-							
	-							
	-							
	-							
	_							
	-							
	-							
	-			······				
JGET SO	UND POW		IT COMPAN	Y LOG O	F DRILL H	IOLE S-13	;	FiGL 2R-A

(

(


(

Diffict Note: B03-1701H SAMPLE TYPE Page L Elevation :: 332-27 ft. 95 Core, Number Indicates % Core Recovery Total Depti :: NYAP 132.31; E268, 56; 56 C2016 D XFP, With Sample Number Cener, Number Indicates % Core Recovery Date Complete:: NYAP 132.31; E268, 56; 56 C2016 D XFP, With Sample Number Chemical Results Listed in Table 2R-1 Date Complete:: NYAP NYAP NYAP NYAP M - Missoula IV - Ringold, Unit IV Columble River Basalt Group M - Missoula IV - Ringold, Unit IV Table Results Listed in Table 2R-1 Date Complete:: NYAP Table Results Listed in Table 2R-1 M - Missoula IV - Ringold, Unit IV Table Results Listed in Table 2R-1 M - Missoula IV - Ringold, Unit IV Table Results Listed in Table 2R-1 M - Date Results III - Fasse Result Clasts Sand Very-Fine- International Results III (Sand Sand Sand Sand Sand Sand Sand Sand	_ of <u>6</u> _
Elevation :	2.
Total Depth : 780 ft. Operation : N424, 192, 91; E268, 495, 95 Coordinates : Coordinates : Date Completed : 2/2/1781 Date Completed : 2/2/1781 Unit Column Refers to General Stratgraphic Divisions Identified Within the Site Area: M - Missoula IV - Ringold, Unit II Tem - Elephant Mountain Member II - Ringold, Unit II Tem - Elephant Mountain Member I Pre-Missoula IV - Ringold, Unit II Tem - Elephant Mountain Member I Ringold, Unit I - Depart To - Pomona Member I Ringold, Unit I - Basait Clasts. Sand very-fine- to medium-grained, mostly very-fine-grained; angular to subangular; 358 mafics. SAND. Basaltic. Medium to very-coarse-grained, mostly very-fine- to very-coarse-grained, mostly very-coarse-grained, mostly very-coarse-grained, mostly very-coarse-grained, mostly very-coarse-grained, mostly very-coarse-grained, mostly very-coarse-grained, Angular to subrounded. Sand SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained, mostly coarse-grained, Angular to subangular. 400 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained, mostly coarse-grained, Angular to subangular. 410 Sandy GRAVEL. Sand coarse- to very-coarse-grained, mostly coarse-grained, angular to subangular. 420 Sandy GRAVEL. Sand coarse- to very-coa	
Coordinates : N22, 192, 282, 495, 36 Color Converted: The Completed: Date Completed: 37/71781 Chemical Results Listed in Table 2R-1 Date Completed: 37/71781 Chemical Results Listed in Table 2R-1 Dit Column Refers to General Stratgraphic Divisions Identified Within the Site Area: M - Missoura IV - Ringold, Unit II Ter - Ratifesnake Ridge Interbed III - Ringold, Unit II Ter - Ratifesnake Ridge Interbed Ter - Ratifesnake Ridge Interbed II-u- Ringold, Unit II - Upper Ter - Pomona Member I-u- Ringold, Unit II Ter - Ratifesnake Ridge Interbed Status Sitty sandy GRAVEL. B - Basalt, Undifferentiated Status Sitty Sandy GRAVEL. B - Basalt, Undifferentiated Status Sitty Sandy GRAVEL. Basalt clasts. Sand Member Yery-Grassegrained, mostly very-Grassegrained, mostly very-Grassegrained, Angular to subrounded. Status Sitty SAND. Basaltic. Very-fine- to very-coarse-grained, mostly very-Goarse-grained, Angular to subrounded. Basalt grains decrease with depth. Sandy Gravelly Status Sandy Gravelly Status Sandy Gravelly Status 480 - - - - - - 50 Silty SAND. Very-fine- to very-coarse-grained, Angul	
Date Completed : 20100 Unit Column Refers to General Stratigraphic Divisions Identified Within the Site Area: M - Missoula IV - Ringold, Unit II PM - Pre-Missoula IV - Ringold, Unit II Tu - Ringold, Unit II Ter - Elephant Mountain Member III - Ringold, Unit I-basal Ter - Endige Interbed III - Ringold, Unit I-basal B - Basalt, Unit Reference KMSL (fr.) Sitty sandy GRAVEL. State S	
M - Missoula IV - Fingold, Unit IV Columbia River Besaft Group PM - Pre-Missoula II - Fingold, Unit II Ter - Ratilesnake Ridge Interbed I - Fingold, Unit I - Demona Member Ter - Ratilesnake Ridge Interbed I - Fingold, Unit I - Demona Member B - Basaft, Undifferentiated Elevation Depth Silty sandy CRAVEL. Basaft, Undifferentiated 620 I - I - Fingold, Unit I- Basaft Silty sandy CRAVEL. Basaft, Undifferentiated 620 I - I - Fingold, Unit I- Basaft Silty sandy CRAVEL. Basaft, I - State St	
M - Missoula IV - Fingold, Unit IV Columbia River Besaft Group PM - Pre-Missoula II - Fingold, Unit II Ter - Ratilesnake Ridge Interbed I - Fingold, Unit I - Demona Member Ter - Ratilesnake Ridge Interbed I - Fingold, Unit I - Demona Member B - Basaft, Undifferentiated Elevation Depth Silty sandy CRAVEL. Basaft, Undifferentiated 620 I - I - Fingold, Unit I- Basaft Silty sandy CRAVEL. Basaft, Undifferentiated 620 I - I - Fingold, Unit I- Basaft Silty sandy CRAVEL. Basaft, I - State St	
PM - Pre-Missoula III - Ringold, Unit II Ten - Elephant Mountain Member II - Ringold, Unit I - upper Te - Pomona Member Te - Pomona Member I-b - Ringold, Unit I - Upper B - Basait, Undifferentiated Elevation Depth syndrom (MSL) (ft.1) Silty sandy CRAVEL. Basait clasts. Sand very-fine to medium-grained, mostly very-fine-grained, angular to subangular; 35k mafics. 520 1 Silty Sandy CRAVEL. Basait clasts. Sand very-fine to medium-grained, mostly very-fine-grained, angular to subangular; 35k mafics. 510 20 SAND. Basaltic. Medium to very-coarse-grained, mostly very-fine-grained. 510 20 SAND. Sasaitic. The to very-coarse-grained, mostly very-fine-grained. 500 30 SAND. Basaltic. Very-fine to very-coarse-grained, mostly very-fine-strate grained. 500 30 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subrounded. 480 -50 SAND. Nonbasaltic. Very-fine- to very-coarse-grained. Angular to subangular. 25-508 mafics. 40 -70 Silty SAND. Very-fine- to very-coarse-grained. Angular to subangular. 25-308 mafics. 40 -70 Silty SAND. Very-fine- to very-coarse-grained. 410 -70 Silty SAND. Very-fine- to very-coarse-grained. <td></td>	
iii - Ringold, Unit I - Panditesnake Ridge Interbed Ho - Ringold, Unit I - Damona Member Elevation Opth (MSL) (MSL) (If.) Silty sandy CRAVEL. B - Basalt, Undifferentiated	
I-u - Ringold, Unit I-upper Tp - Pomona Member Elevation Depth sended (MSL) (ft.1) Silty sandy GRAVEL. Basalt clasts. Sand very-fine- to medium-grained, mostly very-fine-grained, angular to subangular; 35k mafics. 520 10 111 Silty sandy GRAVEL. Basalt clasts. Sand very-fine- to medium-grained, mostly very-fine-grained, angular to subangular; 35k mafics. 510 111 SAND. Basaltic. Medium to very-coarse-grained, mostly very-fine-grained. 510 20 SAND. Sasaltic. Fine- to very-coarse-grained, mostly very-coarse-grained. 500 30 111 500 Grawling sity SAND. Basaltic. Very-fine to very-coarse-grained, mostly very-coarse-grained. 500 111 Grawling sity SAND. Basaltic. Very-fine to very-coarse-grained, mostly very-coarse-grained. 500 111 Grawling sity SAND. Basaltic. Very-fine to very-coarse-grained, mostly coarse-grained. Angular to subnounded. 500 50 50 500 50 50 500 50 50 500 50 50 500 50 50 500 50 50 500 50 50 500 50	
Elevation Depth (MSL) Sample and the second se	
