
 

Technical Note

Reference: 20007235–D

Date: October 6, 2004

To: Tony Agajanian

From: Ken Smith

Subject: Analysis of LIGO Flexure Rods

1. Introduction

This memorandum documents the stiffness and stress characteristics of flexure rods as used
in the advanced LIGO seismic isolation concept. The analysis has been performed parametri-
cally and in closed form, to allow initial design trades to take place. Final design verification
will be completed by detailed finite element analysis, including the effects of nonrigid ends,
fillets, and other details.

The advanced LIGO seismic isolation system utilizes three flexure rods per stage to provide
soft lateral springs. (Vertical flexibility is controlled by separate leaf springs.) The flexure
rods are nominally aligned with the gravity vector, and carry the weight of the suspended
components. While carrying this axial load, the rods are subjected to small lateral loads.
The rod ends are rotationally fixed.

Figure 1a shows this loading scenario. The axial load P is the weight carried by the rod.
Lateral loads V1 and V2 are applied at the ends of the rod. Moments M1 and M2 are also
applied at the ends.

The design process will require selection of the rod length and cross sectional area to give
the desired lateral stiffness, while keeping stress levels sufficiently low.

2. Beam Equation and Solution

2.1. Assumptions

For design purposes, we will assume the beam slenderness ratio is such that it can be treated
as an Euler bending beam (ignoring transverse shear effects). Deviations from this assump-
tion will be quantified during design validation.
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Figure 1. Free body diagram of slender beam under combined axial and lateral loading:
(a) Full beam with balanced end loads and moments; (b) Section cut through intermediate

station; (c) Section cut through intermediate station perpendicular to beam axis.

2.2. Beam Equation

As illustrated in Figure 1, the displacement of the beam centerline is v(x), where x is the
distance from one end of the beam. The displacement at x = 0 is v1. Considering Figure 1b,
force balance requires constant shear along the beam (in a direction parallel to the end
planes), but the moment along the beam is modified by the term P (v − v1), in addition to
the linear variation to balance the end shear. The shear and moment can be resolved in the
beam local coordinate system as shown in Figure 1c. Note that dv/dx is assumed small.

Let the cross sectional area of the rod be A, its area moment of inertia be I, and its Young’s
modulus be E. Equating the moment in the beam to EI d2v/dx2, we have

EI
d2v

dx2
= −M1 + V1x + P (v − v1). (1)
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Differentiating this equation twice gives the standard equation for a bending beam under
axial load:

Beam equation:
d2

dx2

(
EI

d2v

dx2

)
− P

d2v

dx2
= 0 (2)

For a constant cross section with P > 0, equation (2) admits solutions of the form

v(x) = c1 + c2x + c3 cosh Kx + c4 sinh Kx, (3)

where

K =

√
P

EI
. (4)

2.3. Deflected Shape

The constants in equation (3) can be determined to match the displacements and rotations
of the two ends of the rod:

v(0) = v1 ,
dv

dx

∣∣∣∣
x=0

= θ1 , v(L) = v2 ,
dv

dx

∣∣∣∣
x=L

= θ2. (5)

The solution can be written in the form

v(x) =

v1 ·
1

2

[
1−

K
(
x− L

2

)
cosh KL

2 − sinh K
(
x− L

2

)
KL
2 cosh KL

2 − sinh KL
2

]

+ v2 ·
1

2

[
1 +

K
(
x− L

2

)
cosh KL

2 − sinh K
(
x− L

2

)
KL
2 cosh KL

2 − sinh KL
2

]

+ θ1 ·
1

2K

[
cosh KL

2 − cosh K
(
x− L

2

)
sinh KL

2

−
K
(
x− L

2

)
sinh KL

2 − KL
2 sinh K

(
x− L

2

)
KL
2 cosh KL

2 − sinh KL
2

]

+ θ2 ·
1

2K

[
−

cosh KL
2 − cosh K

(
x− L

2

)
sinh KL

2

−
K
(
x− L

2

)
sinh KL

2 − KL
2 sinh K

(
x− L

2

)
KL
2 cosh KL

2 − sinh KL
2

]
.(6)

The deflected shape of the beam is plotted in Figure 2 for selected values of the dimensionless
parameter KL, for the special case of clamped ends (θ1 = θ2 = 0) and with v1 = 0. Note
that as KL increases, the beam shape changes from a cubic to more of a straight line.
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Figure 2. Beam deflection shape for various values of KL, with v1 = θ1 = θ2 = 0.

