Prospects and Issues for Short Wavelength Sources

M. M. Fejer
E. L. Ginzton Laboratory
Stanford University

fejer@leland.stanford.edu

Short Wavelength Sources Are of Interest

- Several advantages
 - higher responsivity $\propto \lambda^{-1}$
 - smaller delay line mirrors $\propto \sqrt{\lambda}$
 - lower loss in core optics (in some cases)
- Several issues
 - higher loss in core optics (in some cases)
 - tighter tolerances on figure, scatter, etc.
 - no good visible/UV lasers
- How to make 10 1000 W of VIS/UV?
 - short wavelength laser
 only realistic option is gas laser -- not very realistic
 - nonlinear frequency conversion of available 1 μm lasers second harmonic generation (SHG) sum frequency generation (SFG)

Very high Energy Excimer Laser (VEL)

- > 1 kW ouput power (308 nm)
 - 15 J pulses
 - 100 Hz

Second Harmonic Generation

• Nonlinear polarization ≈ oscillating current

$$P_{2\omega} \propto \chi^{(1)} E_{2\omega} + \chi^{(2)} E_{\omega}^2$$
 $j_{2\omega} \propto \dot{P}_{2\omega}$

Output field is sum of contributions from whole crystal

$$E_{2\omega}(L) \propto \int_0^L E_{\omega}^2 \, \chi^{(2)}(z) \exp[i(k_{2\omega} - 2k_{\omega})z] dz$$

$$\to E_{\omega}^2 \, \chi^{(2)} \, L \operatorname{sinc}^2(\Delta k \, L/2)$$

 $\Delta k = k_{2\omega} - 2k_{\omega} = (2\pi/\lambda)(n_{2\omega} - n_{\omega})$ $k_{\omega} \rightarrow \Delta k$ $k_{2\omega}$

Phase velocity matching essential

Birefringence generally used

Efficiency Scaling for SHG

Plane wave:

$$\eta \equiv \frac{P_{out}}{P_{in}} \propto \chi^{(2)2} \frac{P_{in} \cdot L^2}{\lambda^2 a^2}$$

$$\eta = \eta_{norm} \left[\% / W - cm \right] P_{in} L$$

$$- 0.01 - 10\% / W - cm \text{ in visible}$$

Outline

- SHG Basics and Power Scaling
- Current Results
 - commercial and research
- Materials Issues
- Thermal Loading
- Device Configurations

Current Commercial Results

- SP, Coherent: 5 10 W CW 532 nm source
 - intracavity doubled

- LWE: 200 mW CW 532 nm source
 - external cavity
 - single frequency NPRO pump

- SONY: 30 mW CW 266 nm source
 - SHG intracavity + SHG external cavity

Research Results

- Pulsed visible: > 300 W
 - LBO SHG of high rep rate Q-switched Nd:YAG
- Pulsed UV: > 20 W
- CW external cavity 532 nm: > 10 W
 - LBO pumped by CW Nd:YAG
- CW single-pass SHG: 2 W
 - PPLN pumped by CW Nd:YAG

All-Solid-State Deep Ultraviolet Laser

- Compact, reliable UV SS lasers becoming available
 - improved pump diodes
 - improved nonlinear materials
 - improved processing
 - improved coatings ...

SONY "COBALT" Laser

Wavelength

266 nm

Output power(CW)

10 mW, 20 mW

Noise

0.5 % rms or less

Average life

> 5000 h

Power consumption

260 W

UV Damage in BBO

Scattering Sources along 266-nm Beam Propagation Direction

(Observed with Laser Scanning Tomography)

Thermal Loading Affects High Average Power Devices

- Average power loading
 - efficiency rolls over at high powers
 - thermal dephasing
 - thermal beam distortion
- Premium on materials with:
 - high nonlinearity/loss
 - low photothermal response
 - no one material property by itself tells the story

Material Requirements

Complex Set of Material Requirements

- Adequate nonlinear coefficient
 - importance often overestimated
- Phasematching
 - noncritical strongly preferred
- Thermal properties
 - high thermal conductivity
 - small photothermal coefficients
- Low absorptivity
- Low scatter
- Growable
- Processable
- Environmentally stable
- No quirks
 - photorefractive effects
 - photochromic effects...

Extrinsic effects:
Difficult to quantify and control

UV Nonlinear Materials

- Borate materials widely used for NLO in UV
- BBO, LBO
 - standard commercial materials
 - challenging growth and processing
 - aging?