Sitty Sancy GRAVEL. Dasait Class. Saito Very-tine of more to immerge matrice. SAND. Basaltic. Medium- to very-coarse-grained, mostly very- coarse-grained. Angular to suborounded. Sitty SAND. Yellowish-gray. Very-fine- and coarse-grained, mostly very- coarse-grained. Angular to suborounded. Soon- 20 Sitty SAND. Yellowish-gray. Very-fine- and coarse-grained, mostly very- coarse-grained. Angular to suborounded. Gravelly sitty SAND. Basaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subrounded. Basalt grains decrease with depth. 480 -50 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 25-50% mafics, decreasing with depth. 480 -50 SAND. Nonbasaltic. Very-fine- to very-coarse-grained. Angular to subrounded. Basalt grains decrease with depth. 480 -50 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub- angular. 25% mafics. 511 Silty SAND. Very-fine- to coarse-grained. Angular to sub- angular. 25% mafics. 511 511 511 512 513 514 515 526 5314 53111 5312<	
Sitty Sancy GRAVEL. Dasait Class. Saito Very-tine of more to immerge matrice. SAND. Basaltic. Medium- to very-coarse-grained, mostly very- coarse-grained. Angular to suborounded. Sitty SAND. Yellowish-gray. Very-fine- and coarse-grained, mostly very- coarse-grained. Angular to suborounded. Soon- 20 Sitty SAND. Yellowish-gray. Very-fine- and coarse-grained, mostly very- coarse-grained. Angular to suborounded. Gravelly sitty SAND. Basaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subrounded. Basalt grains decrease with depth. 480 -50 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 25-50% mafics, decreasing with depth. 480 -50 SAND. Nonbasaltic. Very-fine- to very-coarse-grained. Angular to subrounded. Basalt grains decrease with depth. 480 -50 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub- angular. 25% mafics. 511 Silty SAND. Very-fine- to coarse-grained. Angular to sub- angular. 25% mafics. 511 511 511 512 513 514 515 526 5314 53111 5312<	
Sitty Sandy GRAVEL. Description Sality Very-fine-grained; angular to subangular; 33% mafics. SAND. Basaltic. Medium- to very-coarse-grained, mostly very- coarse-grained. SIT SAND. Haguar to subangular; and to subrounded. Sitty SAND. Yelewish-gray. Very-fine-and coarse-grained, mostly very- coarse-grained. SO0 SAND. Basaltic. Fine-grained. SO0 SAND. Basaltic. Very-fine-fine- to very-coarse-grained, mostly very- coarse-grained. SO0 SAND. Basaltic. Very-fine- to very-coarse-grained, mostly very- coarse-grained. SO0 SAND. Sanattic. Very-fine- to very-coarse-grained, mostly very- coarse-grained. SO0 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly very- coarse-grained. 480 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly very- coarse-grained. 480 SAND. Nonbasaltic. Very-fine- to very-coarse-grained. 480 Sandy GRAVEL. Sandy GRAVEL. Sandy Gravelly SAND. 480 Sandy GRAVEL. Sand very-fine- to very-coarse-grained. 480 Sandy GRAVEL. Sand very-fine- to very-coarse-grained.	Unit
Sitty Sandy GRAVEL: Dasait Class. Saith Very-tine Contract mostly very- magning mostly very-fine-grained; angular to subangular; 33% mafics. SAND. Basaltic. Medium- to very-coarse-grained, mostly very- coarse-grained. Angular to subrounded. Sitty SAND. Yellowish-gray. Very-fine- and coarse-grained, mostly very- coarse-grained. Angular to subrounded. Soon- 20 Sitty SAND. Yellowish-gray. Very-fine- to very-coarse-grained, mostly very- coarse-grained. Angular to subrounded. Gravelly sitty SAND. Basaltic. Very-fine- to very-coarse-grained, mostly coarse-grained, fining downward. Angular to subrounded. Basalt grains decrease with depth. 480 - 50 480 - 50 50 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 25-50% mafics, decreasing with depth. 480 - 50 480 - 50 511 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub- angular. 25% mafics. 52 Silty SAND. Very-fine- to coarse-grained. Angular to sub- angular. 25% mafics. 53 Sandy GRAVEL. Sand coarse- to very-coarse-grained. 440 - 50 - 51 53 Gravelly SAND. Very-fine- to very-coarse-grained. 450 - 51 54 - 50 55 - 51 56 - 51 <tr< td=""><td></td></tr<>	
220	
-10	
10 Silty SAND. Yellowish-gray. Very-fine- and coarse-grained, mostly very-fine-grained. 510 20 20 SAND. Basaltic. Fine- to very-coarse-grained, mostly very-fine-grained. Angular to subrounded. 600 Gravelly silty SAND. Basaltic. Very-fine- to very-coarse-grained, mostly coarse-grained, fining downward. Angular to subrounded. 800 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subrounded. 800 40 410 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subrounded. 480 50 480 50 480 50 50 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subrounder. 480 50 50 SAND. Nonbasaltic. Very-fine- to very-coarse-grained. Angular to sub-angular. 470 50 50 Silty SAND. Very-fine- to coarse-grained. Angular to sub-angular. 480 50 51 Sandy GRAVEL. Sand coarse- to very-coarse-grained. 40 50 60 50 61 50 62 51 630 53 640 <	
510 -20 SAND. Basaltic. Fine- to very-coarse-grained, mostly very-coarse-grained. Angular to subrounded. 500 -30 Gravelly sity SAND. Basaltic. Very-fine- to very-coarse-grained, mostly coarse-grained, fining downward. Angular to subrounded. 480 -40 -40 480 -40 -40 500 -30 -40 480 -40 -40 500 -30 -40 480 -40 -40 500 -30 -40 480 -40 -40 500 -40 -40 500 -40 -50 501 -40 -50 502 -40 -50 503 -40 -50 504 -50 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 25-50% mafics, decreasing with depth. 460 -70 -70 5111 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. 520 -80 Sandy GRAVEL. Sand coarse- to very-coarse-grained. 440 -90 -100 -100 -100 -100	
20 Coarse-grained. Angular to subrounded. 500 Gravelly sitty SAND. Basaltic. Very-fine- to very-coarse-grained, mostly coarse-grained, fining downward. Angular to subrounded. 400 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 25-50% mafics, decreasing with depth. 480 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 25-50% mafics, decreasing with depth. 460 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. 460 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. 460 Silty SAND. Very-fine- to coarse-grained. Angular to sub-angular. 25% mafics. 460 Gravelly SAND. Very-fine- to very-coarse-grained. 460 Sandy GRAVEL. Sand coarse- to very-coarse-grained. 470 Silty SAND. Very-fine- to very-coarse-grained. 470 Sandy GRAVEL. Sand coarse- to very-coarse-grained. 470 Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. 470 Silty sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. 470 GRAVEL. No matrix. No cement.	
60 Gravelly silty SAND. Basaltic. Very-fine- to very-coarse-grained, mostly coarse-grained, fining downward. Angular to subrounded. Basalt grains decrease with depth. 400 40 40 50 40 50 40 50 40 50 50 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 25-50% mafics, decreasing with depth. 40 50 40 50 50 SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. 50 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. 50 Sandy GRAVEL. Sand coarse- to very-coarse-grained. 60 60 410 60 420 61 430 61 440 61 62 62 53 Sandy GRAVEL. Sand coarse- to very-coarse-grained. 54 63 55 Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. 540 Silty sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. 56 GRAVEL. No matrix. No cement.	I
500	м
500	
