

Suspensions and Isolation Systems for LIGO II

David Shoemaker MIT LIGO II Special Emphasis Panel Review 25 October 1999

LIGO-G990105-00-R

Scope: the Transducer Mechanical Design

» this is a mechanical experiment!

Top-Level Functions

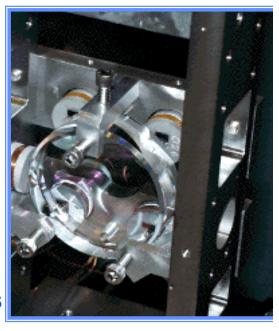
- » realize a 'free test mass'
- » provide isolation from seismic noise
- » minimize thermal noise
- » actuation to hold interferometer operating point

• Organization of presentation

- » discuss suspensions, then isolation
 - LIGO I
 - concepts, physics driving requirements
 - LIGO II concept, requirements
- » planning: deliverables and milestones

Suspensions: Concepts

- Objective: a mass free of all forces, free to follow the metric
- Principal challenges:
 - » Seismic noise: combined isolation requirements on seismic isolation, suspension system
 - » Thermal noise: each mechanical mode of system in equilibrium with heat bath
 - leads to brownian motion on, and off, resonance
 - noise in our measurement band minimized when mechanical losses minimized
 - » Radiation pressure: fundamental and technical


Important interface: Optics

- » test mass is both an optic and inertial mass
- » requirements placed on optical, mechanical performance

Suspensions: LIGO I Approach, Evolution

Design evolved from acoustic bar GW detectors

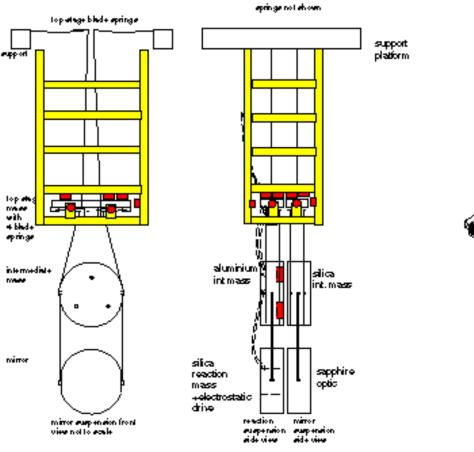
- » first used by Max Planck
 Garching Group for
 interferometric detectors
- » a single wire loop around the mass
- magnets glued to mirrors, coils on frame to exert forces

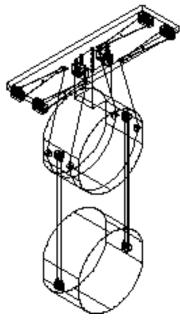
Advantages

» simple, robust, great deal of experience

Disadvantages

- » attachments increase mechanical losses, increase thermal noise, interact with EMI
- » large forces required to maintain 'DC' alignment


Multiple pendulums a good solution

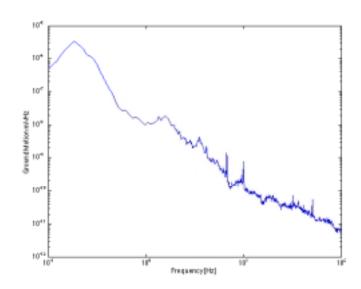

- » early work at MIT, Garching
- » real engineering done for GEO 600 interferometer

LIGO II Suspension

• GEO design; preliminary sketch

LIGO II Suspension

Suspension Parameter	Value
Test mass	30 kg, sapphire
Effective mechanical loss 'φ'	5×10 ⁻⁹
Penultimate masses	16 kg, fused silica
Upper masses	28 kg, stainless steel
Test mass suspension fiber	Fused silica ribbon, 4×10^{-7} m ² ,
	1:55 aspect ratio
Upper mass suspension fibers	Steel
Effective mechanical loss " ϕ "	3.3×10^{-8}
Approximate suspension	0.4 m test mass, 0.35 m intermediate,
lengths	0.7 m top
Vertical compliance	Trapezoidal cantilever springs
Horizontal seismic	10 ⁻⁶ at 10 Hz
transmission	
Test mass actuation	Electrostatic (acquisition),
	photon pressure (operation)
Upper stage actuation;	Magnets/coils;
sensing	incoherent occultation sensors

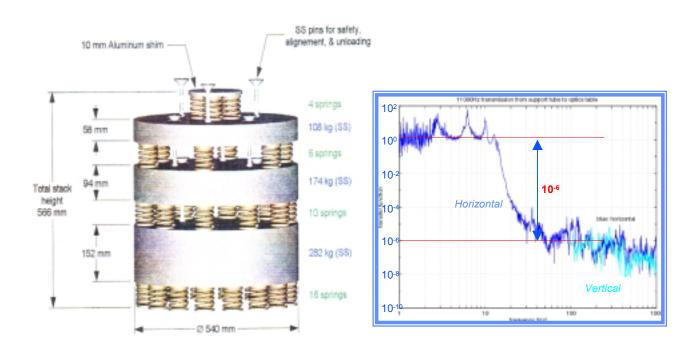

Isolation: Concepts

Direct coupling in detection band

» very steep slope, so effectively establishes a 'cutoff' frequency

Indirect effect of low frequencies

- » interferometer works well when held to operating point
- » typically a small fraction of a light wavelenth; e.g., 10⁻¹⁴ mrms
- » disturbance concentrated at microseismic peak, 0.16 Hz

