LIGO

Advanced LIGO Core Optics expanding the imagination....

- Some things we have learned in Advanced LIGO have been surprising.
 - » 0.1nm rms figure error is achievable over large diameters
 - » Some fused silica can have high spatial frequency inhomogeneity
 - » Some fused silica isn't stable
 - » A q-tip can polish glass
 - » Drag-wiping can damage glass
 - » Low absorption AR coatings are more difficult to achieve than HR

Surface Figure: better than we thought possible

(Subcontractor L3 Tinsley)

Ф 160 mm 0.0966 nm rms

Ф 300mm 0.17 nm rms

3/15/2011

LIGO-G1100216-v2

Compare Initial LIGO and Advanced LIGO PSD

ETM04 diffractive loss = 4.7 ppm

ITM04 diffractive loss = 2 ppm

These are typical/ high for aLIGO TMs

Data analysis: Hiro Yamamoto

LIGO

CP04 transmitted wavefront 0.16 nm rms (Image Zygo)

E_D160_Z6.gnt CP 04 Single Pass TWE Ø160 Z1-6 Removed

Neither surface shows the high frequency structure.
Heraeus 3001 ~2.4nm PV

3/15/2011

LIGO-G1100216-v2

LIGO

Fused Silica Figure Stability

Key Quantity tested -	Corning 7980	Heraeus		
Approx. Anneal Temp (C°) - Sag Change (nm/150mm diameter)		311	°312	3001
LASTI TM	1 - 600 - 3			
*aLIGO FM	3 - 450/600 -			
Before & .	25-30			
After a high temp	1 – 450 - 20			
anneal at Corning				
*Mini FM			1 – 600 - NS#	
*aLIGO ETM	2 – 600 - ±50	2 of 4 – 600 – NS#	6 - proposed	
6 installed, 4 spares				
*aLIGO ITM				2 – 600 - NS#
*aLIGO BS				1 – 600 - NS#
aLIGO R3	Sag tolerance is ± 400nm			
iLIGO ITM			12 - 450 - 18	
iLIGO BS		4 – 450 - 17		
iLIGO ETM	2 – 450 - 33			
⊕iLIGO RM	4 – 450 - 14			
iLIGO FM	2 – 450 - 50			

^{*}optic measured before/after anneal without coating. IBS coatings impart a compressive stress which has a more significant effect on high aspect optics.

[†]Measured over 150mm diameter

Proposed aLIGO ETM

^{*}Not Significant compared with measurement error \sim 1-2nm

[⊕]Interesting to note that the RMs were a different grade homogeneity than FM/ETM

Careful cleaning can leave a mark

(Image Zygo)

129 nm Peak to valley – Possibly caused by cleaning with a Q-tip. Cotton does not polish, but dust does.

Two other optic show this to a lesser degree ~10nm PV, some in multiple spots.

This optic was repolished.

3/15/2011

LIGO-G1100216-v2

Wiping can leave sleeks

(Image L3 Tinsley)

Sleeks can be caused by wiping; defect depends on the particulate being wiped.

Exploring AR coating loss vs coating depth (Image CSIRO)

3/15/2011

LIGO-G1100216-v2

Acknowledgements

Advanced LIGO Core Optics Team:

GariLynn Billingsley, Gregg Harry, Bill Kells, Patrick Murphy, Margot Phelps, Hiro Yamamoto, Liyuan Zhang

With significant help from: Dennis Coyne, Peter Fritschel and Eric Gustafson

Advanced LIGO Core Optics Vendors:

Glass: Heraeus Quartz America, Corning

Polishing: Coastline, Zygo (formerly ASML) under contract to L3 SSG

Tinsley

Coating: CSIRO, LMA

3/15/2011 LIGO-G1100216-v2 Advanced LIGO 9

Follow our progress

https://nebula.ligo.caltech.edu/optics/
Some reports are "C" documents, limited to LSC viewing since they are provided as contractual documents.

3/15/2011 LIGO-G1100216-v2 Advanced LIGO 10