Basalt grains decrease with depth. Basalt grained. Angular to subangular. 25-50% mafics, decreasing with depth. Basalt grained. Angular. 25-50% mafics. Sandy GRAVEL. Sand coarse- to very-coarse-grained. Basalt grained. Angular to subangular. 40% mafics. Sandy GRAVEL. Sand coarse- to very-coarse-grained. Cravelly SAND. Very-fine- to very-coarse-grained. Basalt grained. Angular to subangular. 40% mafics. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sand decreases at 100-105 ft. Silty sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. GRAVEL. No matrix. No cement.	
490 40 480 50 480 50 470 50 470 50 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51111 5111 51111 5111 51111 5111 51111 5111 51111 5111 51111 5111 51111 5111 51111 5111 51111 5111 51111 5111 51111 5111	
40 40 40 40 40 40 40 40 40 40	
40 40 40 40 40 40 40 40 40 40	
480 -50 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 25-50% mafics, decreasing with depth. 460 -60 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. 460 -70 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. 450 -80 Silty SAND. Very-fine- to coarse-grained. Angular to sub-angular. 25% mafics. 440 -90 Gravelly SAND. Very-fine- to coarse-grained. 25-30% mafics. 440 -90 Gravelly SAND. Very-fine- to very-coarse-grained. 430 -100 Sandy GRAVEL. Sand coarse- to very-coarse-grained. 420 -100 Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sand decreases at 100-105 ft. 410 -120 Silty sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. 410 -120 GRAVEL. No matrix. No cement.	
 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 25-50% mafics, decreasing with depth. Silty SAND. Very-fine- to very-coarse-grained. Angular to subangular. 25% mafics. SAND. Very-fine- to coarse-grained. 25-30% mafics. Sandy GRAVEL. Sand coarse- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. GRAVEL. No matrix. No cement. 	
 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 25-50% mafics, decreasing with depth. Silty SAND. Very-fine- to very-coarse-grained. Angular to subangular. 25% mafics. SAND. Very-fine- to coarse-grained. 25-30% mafics. Sandy GRAVEL. Sand coarse- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. GRAVEL. No matrix. No cement. 	
 SAND. Nonbasaltic. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 25-50% mafics, decreasing with depth. Silty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. SAND. Very-fine- to coarse-grained. 25-30% mafics. Sandy GRAVEL. Sand coarse- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. Gravelly SAND. GRAVEL. Sand very-fine- to fine- and coarse-grained. GRAVEL. No matrix. No cement. 	
 470 -60 460 -70 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. SAND. Very-fine- to coarse-grained. 25-30% mafics. SAND. Very-fine- to coarse-grained. 25-30% mafics. Sandy GRAVEL. Sand coarse- to very-coarse-grained. 440 -90 Cravelly SAND. Very-fine- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained. Sandy GRAVEL. Sand coarse- to very-coarse-grained. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sandy GRAVEL to gravelly SAND. Sand decreases at 100-105 ft. Silty sandy CRAVEL. Sand very-fine- to fine- and coarse-grained. GRAVEL. No matrix. No cement. 	
 with depth. with depth. Silty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. SAND. Very-fine- to coarse-grained. 25-30% mafics. Sandy GRAVEL. Sand coarse- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 40% mafics. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sand decreases at 100-105 ft. Silty sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. GRAVEL. No matrix. No cement. 	
 460 70 511ty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. SAND. Very-fine- to coarse-grained. 25-30% mafics. Sandy GRAVEL. Sand coarse- to very-coarse-grained. 440 90 Gravelly SAND. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 40% mafics. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sand decreases at 100-105 ft. 5110 5110 51110 51110<!--</td--><td></td>	
 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. SAND. Very-fine- to coarse-grained. 25-30% mafics. Sandy GRAVEL. Sand coarse- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 40% mafics. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sand decreases at 100-105 ft. Silty sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. GRAVEL. No matrix. No cement. 	
 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. SAND. Very-fine- to coarse-grained. 25-30% mafics. Sandy GRAVEL. Sand coarse- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 40% mafics. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sand decreases at 100-105 ft. Silty sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. GRAVEL. No matrix. No cement. 	
 Silty SAND. Very-fine- to very-coarse-grained. Angular to sub-angular. 25% mafics. SAND. Very-fine- to coarse-grained. 25-30% mafics. Sandy GRAVEL. Sand coarse- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 40% mafics. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sand decreases at 100-105 ft. Silty sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. GRAVEL. No matrix. No cement. 	
 450 -80 440 -90 Gravelly SAND. Very-fine- to coarse-grained. 25-30% mafics. Sandy GRAVEL. Sand coarse- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 40% mafics. 430 -100 Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sand decreases at 100-105 ft. 410 -120 GRAVEL. No matrix. No cement. 	
 450 -80 440 -90 440 -90 Gravelly SAND. Very-fine- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 40% mafics. 430 -100 Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sand decreases at 100-105 ft. 410 -120 GRAVEL. No matrix. No cement. 	
 Sandy GRAVEL. Sand coarse- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 408 mafics. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-308 mafics. Sand decreases at 100-105 ft. Silty sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. GRAVEL. No matrix. No cement. 	
 Sandy GRAVEL. Sand coarse- to very-coarse-grained. Gravelly SAND. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 40% mafics. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sand decreases at 100-105 ft. Silty sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. GRAVEL. No matrix. No cement. 	
 440 - 90 430 - -100 420 - -100 420 - -100 -100 Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sand decreases at 100-105 ft. 410 - -120 -	PM
 Gravelly SAND. Very-fine- to very-coarse-grained, mostly coarse-grained. Angular to subangular. 40% mafics. Sandy GRAVEL to gravelly SAND. Sand fine- to coarse-grained; angular to subangular; 25-30% mafics. Sand decreases at 100-105 ft. Silty sandy GRAVEL. Sand very-fine- to fine- and coarse-grained. GRAVEL. No matrix. No cement. 	
 Gravelly SAND. Very-fine- to very-coarse-grained, mostly coarse-grained. 430 -100 420 -110 410 -120 400 GRAVEL. No matrix. No cement. 	
 430 -100 420 -110 420 -110 410 -120 400 400 GRAVEL. No matrix. No cement. 	
420 420 -110 410 -120 400 -100 -100 -100 -120 -100 -120 -100 -120 -100 -120 -100 -120 -100	1
420 420 -110 -120 400 400 400 400 400 400 400 4	1
 420 410 410 410 400 400 400 	
410 -120 400 -120 -1	1
410 120 400 400	
410 120 400 - CRAVEL. No matrix. No cement.	
400 - GRAVEL. No matrix. No cement.	1
400 - GRAVEL. No matrix. No cement.	l
400 -	
	1
	1
LOG OF DRILL HOLE S-15	FIGUR
SKAGIT / HANFORD NUCLEAR PROJECT	R-A-1

