Absorption measurements by a photothermal technique

Alex Alexandrovski

Martin Fejer

Roger Route

Ginzton Laboratory, Stanford University

Absorption measurements important for LIGO

- Silica material
- HR and BS coatings
- Advanced materials
 Sapphire, YAG, ...
- Advanced components
 e.g. grating beamsplitters/reflectors
- Materials for modulators and isolators

Desirable Features

- PPM sensitivity
- Longitudinal resolution coating vs volume loss
- Transverse resolution homogeneity
- Ease of use
 many samples must be studied
- Time resolved dynamics of induced losses

Absorption measurements by a photothermal technique

OUTLINE

- Photothermal common-path interferometer
- Space resolution
- Surface/bulk absorption signals
- Beamsplitter data
- YAG data
- Sapphire data
- Planned experiments
- Conclusions

Absorption Measurement

Requirements

- < 10^{-4} cm⁻¹ for NLO crystals, < 10^{-6} cm⁻¹ for power optics
- spectrally agile: diagnostics and design data
- time resolved (ms scale): surface vs bulk, locate inhomogeneities
- absolute calibration possible
- "easy" -- many samples need be characterized

Interferometric method

- chopped pump beam heats crystal periodically
- phase of probe beam modulated by photothermal index change
- read out on lock-in

- Problem: chopping frequency limited by thermal time constant (ms)
 - acoustic/mechanical noise very problematic
- Solution: common path interferometry

Loss measurements in optical materials

Detection basics 1: how do we measure?

Self-interference of probe in the near field

 $\Delta \phi$ is phase distortion of the central part of probe beam

CHOM 93

Common-path Photothermal Interferometry (CPI):

Absorption of pump \to heat $\to \Delta \varphi \to$ probe self-interference ΔI Max ΔI at Z_R

Sensitivity: 0.1 ppm/cm with 4 W pump beam

Photothermal common-path interferometer

- ac-component of probe distortion is detected by photodiode + lock-in
- absorption coefficient of 10⁻⁷ cm⁻¹ can be detected with a 5 W pump
- crossed-beams help to avoid false signals from optics and surfaces of the sample

Crossed-beam arrangement

$$L_{eff} = \sqrt{\frac{\pi}{2}} \frac{w_0}{\beta}$$

Surface-to-surface scan

Example: 3 mm-thick neutral filter, 15%-absorbing
Leff = 0.25 mm

Absorption signal in 25mm-thick fused silica beamsplitter

- $\lambda = 1064 \text{ nm}$
- normal incidence
- nonuniform (on submillimeter scale) absorption at both surfaces: from 30 to 110 ppm
- uniform absorption in the bulk:21 ppm/cm ± 10%

Absorption signal in 1cm³ YAG cube: scan from surface to surface

- $\lambda = 1064 \text{ nm}$
- pump power 5W
- uniform bulk absorption of
 105 ppm/cm ± 10%
- normalized to Ti-sapphire reference with a correction for different dn/dT and thermal conductivity

Sapphire Algorption is Complicated

For Example:

- Shows nonmonotonic radial dependence
 - suggests influence of post-fabrication annealing process
 - alteration of redox state of impurity? Ti³⁺/Ti⁴⁺?
- Spatial resolution important to diagnosing problems

in CS 'white' sapphire #0

(Pump power 1 W, λ = 514.5 nm)

Data on sapphire crystals

Crystal	* ' '		Scattering	<u>α(532)</u>	Fluorescence
	532nm	1064nm		α(1064)	
'Window' 3mm- thick	1400 (514 nm)	81	-	17.3	≈ 0.002F, Ti ³⁺
CS 'White' #0	415 (514 nm)	41 (surface anomaly)	Large near the surface	10.1	≈ 0.001F, Ti ³⁺
CS 'White' #1	1600	84	No	19.0	0.0003F
CS 'White' #2	1310	72	Weak band in the bulk	18.2	0.001F
CS 'White' (Perth)	1910	129	Yes, broad band near one face	14.8	0.003F
CS 'Hemex Ultra'	1150	188	No	6.1	≈ 0.0001F
0.1% Ti-doped (reference #2)	0.68/cm (total) 0.145/cm (thermal part)	6400	Yes, macro- defects	22.7 (thermal part)	F, Ti ³⁺
0.05% Ti-doped laser rod (reference #1)	-	19000*	•	-	0.7F, Ti ³⁺

^{*}Absorption measured directly

Relative fluorescence brihtness estimated with calibrated neutral filters,

Ti-doped reference #2 brightness denoted as F