3. Stiffness Matrix

3.1. End Forces and Moments

To develop a stiffness matrix, we require the end forces and moments in terms of the end
displacements and rotations. Referring to equation (1) (and its derivative), we find that

V1 =
d

dx

(
EI

d2v

dx2
− Pv

)∣∣∣∣
x=0

, (7)

M1 = − EI
d2v

dx2

∣∣∣∣
x=0

. (8)

Force and moment balance (see Figure 1b) requires that

V2 = −V1 , (9)

M2 = −M1 + V1L + P (v2 − v1). (10)
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3.2. Matrix Formulation

Substituting v(x) from equation (6) into equations (7) through (10), and writing the result
in matrix form, we obtain


V1

M1

V2

M2

 =


κa κb −κa κb

κb κc −κb κd

−κa −κb κa −κb

κb κd −κb κc




v1

θ1

v2

θ2

 , (11)

where

κa =
PK

2

1
KL
2 − tanh KL

2

, (12)

κb =
P

2

tanh KL
2

KL
2 − tanh KL

2

, (13)

κc =
P

2K

(
KL
2 tanh KL

2
KL
2 − tanh KL

2

+ coth
KL

2

)
, (14)

κd =
P

2K

(
KL
2 tanh KL

2
KL
2 − tanh KL

2

− coth
KL

2

)
. (15)

3.3. Limiting Case

As a check, note that when the axial preload P is removed, the stiffness matrix of the beam
should reduce to the well-known stiffness matrix of a standard Euler bending beam. We
cannot simply substitute P = 0 into the matrix formulas, but rather must take the limit as
P → 0. For P (and therefore K) small, we find

κa =
12EI

L3
(1 +

K2L2

10
+ · · ·) , (16)

κb =
6EI

L2
(1 +

K2L2

60
+ · · ·) , (17)

κc =
4EI

L
(1 +

K2L2

30
+ · · ·) , (18)

κd =
2EI

L
(1− K2L2

60
+ · · ·) . (19)

Thus in the limit as P → 0, the stiffness matrix becomes, as expected:
V1

M1

V2

M2

 =
EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2




v1

θ1

v2

θ2

 . (20)
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3.4. Pendulum Interpretation

In the expected operation of the flexure rod, the ends are guided (zero slope). Referring to
equation (11) with θ1 = θ2 = 0, we find that the end forces and moments are

V1 = −V2 = κa(v1 − v2) =
PK

2

1
KL
2 − tanh KL

2

(v1 − v2) , (21)

M1 = M2 = κb(v1 − v2) =
PK

2

tanh KL
2

KL
2 − tanh KL

2

(v1 − v2) . (22)

Note that the combination of shear and moment at each end is equivalent to a pure shear
load acting at a distance M1/V1 = κb/κa away from the end, transmitted through rigid
structure. This distance will be called the “zero moment distance” Z, and the corresponding
pure shear locations will be called the “zero moment points”.

Zero Moment Distance: Z = κb/κa =
1

K
tanh

KL

2
(23)

The lateral stiffness k of the beam (with clamped ends) is simply κa. Using the definition
of Z in equation (23), the expression for κa in equation (12) can be written as:

Lateral Stiffness: k =
P

L− 2Z
(24)

Equation (24) admits a simple intepretation. Recall that a simple pendulum of length `
has gravity-imparted lateral stiffness of P/`. The lateral stiffness of the flexure rod is thus
equal to that of a simple pendulum of length L − 2Z. In addition, while undergoing pure
translation the rod reacts no moment to the upper side about a virtual point located at
x = L−Z, and reacts no moment to the lower side through a virtual point located at x = Z.
Thus with regard to lateral stiffness, the flexure rod is equivalent to a (pin-ended) pendulum
connecting the virtual points x = Z and x = L− Z.

The lateral stiffness can also be expressed in terms of natural frequency. Assume the upper
end of the flexure rod is fixed in translation and rotation, and the lower end is rotationally
fixed and is attached to a mass P/g. Then the natural frequency of the mass in lateral
translation is simply

Natural Frequency: fn =
1

2π

√
g

L− 2Z
(25)

as the pendulum analogy would suggest.
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Figure 3. Various displacement coordinates used for the beam stiffness matrix: (a) Rod
end displacements and rotations; (b) Displacements and rotations of lower zero moment
point on suspended side, upper zero moment point on upper side; (c) Displacements and

rotations of lower zero moment point on both sides.

3.5. Transformation to Zero Moment Points

The stiffness matrix simplifies considerably if we transform coordinates to the zero moment
points. Following Figure 3b, make the change of variables

v1 = v3 − Zθ3 V1 = V3

θ1 = θ3 M1 = ZV3 + M3

v2 = v4 + Zθ4 V2 = V4

θ4 = θ3 M2 = −ZV4 + M4 (26)

in the stifness equation (11). The 3 and 4 subscripts refer to displacements, rotations, forces,
and moments at the lower and upper zero moment points respectively. After simplification,
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the transformed stiffness equation can be written


V3

M3

V4

M4

 =


P

L−2Z 0 − P
L−2Z 0

0 P
2

(
Z + 1

K2Z

)
0 P

2

(
Z − 1

K2Z

)
− P

L−2Z 0 P
L−2Z 0

0 P
2

(
Z − 1

K2Z

)
0 P

2

(
Z + 1

K2Z

)



v3

θ3

v4

θ4

 . (27)

In this expression, the translational and rotational stiffness terms are completely decoupled.

3.6. Deviation from a Pure Pendulum

The flexure rod is not identical in all respects to a pin-ended virtual pendulum of length
L− 2Z. The differences can be seen in the stiffness matrix of equation (27).