5/ HNY-YSAK

TS/ST/8T

(|

(

DRILL	HOLE		S-15 Page	4_of_6
T		100		<u> </u>
Elevation (MSL)	Depth	Sampled Interval Gra	phic Log Lithologic Description	Uni
(MSL)	(ft.)	Gre	<u> </u>	
	450	423	Gravelly CLAY. Very-light-olive-gray. Clay with waxy luster at	
70	•		450-455 ft. Pale-olive clay at 455-460 ft. Ferruginous stain at	
~ 1	- 460		460-465 ft.	
ſ	- 400			
	-			
60 -				
ŀ	- 470			
Ļ	-			
50 -				
ŀ	- 480			
			CLAY. Mixed olive-gray, grayish-olive, and moderate-olive-brown	
40 -	•		fragments. Waxy luster. Minor gravel at 475-480 ft.	
	- 490			
	•			1
30 -	500			- u
ſ	- 500			
ļ	-			
20 -		8=====		
ŀ	- 510			
10 -	-			
	- 520			
ł	•			
0 -	500			
Γ	- 530		GRAVEL, with clay fragments. Pyrite at 530-535 ft.	
ŀ				
-10 -				
ŀ	- 540	1.0.0	Sandy clayey GRAVEL. Sand fine- to medium-grained. Ferruginous	ł
			stain.	
-20 -		H	Gravelly silty SAND. Light-olive-gray to yellowish-gray. Very-fine-	E
ŀ	- 550		to fine-grained. Angular to subangular. 3-5% mafics. Ferruginous	
1			stain at 550-555 ft.	
-30 -	-			
	- 560			
	000		Sandy silty CLAY. Light-olive-gray.	· ·
F	-			
-40 -		区里田		
ŀ	- 570		Silty clayey SAND. Light-olive-gray. Very-fine- to fine-grained,	`\
L	-	PULL	mostly fine-grained.	
- 50 -			Silty SAND, with rounded clay fragments. Light-olive-gray. Very- fine- to fine-grained, mostly very-fine-grained.	
ŀ	- 580		• • •	
	_		Sandy SILT to silty SAND. Olive-gray.	
-60 -	-			
ļ	- 690		Sandy SUIT Olive and	I-u
			Sandy SILT. Olive-gray.	
-70 -	-			
· • •	- 600		SILT. Olive-gray.	
ſ	500	因言語	CHIT As sends the Links this way. Essentiation of COA	
	-	自時出版	SILT to sandy silt. Light-olive-gray. Ferruginous stain at 600- 605 ft.	
-80 -	_			
ł	- 610	I PERICIP		
			······································	
UGET SO	UND PO	WER & LIGH		FIGU
			R PROJECT LOG OF DRILL HOLE S-15	2R-A
			J 1	

(

(

1

.

