Detect "kicks" to the violin modes in 40-meter prototype LIGO

Bruce Allen, Wensheng Hua and Jason Harrington Physics Department, University of Wisconsin Milwaukee

The violin Modes of the 40 meter LIGO

The model of the violin mode

$$\begin{cases}
Y(\omega) = R(\omega) \bullet X(\omega) \\
Z(\omega) = Y(\omega) + N(\omega) \\
\bar{x}(\omega) = Z(\omega) \bullet G(\omega)
\end{cases}
\begin{cases}
G(\omega) = R^{-1}(\omega) \bullet W(\omega) \\
W(\omega) = \frac{1}{1 + \frac{|N(\omega)|^2}{|R(\omega)X(\omega)|^2}}
\end{cases}$$

$$\overline{x}(\omega) = X(\omega) \bullet W(\omega) + N(\omega) \bullet G(\omega)$$

Simulated Input of the violin mode X(t)

- X is the input of the harmonic Oscillator. X is assumed to be noise plus some "kicks".
- N is another noise source which is independent of X.

An Example:

581.058Hz violin mode in 40-meter prototype LIGO

To estimate the transfer function R and x(t):

- 1. Transform Z(t) into frequency domain and find out the Center frequency f_0 of the violin mode.
- 2. Shift f_0 to DC by multiplying Z(t) with $\exp(i2\pi f_0 t)$ in time domain.
- 3. Pass the result of step 2 through a low-pass filter.

The 581 .058Hz mode after lowpess titler

$$Z'(t) = lowpass(Z(t) \cdot e^{i2\pi f_0 t})$$

Z'(t) is assumed to be the output of a first order infinite response filter:

$$Z'(t) + \tau \frac{dZ'(t)}{dt} = x'(t)$$

4. τ is obtain by fitting a exponential function to the autocorrelation of Z'(t):

$$e^{-t/\tau}$$

5. Finally, de-convolute z' to get $\bar{x}(t)$.

$$\overline{x}(t) = Z'(t) + \tau \frac{dZ'(t)}{dt}$$

The amplitude of the best estimation of the input of 581.058 Iz mode x(t)

Simulation and discussion

The signal is expanded in time domain.

The signal is band passed in frequency domain.

Simulated input X(t) and the final output x(t):