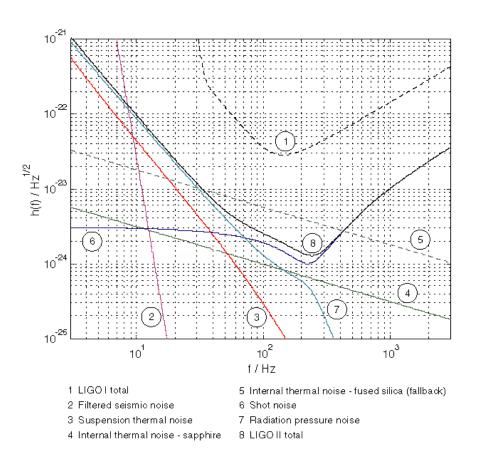

LIGO Scientific Collaboration

Isolation: LIGO I Approach, Evolution

- Passive low-Q oscillators in series
- Advantages:
 - » Nominally simple, wealth of experience

Disadvantages

- » relatively high cutoff (f_0 goes as compression²)
- » difficult to damp internal resonances well


LIGO-G990105-00-R

LIGO II Isolation

• Requirements

» The 'brick-wall' cutoff is to be significantly below the frequencies of best overall sensitivity (~100 Hz): thus, 10 Hz cutoff.

LIGO-G990105-00-R

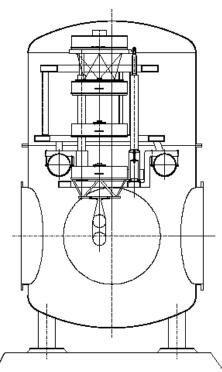
LIGO II Isolation

• Requirements continued

- » The rms motion of the test mass while the interferometer is locked is to be less than 10⁻¹⁴ meters.
- » The rms velocity of the test mass is to be small enough that the interferometer can acquire lock (order of 10⁻¹⁴ m/sec)
- » The system will fit and into interface to the existing vacuum chambers and can be tested in the LIGO/MIT Advanced System Test Interferometer Facility.
- » The system will interface to the GEO suspension design and interferometer layout.

• Two designs may meet requirements:

- » 'Soft' approach: low natural resonant frequencies, based on VIRGO design
- » 'Stiff' approach: servo controlled platform, experience at JILA, MIT, Stanford


LIGO II Isolation: 'Soft' approach

RMS motion reduction from inverted pendulum

- » resonant frequency 30 mHz
- » reduces rms motion, also at microseismic peak

Horizontal attenuation from pendulums

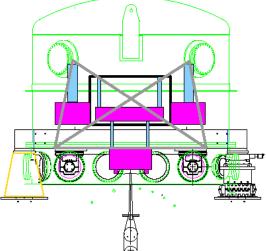
- » two stages, 0.75 Hz each
- Vertical attenuation from balanced spring forces
 - » three stages, 0.1-0.3 Hz

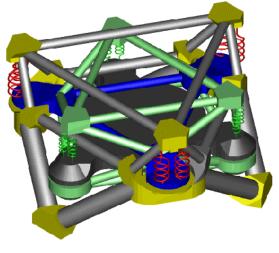
• Contols approach: damping, positioning

- » attenuation provided by low natural frequencies
- » controls used to set operating point
- » controls and magnetic dampers used to control modes

LIGO II Isolation: 'Stiff' approach

Principal Isolation through active feedback


- » motion sensed with accelerometers
- » actuation via voice-coil/magnets
- » multiple input, multiple output digital servo


• Two nested stages

- » each active in 6 degrees of freedom
- » each with unity gain ~20 Hz
- » suppression at 0.16 Hz of

• Final passive stage

» additional pendulum suspension

LIGO II Isolation: Selection process

• Parallel development of both approaches

- » Definition of proposed system
 - a specific configuration for both types of vacuum equipment chambers ('HAM' and 'BSC')
- » 3d modeling
 - attenuation of complete system as advertised?
 - all mechanical modes under control?
- » Protoyping of parts/systems
 - isolation, creep, robustness
 - teaming

• Formal set of criteria established

- » committee of Lab, LSC, External experts in interferometry, isolation, suspensions
- » objective: make the right decision in a constructive way

• Deadline: recommendation by April 1, 2000

» documents available here, on web

LIGO The LIGO II LSC Suspension/Isolation Working Group

- Principal interests in suspensions:GEO, Moscow, Penn State, Syracuse, Stanford
- Principal interests in isolation: Caltech, JILA, LSU, MIT, Stanford
- Roughly 35 persons, 12 institutions
- Deliverables and milestones established
 - » see LSC White Paper
- Principal R&D tasks to enable LIGO II:
 - » Test Masses: materials and processes
 - » Suspension fibers: processes, integration
 - » Overall suspension design
 - » Isolation systems: approach, design
 - » Control systems/hierarchy
 - » Modeling of parts and whole
 - » System test: at LIGO II sensitivity levels

Summary

- Significant improvements in isolation, suspension are planned for LIGO II
- Much enabling R&D has taken place since initial LIGO I design
- No fundamentally new or untested notions in LIGO II design, but...
- Significant extrapolations needed in many domains
- Work to be done!

Enhanced R&D Program

• Lab Project schedule linked to R&D program

- » many subsystems brought through the design process by LSC groups, in and out of Lab
- » schedule requires significant progress before earliest possible MRE funding

Specific areas of increased activity:

» Sapphire development

industrial crystal growth tests optical polishing tests coating tests birefringence tolerance tests

» Seismic isolation development and systems tests

completion of testing facilities development of high sensitivity displacement sensors prototype system construction and test

Additional funds in the R&D program before the MRE funds are necessary to meet the LIGO Lab schedule