• •

ĺ

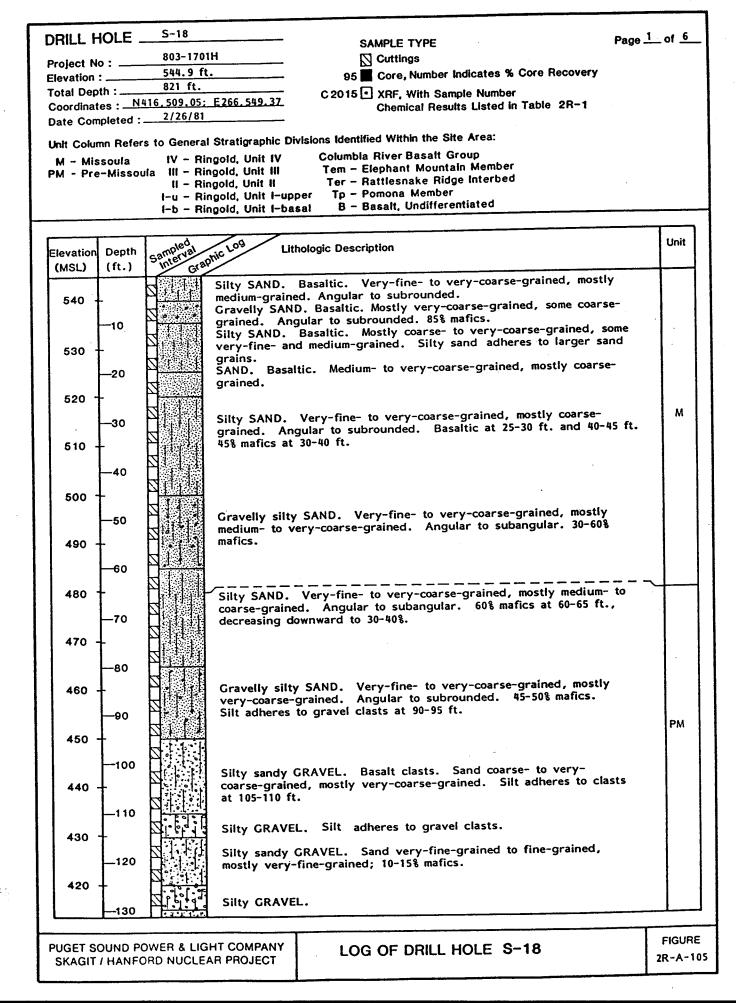
(

(

• •

drill f	IOLE	S-15 Page 5	. of
	Depth (ft.)	Sampled Stanterval Graphic Log Lithologic Description	Unit
	610		
-~ }		SILT to sandy silt. Light-olive-gray. Micaceous at 615-620 ft.	1
-90 -			
	- 620	Sandy SILT to silty SAND. Light-olive-gray. Ferruginous stain.	
-100 +			
	- 630	SILT. Light-olive-gray.	
	000	Gravelly silty SAND. Light-olive-gray. Very-fine- to fine-grained.	
-110 +		11月1日 Ferruginous stain.	l-u
	- 640	SILT. Light-olive-gray. White ash fragments at 640-645 ft.	
-120 -		Sandy silty CLAY. Light-olive-brown. Ferruginous stain.	
⊢	- 650		1
-120 +			1
-130 -		Sandy CLAY to clayey SAND. Light-olive-gray. Ferruginous stain at 655-660 ft.	
F	- 660	Clayey sandy GRAVEL.	1
-140 +			1
	- 670	GRAVEL. Minor clay fragments.	
	- 070		
-150 -			
	680		
		GRAVEL. Trace sand. Green clay fragments with waxy luster at	
-160		685-690 ft. Pyrite at 695-700 ft.	І-ь
	690		1-0
-170 -			
- H-	700		
		GRAVEL, with clay fragments.	
-180 -			
	710	Silty sandy CRAVEL, with clay fragments. 40% basalt clasts.	
-190			
L	720		
1			
-200 -			
	730		
- F	6593 🖸		
-210 -			
F	740		Ter
220 -	ĺ		
1	750		1
Г	130	BASALT. Weathered.	
230 -	ļ.		
	760		
L	ļ		
240 -	ķ		
<u>⊢</u>	770		
• • • · ·			
GET SOUI		D NUCLEAR PROJECT LOG OF DRILL HOLE S-15	FIGUE
	ANEOR		R-A-

ĺ


C

(

• `

Elevation (MSL)	Depth (ft.)	Sampled Interval Gra	phic Log L	ithologic De	escription				U
-250 - -253.8	770 - 	ЕОН		Vesicular	at 770-775	i ft.	 		т
		780'							
	-								
	_								
	-								
	-							7	
								•	
	_								
	_								
	-								
	_								
							 ·····		

12/21/81

(

(^{Con}

DRILL HOLE	S-18	Page_2 of _6
levation Depth (MSL) (ft.)	Sampled Interval Graphic Log Lithologic Description	Un
130 410 -	Silty sandy GRAVEL. Sand fine- to coarse-grained; angular to sub	to coarse-grained, mostly medium- rounded; 20-25% mafics.
- 140 400 -	Gravelly silty SAND. Very-fine- t to medium-grained. Angular to su adheres to clasts at 145-150 ft.	o very-coarse-grained, mostly fine- ubangular. 7-20% mafics. Silty sand
390 - 160	Silty SAND. Fine- to coarse-grai 7-10% mafics. Silt adheres to san Gravelly silty SAND. Very-fine- medium- to coarse-grained. 10-15	to very-coarse-grained, mostly PM
380 - 170		
370 - 180	GRAVEL. No matrix. No cement	t.
360 - 190	Silty GRAVEL. No cement.	
350 - 200	Silty sandy GRAVEL. Sand very- to subangular. Silt increases wit	-fine- to medium-grained; angular h depth. No cement.
340 - - 210 330 -	Gravelly silty SAND. Yellowish-g mostly very-fine- to fine-grained, mafics.	ray. Very-fine- to medium-grained, coarsening with depth. 2-3%
320 - 220	Silty SAND. Yellowish-gray. Ver fine- to medium-grained. Angular	y-fine- to medium-grained, mostly r to subangular. 5-7% mafics.
- 230 310 -	No sample.	
300 - 250	Silty sandy GRAVEL. Sand very	
290 - 260	medium-grained; angular to suban sand at 240-245 ft. Yellow sandy	calcareous rinds at 255-260 ft.
280 - 270	Gravelly silty SAND. Very-fine-	to medium-grained, mostly fine-
270 - 280	grained. 10-15% mafics.	-fine- to medium-grained, mostly
260 - 290	fine- to medium-grained. Angula Sand increases at 285-290 ft.	r to subangular. 30-35% mafics.
	VER & LIGHT COMPANY D NUCLEAR PROJECT	LL HOLE S-18 FIGU 2R-A-