- CLBO
 - promising material
 - easy to grow
 - processing issues being solved
 - high UV powers demonstrated

Crystal Growth of β-BBO

- Excellent UV Nonlinear Crystal
 - Transmission to 190 nm
 - SHG phase matching to 205 nm
 - Physically Robust
- Long term aging in conventional crystals
- Improved growth leads to longer lifetime

Czochralski Grown BBO Conventional TSSG Grown BBO

No Visible Scattering

Flux & Inclusions

Periodically-Poled Ferroelectrics

Large Aspect Ratio 2 μm domains in 0.5 mm sample

Large Areas full 3 inch wafers

Complex Patterns follows mask pattern

Temperature Rise in High Power NLO

- Absorbed optical power inhomogeneously heats crystal
 - produces radially varying temperature

- Temperature rise across beam independent of spot size
- Leads to radially varying index: $\Delta n = \beta_T \Delta T$ $\beta_T = \frac{dn}{dT}$
- Leads to radially varying phase on optical beam: $\Delta \phi = 2\pi \Delta n L / \lambda$

$$\Delta \phi = \frac{\alpha \beta_T}{2k_{th}} L P_{avg}$$

Power Limits from Thermal Effects

- Radially varying phase limits allowable power
 - spoils phasematching
 - thermally focuses beams
 - longitudinal variation also spoils phasematching
- Define maximum allowable thermal phase distortion, $\Delta \phi_{\max} = M\pi = \frac{\sqrt{\beta_T}}{2 k_H} L_{\max}^p$ gives maximum allowable power
 - proportional to material figure of merit
 - inversely proportional to length of crystal

$$P_{\text{max}} L = 2\pi M \frac{k_{th}}{\alpha \beta_T}$$

• Efficiency is scales similarly

$$\eta = \gamma_{conf} P L$$

- so there is a maximum attainable efficiency

$$\eta_{\text{max}} = 2\pi M \frac{\gamma_{conf} k_{th}}{\alpha \beta_T}$$

- and an overall material figure of merit

$$FOM_{HP} = \frac{d^2 k_{th}}{n^2 \alpha \beta_T}$$

Typical Parameters for 1 μm SHG

	KTP	LBO	ВВО	PPLN
d _{eff} [pm/V]	3.2	0.85	1.9	19
C ² [GW ⁻¹]	47	4.6	22	1200
dn/dT [K ⁻¹]	1.6	8.0	1.7	3.8
k _{th} [W/m-K]	3	3	1	6
α [cm ⁻¹]	?	?	?	?
FOM FOM(KTP)	1	0.2	0.14	22

Perhaps neglecting α is a bad idea

- Tabulation of absorption is difficult
 - typically an extrinsic property -- varies from sample to sample
 - can be strongly wavelength dependent
 - can be power dependent

Neglecting α :

- one wavelength can influence another
- can be time dependent

Absorption in LiNbO₃ and LiTaO₃

- Band edge: Li/Nb ratio
- Shoulder: Li/Nb, Cr³⁺, Fe³⁺
- Visible: Cr³⁺, Fe²⁺, bipolaron (Nb_{Li} + e⁻) + (Nb_{Nb} + e⁻)
- Near-IR: polaron (Nb₁ + e⁻) + ?
- Mid-IR: multiphonon

Can influence shoulder, visible, near-IR with growth and processing

Material Issues

- Absorption effects are complicated
 - processing dependent
 - nonlinear
 - hysteretic
 - nonlocal
 - wavelength(s) dependent
 - difficult to characterize with a single number, but:

Lower is Better

- Quirky effects can be serious (and complicated)
 - photochromic effects
 - photorefractive effects
 - induced scattering
 - surface degradation ...
- Crystal growth and processing studies are ongoing
- Device designs must be adapted to peculiarities of given material
 - general scaling rules often fail

Absorption Can Be Complicated

- Absorption effects have varied manifestations
 - can vary widely for nominally identical samples
- Irradiance at one wavelength alters absorption at another
 - Green-Induced IR Absorption in LiNbO₃ (GRIIRA)
- Time dependent absorption at a single wavelength
 - grey track formation in KTP

GRIIRA in LiNbO₃

Gray Track Formation in KTP

Device Configurations for Power Scaling

- Double pass
 - increase effective length
 - reimage through crystal
 - correct thermal focusing
 - 4 x efficiency of one pass

- Slab/multibounce geometries
 - engineer thermal field

- Face Pumping
 - longitudinal heat flow for high average power
 - requires D > L
 - requires highly nonlinear material

Summary

- Short wavelength sources potentially advantageous for advanced interferometers
- Nonlinear conversion of solid-state lasers best route to high power
- Rapid progress in commercial and research demonstrations
 - commercial CW green 10 W
 - multi-hundred Watt pulsed green SHG lasers demonstrated
- Scaling to CW >100 W green and UV realistic but challenging
 - appropriate IR pump lasers are well along
 - must develop robust, low-absorption nonlinear crystals
 - implement appropriate thermal and optical device configurations