UT-Brownsville

1. University:

10,000 students
Part of UT system (1992)
Hispanic serving institution

2. Department:

3 faculty (2 relativists)
Bachelor's in Physics
Master's degree with UTEP

3. Resources:

Hardware: SGI Workstations

Software: Mathematica, MATLAB, ...

NASA grant: release time, ...

4. Possibilities for growth:

University is expanding NSF-funded grants for MSI Administrative commitment

Past Projects

1. Stochastic gravity-wave detection: (with B. Allen)

Idea: Calculate key quantities (e.g., optimal filters, snrs, ...) for 5 major interferometers.

CC statistic implemented in GRASP.

Corrected error in literature for $\Omega_{\rm gw}^{90\%}$.

Combine data from different detector pairs, ...

2. GWs associated gamma ray bursts: (with S. Finn, S. Mohanty)

Idea: Indirectly detect GWs by comparing "on" and "off" distributions.

Upper limit on amplitude of GWs comparable to that using MF.

Advantage: No detailed knowledge of waveform required.

Current/Future Projects

1. Maximum-likelihood vs. CC statistic: (with S. Finn)

Idea: Compare false dismissal vs. false alarm curves for each statistic.

Monte Carlo simulations for uncorrelated, white, Gaussian noise.

Preliminary results show ML better.

2. Robust statistic for non-Gaussian noise: (with B. Allen, J. Creighton, E. Flanagan)

Idea: Zero data above breakpoint in non-Gaussian noise distibution.

Derivation for coincident, coaligned detectors with uncorrelated, white, mixture-Gaussian noise.

Monte Carlo simulations.

Extend to separated detectors and colored noise.

Current/Future Projects - (cont.)

3. GWs in close-limit approximation: (M. Diaz and J. Pullin)

Idea: Late stages of head-on collision of 2 BHs as perturbation of Schwarzschild.

Solve wave equation for Zerilli function.

Find metric perturbations in terms of Zerilli; calculate expected snr.

Extend to boosted holes, non-head-on collision, ...

4. SB from deterministic sources: (with S. Finn)

Idea: SB as confusion-limit of discrete, unresolved sources.

Calculate PSDs for different sources.

Construct appropriate statistic.

What to do when signal is not Gaussian??