S/HNP-PSAK

C

1

T5/5T/8T

DRILL HOLE .	S-18 Page	<u>3 of 6</u>
Elevation Depth (MSL) (ft.)	Sampled Stappic Log Lithologic Description	Unit
290 250 - - 300	Silty sandy GRAVEL, as above. Yellow sandy calcareous rinds at 290-295 ft.	
240 - 310		
230 - 320	Gravelly silty SAND. Light-olive-gray. Very-fine- to medium-grained, mostly medium-grained. Angular to subrounded. 10-20% mafics. Ferruginous stain at 325-330 ft.	ĮV
220 - 330		
210 -	Silty sandy GRAVEL. Sand fine- to medium-grained, mostly medium- grained. 15-20% mafics. No sample.	
- 340 200 - - 350	Silty sandy GRAVEL. Matrix yellowish-gray to light-olive-gray. Sand	
190 - 360	350-355 ft.	
180 - 370	Gravelly silty SAND. Yellowish-gray. Very-fine- to fine-grained. Mostly fine-grained. Angular to subangular. 5-10% mafics.	
170 + 380	Silty SAND. Yellowish-gray. Very-fine- to fine-grained, mostly very-fine-grained. 25-30% mafics.	
160 - 390	Gravelly silty SAND. Light-olive-gray. Very-fine- to fine-grained.	
150 - 400	No sample. Silty sandy GRAVEL. Sand fine- to medium-grained, mostly fine- grained; angular to subangular; 20-25% mafics.	111
140 - 410	Gravelly silty SAND. Sand as above. Gravelly sandy SILT to gravelly silty SAND. Light-olive-gray. Sandy GRAVEL. Sand very-fine- to medium-grained, mostly fine-	
130 - 420	grained; 25-30% mafics.	
120 - 430	Silty sandy GRAVEL. Sand fine- to medium-grained, mostly medium- grained; angular to subangular; 15-30% mafics. Silt decreases with depth.	
110 - 440	Gravelly silty SAND to silty sandy GRAVEL. Light-olive-gray. Very-fine- to medium-grained. Silty sandy GRAVEL. Matrix light-olive-gray. Sand fine- to medium-	\
100 -	grained; angular to subangular; 25-30% mafics. Sandy GRAVEL.	11
- 450		ł

Page 4 of 6 S-18 DRILL HOLE Log Unit Graphic Lithologic Description Elevation Depth (MSL) (ft.) 450 Silty sandy GRAVEL, with rounded silt fragments. Sand fine- to medium-grained, mostly medium-grained; angular to subangular; 7-10% 90 mafics. 460 Sandy GRAVEL. Sand fine- to medium-grained, mostly medium-grained; 80 angular to subangular; 3-5% mafics. 470 70 Silty sandy GRAVEL. Matrix light-olive-gray. Sand very-fine- to medium-grained, mostly fine-grained; 15-20% mafics. 480 60 Gravelly silty SAND, with rounded silt fragments. Olive-gray to Ш light-olive-gray. Very-fine- to medium-grained, mostly fine-grained. 490 25-30% mafics. 50 Sandy GRAVEL. Sand very-fine- to medium-grained, mostly fine-grained; angular to subangular. Ferruginous stain. 500 Gravelly silty SAND. Light-olive-gray. 40 Silty SAND, with rounded silt fragments. Sand very-fine- to finegrained, mostly fine-grained. 15-20% mafics. 510 Sandy GRAVEL. Sand fine- to medium-grained; 10-15% mafics. 30 No sample. 520 Sandy GRAVEL. Sand fine- to medium-grained, mostly medium-grained. 20 Ferruginous stain at 525-530 ft. 530 GRAVEL. No matrix. 10 540 0 Silty sandy GRAVEL. Matrix light-olive-gray. Sand very-fineto medium-grained, mostly medium-grained; angular to subangular; 30-40% mafics. Silty sand increases from 545-565 ft. Ferruginous 550 -10 stain from 535 to 545 ft. 560 -20 570 -30 580 -40 Sandy GRAVEL. Sand very-fine- to medium-grained, mostly mediumgrained; angular to subangular; 5-30% mafics, increasing with depth. 590 Ferruginous stain at 575-580 ft. -u ? - 50 600 -60 610 FIGURE **PUGET SOUND POWER & LIGHT COMPANY** LOG OF DRILL HOLE S-18 2R-A-105 **SKAGIT / HANFORD NUCLEAR PROJECT**

 $\left(\right)$

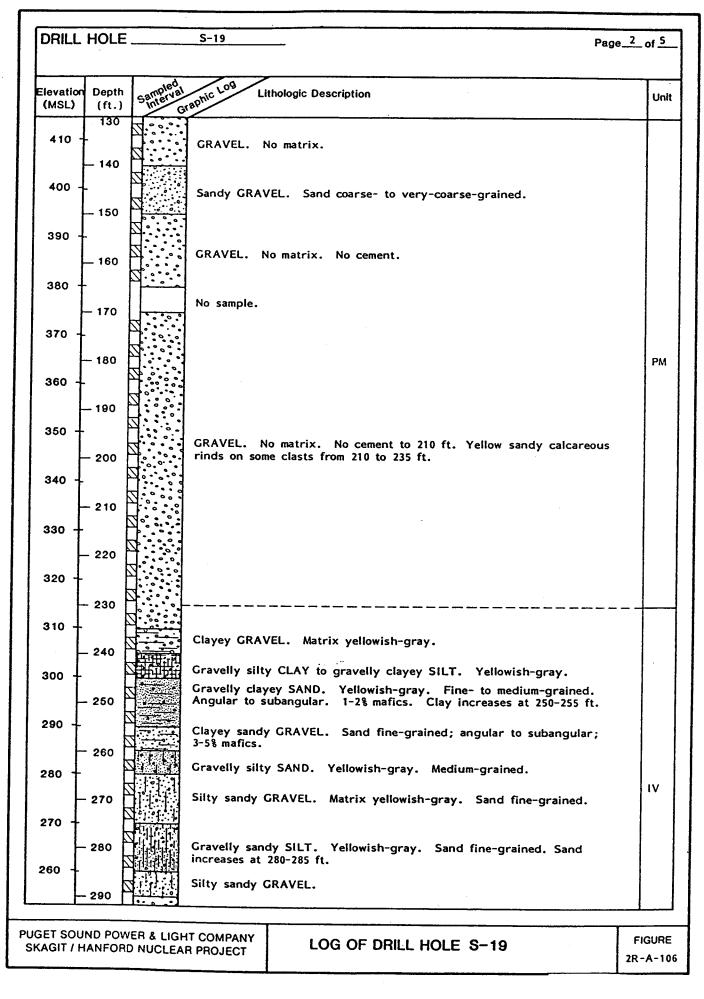
(!