If the rod behaved like a pure pendulum, the rotational stiffness terms (P/2)(Z ± 1/K2Z)
would not be present (i.e., there would be no resistance to local rotation about the virtual
pivot points). For the actual rod, the rotational stiffness terms have an effect equivalent to
a rotational spring with stiffness (P/2)(−Z + 1/K2Z) connecting the two pivot points, in
combination with rotational springs with stiffness PZ connecting each pivot point to ground.

3.7. Transformation to Lower Zero Moment Point

The design of the two-stage isolation system envisions all lateral actuation forces occurring
at the lower zero moment point of the flexure rods. Thus, the coordinates in Figure 3c are
most appropriate. The corresponding stiffness matrix is obtained by making the following
change of variables

v4 = v5 − (L− 2Z)θ5 V4 = V5

θ4 = θ5 M4 = (L− 2Z)V5 + M5 (28)

in equation (27). The 5 subscript refers to displacements, rotations, forces, and moments at
the lower zero moment point, rigidly transferred to the upper end. The resulting stiffness
matrix is


V3

M3

V5

M5

 =


P

L−2Z 0 − P
L−2Z P

0 P
2

(
Z + 1

K2Z

)
0 P

2

(
Z − 1

K2Z

)
− P

L−2Z 0 P
L−2Z −P

P P
2

(
Z − 1

K2Z

)
−P P

2

(
Z + 1

K2Z

)
+ P (L− 2Z)




v3

θ3

v5

θ5

 .

(29)
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The first column of this matrix implies that a pure translation at the lower zero moment
requires a force Pv3/(L − 2Z), and this force is reacted to the upper support along with
a moment Pv3. (This can also be thought of as the moment resulting from the translated
gravity load.) The reacted moment will result in tilt of the system during lateral actuation,
as the moment deforms the vertical springs of the supporting suspension. This is true even
for the ideal case of actuating directly through the lower zero moment point.

4. Stress Analysis

Under the assumptions of slender beam bending theory, the stress state in the rod at any
station is a superposition of shear stress (which varies quadratically across the cross section)
with axial stress (which varies linearly across the cross section). The total total bending
moment M and shear Q in the rod at station x are obtained by differentiating equation (6):

M(x) = EI
d2v

dx2
=

EI

2

[(
v1 − v2 + (θ1 + θ2)

L

2

)
K2 sinh K

(
x− L

2

)
KL
2 cosh KL

2 − sinh KL
2

+(θ2 − θ1)
K cosh K

(
x− L

2

)
sinh KL

2

]
, (30)

Q(x) = − d

dx

(
EI

d2v

dx2

)
= −EI

2

[(
v1 − v2 + (θ1 + θ2)

L

2

)
K3 cosh K

(
x− L

2

)
KL
2 cosh KL

2 − sinh KL
2

+(θ2 − θ1)
K2 sinh K

(
x− L

2

)
sinh KL

2

]
. (31)

To first order, the axial load in the rod is P at all stations.

From equations (30) and (31), it is clear that both shear and moment in the rod are max-
imized at the ends (x = 0 and x = L). After simplification (such as replacing EIK2 with
P ), the moment and shear at the two ends are:

M(0) = − PZ

L− 2Z

(
v1 − v2 + (θ1 + θ2)

L

2

)
+

EI

2Z
(θ2 − θ1) , (32)

M(L) =
PZ

L− 2Z

(
v1 − v2 + (θ1 + θ2)

L

2

)
+

EI

2Z
(θ2 − θ1) , (33)

Q(0) =
P

L− 2Z

(
v1 − v2 + (θ1 + θ2)

L

2

)
− P

2
(θ2 − θ1) , (34)

Q(L) =
P

L− 2Z

(
v1 − v2 + (θ1 + θ2)

L

2

)
+

P

2
(θ2 − θ1) . (35)

The rod will be sized to achieve the desired lateral stiffness, while keeping the stress within
requirements. The design condition for stress evaluation is a combination of the dead load P ,
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together with bending stress associated with a lateral displacement δ (currently δ is 1 mm).
This scenario is obtained by setting v1 = δ, v2 = 0, and θ1 = θ2 = 0 in the above equations.

The average shear stress at the end is given by τ = Q/A, where A is the cross sectional area
of the rod:

Average Shear Stress: τmax =
Pδ

A(L− 2Z)
(36)

The peak shear stress will occur at the neutral axis. Also, since δ � (L − 2Z), the shear
stress is much smaller than the P/A axial stress, and can therefore be ignored for initial
design purposes.

The axial stress at a distance y from the neutral axis is given by

σ =
P

A
+

My

I
. (37)

Substituting the end moment from equation (32) and choosing y as the maximum fiber
distance c, we obtain

Max Axial Stress: σmax =
P

A
+

PZcδ

I(L− 2Z)
(38)

For the special case of a circular cross section of diameter D, we have A = (π/4)D2, I =
(π/64)D4, and c = D/2. Then equation (38) becomes

σmax =
4

π

P

D2

(
1 +

8Zδ

D(L− 2Z)

)
(39)
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