The Path to LIGO II

Overview

- what are the constraints?
- performance goals, astrophysical impact
- lessons from LIGO I
- strategies

Technical status

- requirements flowdown, configurations (Peter Fritschel)
- mechanical design isolation and suspensions (Riccardo DeSalvo)
- lasers and optics (Eric Gustafson)

LIGO Laboratory view and role (Gary Sanders)

Timeline

LIGO I data run: 2002-2004

• unless detections made, instrument fully exploited after two years

LIGO II MRE support: 2002-2006

- assumes successful proposal in January 2001
- assumes ~4 year funding cycle, ramp up in 2002, ramp down in 2006

Likely data run for 'LIGO Ila': 2005-2006.5

- assumes one year for installation and shakedown of LIGO IIa configuration
- requires preparation, practice for installation
- again, unless detections made, 1-2 years observation sounds right

Likely data run for 'LIGO IIb': 2007-2009

One of the two improvements will be major, another minor

- in present planning, one upgrade will make significant changes to seismic isolation (could be IIa or IIb)
- other upgrade might take less installation/shakedown

Goals

Make a significant change in 'Physics Reach'

- significantly improved probability of detecting known sources
- significantly improved overall sensitivity

Fully exploit basic configuration

- power/signal recycled Fabry-Perot Michelson
- transmissive input optics
- pendulum suspension

Reaching some 'fundamental' limits

- standard quantum limit: optimize, not maximize, power
- Newtonian background

Leave exotica for LIGO III (but continue to pursue basic R&D!!!)

- cryogenic and alternative approaches to reducing thermal noise
- quantum-non-demolition techniques
- diffractive optics, other basic changes in optical configurations

Sensitivity, Technologies

Technology foreseeable for impressive improvements

- in sensing system (~100 Hz and higher)
 - > broad-band improvement due to increase in circulating power (10 to 100 W, increased optical efficiency)
 - > addition of signal recycling (increased sensitivity in narrow band)
- in thermal noise
 - > pendulum thermal noise improvement through change to fused silica (factor 6 reduction), design of fibers (~factor 5 reduction): 30!
 - > test mass thermal noise: change to crystalline masses (factor 12)
- in seismic noise
- > improved filtering to ~10 Hz lower 'brick wall' (touching gradients)
 LIGO Project 4 of 10 LIGO-G990042-00-D

Newtonian Background

Hughes/Thorne

• could reach this 'advanced interferometer' low-frequency sensitivity

Physics Reach

CW sources

- possible pulsars in LF (10-30 Hz) region strength estimates not encouraging
- Quasi-periodic sources: addressed via signal-tuned recycling in 100-1kHz range

Bursts

• much broader 'sweet spot', ~30-300 Hz, and factor 10 in sensitivity

Stochastic sources

- sensitivity to Ω varies with the low-frequency cutoff as $\sim f^{-6}$
- confusion limit of inspirals could be seen before individual events!

Binaries

- Relatively new prediction: population of 100-1000 solar mass BH
- final frequency ~ 1400 Hz/(totalmass/3M) for last 2π of phase
 - > 14 Hz for 150 solar mass; already tough; numerical/analytical upper limit during splash of 1% Mc²
- Black Hole normal mode ringdown: damped sinus, Q=2-10
 - > frequency ~ 4 kHz/(M/3m); 40 Hz for 150 solar masses

Standard Candle 'seeing distances' for NS or solar mass BH binaries

- 6x LIGO I for 'available' technology; another 3x 4x for all we envision for LIGO II upgrades
- altogether increase in volume over LIGO I of ~10 000

Inputs to upgrade strategies

Physics reach (as much as quickly as possible)

Some technologies close to 'available'

fused silica pendulums, higher power lasers, thermal'defocussing'

Some technologies challenging but require no 'breakthroughs'

- seismic attenuation, with some mix of active and passive elements
- modification of suspensions for work at low frequencies
- associated control problems

Some technologies show promise but need significant R&D

- crystalline masses/optics (industry development, millions/year)
- signal-tuned recycling (hard long lab work, multiple prototypes)

Some other important measures of improvements

- impact on observation: how much of present system to be removed? any rework of infrastructure? how much 'shakedown'?
- ability to test in advance: performance to requirements, ease of installation, reliability
- cost of new elements: R&D, design, materials
- cash flow: integral from 2002-2004 might not suffice for some large changes
- modifications of existing systems: costs, 'palatability'

Notions of costs

Magnitudes

- MRE is minimum ~\$50M
- an upgrade of ~20% of original cost seems reasonable so ~\$60M

Typical funding profile

- first year, last year at ~1/2 peak yearly rate
- total duration of funding: 4-5 years

LIGO I costs:

- rough estimate, removing non-recurring costs, sharing with operations
- LIGO I detector components and labor would cost ~\$60M (including contingency, management/cost/schedule, system engineering)
- LIGO I detector components alone cost ~\$26M, R&D ~\$6M, ~25% contingency not included (i.e., our initial best estimate of costs)
 - > this was in '94; if 1.05 inflation, multiply above by 1.5
 - > includes ~30 man-years of R&D, ~100 man-years of design/fab

LIGO I installation scale:

- ~18 man-years to remove then re-install LIGO I isolation/suspension
- (likely scenario is ~2/3 this mechanical installation effort)

Steps along the Path

Immediate collapsing of design options

- mid-June for Suspensions/Isolation working groups
- mid-July for Lasers/Optics, and Configurations groups

Present to LSC at July LSC meeting

- intensive working meeting with technical leaders
- presentation at plenary session for 'ratification'
- top-level requirements review
- conceptual design presentation

Costing, manpower, reality check by Lab in August

- close LSC- Lab working session
- capitalization of Lab scientific and engineering expertise

Detailed R&D plan, first draft of project plan to NSF in September

· dose of reality for LSC

Program Lab R&D efforts to closely track Project goals

- establish firm complementary plans for facilities (LASTI, 40m)
- bring other institutions into cycle of reviews (e.g., ETF)

LIGO Lab to start nucleus of LIGO II project office

to meet September and January deadlines for information

Organization

LIGO Laboratory evidently responsible for the Observatories

LIGO II project-oriented organization and much R&D rooted

LSC central to success for a LIGO II upgrade

- LIGO I using most Lab personnel, especially with experience in interferometer design and prototyping
- LSC has wealth of resources; also busy, but unique and numerous

Collaborators excited about significant participation

- continuing basic R&D
- directed R&D (interactions with industry, structured prototype testing)
- subsystems responsibility; fabrication/installation?

GEO playing a special role

- very strong technical partner
- also likely to contribute 'materially' a subsystem, e.g., the Core Optics

GEO, VIRGO provide valuable technology tests

- high-sensitivity tests of real hardware
- beneficial for Lab to stay close to these projects; exchanges

Following discussions organized around LSC working groups.