(

DRILL	HOLE	S-18Page_5 .	01 .
ievation (MSL)	Depth (ft.)	Sampled Sinterval Graphic Log Lithologic Description	Uni
	610		<u> </u>
-70 -	╞	Sandy GRAVEL, as above.	
	- 620		
-80 -	\mathbf{F}		
	- 630		I-u
-90 -	[Sandy GRAVEL, with silt fragments. Sand fine- to medium-grained, mostly medium-grained; angular to subangular; 7-10% mafics.	
	640		
-100 -	-		
	- 650		<u> </u>
-110 -	-	Sandy GRAVEL. Ferruginous stain at 650–655 ft. 60% basalt clasts.	
	- 660		
	- 000		
-120 -	-	GRAVEL. No matrix. Yellow sandy calcareous rinds on some clasts.	
	- 670	40-60% basalt.	
120 -			
-130 -	F		
	- 680	Sandy GRAVEL.	1-1
-140 -	_		
	- 690	GRAVEL. No matrix.	
-150 -	-		
	- 700		
	- 700	Sandy GRAVEL.	
-160 -	-		
	- 710	Silty sandy GRAVEL. Matrix light-gray. Sand fine- to medium-grained,	
170		This fining with depth; angular to subangular; 2-20% mafics. Yellow	
-170 -	-	sandy calcareous rinds. 60% basalt clasts.	
	- 720	Gravelly silty SAND. Very-fine- to fine-grained. 10-15% mafics.	
-180 -	-	80% basalt clasts.	
		Silty sandy GRAVEL to gravelly silty SAND. Matrix light-olive-	
	- 730	gray. 70% basalt clasts. Sand very-fine- to medium-grained, mostly fine-grained; angular to subangular; 20-25% mafics.	
-190 -	-	The grained; angular to subangular; 20-25% matters.	
	- 740		_
	740		Te
-200 -	-		
	- 750		
-210 -			
-210	-	BASALT. Weathered at 735-740 ft. Moderately fresh from 740 ft.	
	- 760	downward.	
-220 -	-		
	- 770	[*++4+]	1
0.07 = -			FIGUI
		LOG OF DRILL HOLE S-18	
STOLE /	- ANE U		2-A-

(

•


DRILL		S-18			Page <u>6</u> of <u>6</u>	
Elevatio (MSL)		Samplad Interval Grap	ic Log Lithologic Description			Uni
-230	770					
-240	- 790					Te
-250	- 800		BASALT.			
-260 ·	- - 810 C6595•					
-270 -276.1	- 820	Z,,.		· · · · · · · · · · · · · · · · · · ·		
	-	EOH 821'				
	_					
	-					
				• •		
	-					
					· · · · · · · · · · · · · · · · ·	
		WER & LIGHT		DRILL HOLE S-18		FIGUI 2R-A-

(

(

RILL F	IOLE	S-19		of _5
roject N	o:	803-1701H		
levation	:	544.8 ft.	95 📕 Core, Number Indicates % Core Recovery	
otal Dep	oth :	755 ft.	C2015 • XRF, With Sample Number	
Coordinat Date Com		5/3/81	59; E272, 250. 08 C2015 ARP, With Sample Number Chemical Results Listed in Table 2R-1	
	•		al Stratigraphic Divisions Identified Within the Site Area:	
M - Mis	soula	IV - R	ingold, Unit IV Columbia River Basalt Group ingold, Unit III Tem – Elephant Mountain Member	
		11 - R I-u - R	ingold, Unit II Ter – Rattlesnake Ridge Interbed ingold, Unit I-upper Tp – Pomona Member	
		I-b - R	ingold, Unit I-basal B - Basalt, Undifferentiated	
		.1ed.		Unit
levation (MSL)	Depth (ft.)	Sampled Interval Gre	phic Log Lithologic Description	
540 -		Z	SAND. Basaltic. Medium- to coarse-grained. Angular to subangular.	
	-10	Z	Silty SAND. Basaltic. Medium- to very-coarse-grained, mostly coarse- grained. Angular to subrounded.	
530 -	-		SAND. Medium- to very-coarse-grained, mostly coarse-grained. Trace	
	20		silt. Basaltic.	м
520 -	-	Σ .	Gravelly silty SAND. Basaltic. Very-fine- to very-coarse-grained,	
	_30	2	mostly coarse- to very-coarse-grained. Angular to subrounded.	
510 -	-			
	_40	Z	Silty SAND. Very-fine- and medium- to very-coarse-grained, mostly	
500 -	-	Z^{-1}	very-fine- and very-coarse-grained. 55% mafics.	
	— 50	Z	Silty SAND. Light-olive-gray. Very-fine- to medium-grained. Angular	
490 -	-	Z	to subangular. 40-45% mafics. SAND. Very-fine- to fine- and coarse- to very-coarse-grained. Angula	r
	-60	2	to subangular. 50% mafics.	1
480 -	-			
	70		No sample.	
470 -	-			
	-80	Σ	Sandy GRAVEL. Sand very-fine- to fine- and coarse- to very-coarse-	РМ
460 -	ŀ	8	grained.	
	90			
450 -	-		GRAVEL. No matrix.	
	-100	8		
440 -	-	Z .	Sandy GRAVEL. Basalt clasts. Sand very-coarse-grained; angular to	
	1 10	Σ	subangular; 10-15% mafics.	
430 -		2		
	120	Z		
420 -			GRAVEL. No matrix. Thin weathering rind on basalt clasts at	
-	100		120-125 ft.	
	-130			
			HT COMPANY LOG OF DRILL HOLE S-19	FIGUR
SKAGIT /	HANFC	NUCLE	AR PROJECT	2R-A-1

12/21/81

(C

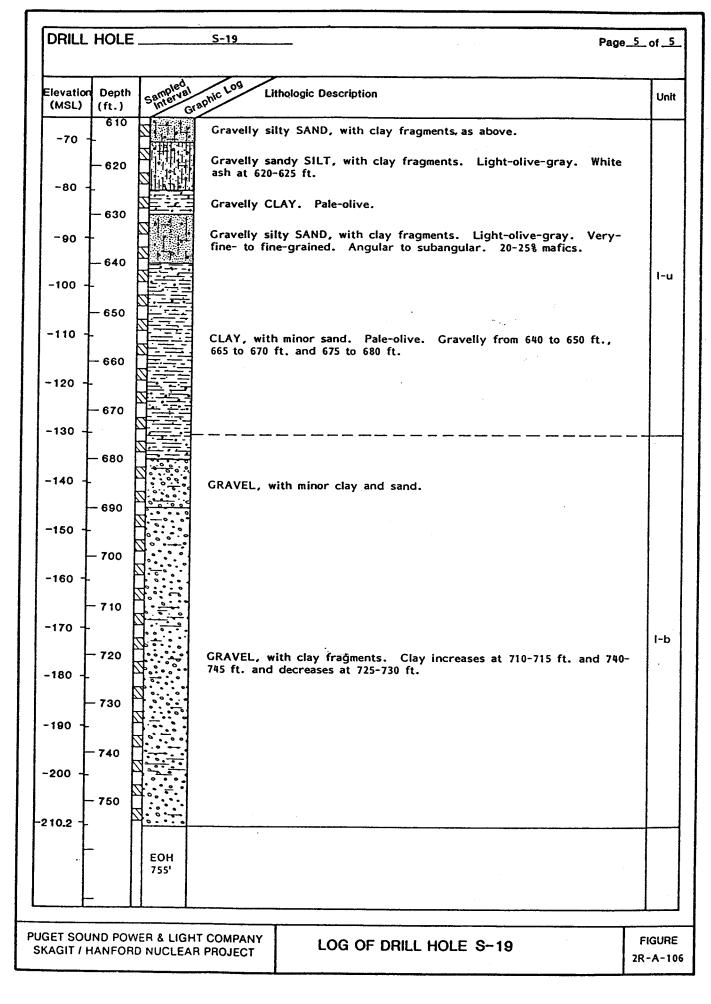
(

1

DRILL	HOLE	S-19 Page 3	_ of . <u> </u>
levation (MSL)	Depth (ft.)	Sampled Sampled Interval Graphic Log Lithologic Description	Unit
250 -	290 -		
240 -	— 300 -		
230 -	- 310		
	- 320	GRAVEL. Trace sand. Yellow sandy calcareous rinds on some clasts.	
220 -	- 330		
210 -	- 340		١v
200 -	- 350	Sandy GRAVEL. Sand very-fine- to fine-grained, mostly fine-grained; angular to subrounded; 5-7% mafics. Yellow sandy calcareous rinds. Trace silt at 350-355 ft.	
190 -	-		
180 -	- 360 -	GRAVEL. Trace sand. Trace silt at 365-370 ft.	
170 -	- 370 -	Sandy GRAVEL. Sand very-fine- to fine-grained; angular to sub- rounded; 5-7% mafics. Trace silt at 370-375 ft.	
160 -	- 380	GRAVEL. Trace sand. Silty sandy GRAVEL. Matrix medium-light-gray. Sand fine-grained;	
150 -	- 390	Gravelly silty SAND. Medium-light-gray. Very-fine- to fine-grained, mostly fine-grained. Angular to subangular. 5-7% mafics.	
140 -	400	Sandy GRAVEL. Sand fine-grained; angular to subangular; 5-7% mafics; clean.	
130 -	- 410	GRAVEL. Trace sand. Yellow sandy calcareous rinds.	
120 -	- 420	Sandy GRAVEL. Sand very-fine- to fine-grained, fining downward;	
110 -	- 430	Silty SAND. Light-olive-gray. Very-fine- to fine-grained. Angular to subangular. 20-25% mafics.	
100 -	- 440	Silty sandy GRAVEL. Silty sand as above.	
	- 450	Sandy GRAVEL. Sand very-fine- to fine-grained.	
		NWER & LIGHT COMPANY RD NUCLEAR PROJECT LOG OF DRILL HOLE S-19	FIGUI 2R-A-

12/21/81

DRILL HOLE	S-19Pa	age <u>4</u> of <u>5</u>
Dooth	1ed, 109	
Elevation Depth (MSL) (ft.)	Sampled Sampled Lithologic Description	Unit
90 - - 460	Silty sandy GRAVEL. Sand very-fine- to fine-grained; angular to angular; 20% mafics. Much pyrite. Gravelly sandy SILT to gravelly silty SAND. Medium-light-gray. very-fine- to fine-grained.	1
80 -	Silty sandy GRAVEL.	
- 470 70 -	Gravelly silty CLAY to gravelly clayey SILT. Medium-light-gray to gravelly clayey SILT. Medium-light-gray to gravelly clayey SILT.	to
- 480	Silty sandy GRAVEL. Pyrite.	
60 - 490		
50 - 490	Clay fragments Clay fragments Clay fragments Clay fragments Clay fragments	
40 -		
- 510	Sandy GRAVEL, with clay fragments. Pyrite.	
30 -	Gravelly CLAY. Light-olive-gray.	
20 - 520	Sandy clayey GRAVEL to gravelly sandy CLAY. SAND, with tan and green clay fragments. Sand very-fine- to fi grained; angular to subangular; 7-10% mafics.	ine-
- 530	Silty SAND. Yellowish-gray. Very-fine- to fine-grained. Angula to subangular. 10-15% mafics.	ar II
10 - 540	Gravelly SAND to sandy GRAVEL. Sand very-fine- to fine-grained angular to subangular; 20-25% mafics.	d;
0 -	Gravelly sandy SILT, with clay fragments. Light-olive-gray.	
-10 -	Gravelly silty SAND. Light-olive-gray. Very-fine- to fine-graine Angular to subangular. 20-25% mafics. Clay fragments at 545-550	
-10 -	Cravelly SAND to sandy GRAVEL. Sand very-fine- to medium-gra angular to subangular; 30% mafics.	ined;
-20 -	Gravelly silty SAND. Very-fine- to medium-grained, mostly very- fine- to fine-grained; angular to subangular; 30% mafics.	
-30 -		
-40 -	Silty sandy GRAVEL. Matrix increases with depth.	
- 590	Gravelly silty SAND to silty sandy GRAVEL. Sand very-fine- to medium-grained, mostly very-fine- to fine-grained; 25-30% mafics.	
- 50 - 600	Sandy GRAVEL. Gravelly SAND, with green clay fragments. Very-fine- to fine-gra Angular to subangular. 5-7% mafics.	ained.
-60 -	Gravelly silty SAND, with clay fragments. Light-olive-gray. Ver fine- to medium-grained, mostly fine-grained. Angular to subangu	 y- ular. 1-u
- 610	Clay slightly waxy and increases with depth.	
SET SOUND POV	LOG OF DRILL HOLE S-19	FIGURI


L

• •

Ć

(

12/21/81

(()

(