

Status of LIGO

Valera Frolov

LIGO Livingston Observatory

for the LIGO Scientific Collaboration

• Overview of LIGO

- Gravitational wave detection
- Report on fifth science run
 - Data taking started in November 2005
 - Sensitivity and duty factor
- Summary

Gravitational Waves

- Predicted by General Relativity: Source = Stress-Energy Tensor
- Characterized by dimensionless strain h_{ii}

$$ds^{2} = c^{2}dt^{2} - [1 + h_{ij}(t)]dx^{i}dx^{j}$$

- Quadrupolar radiation, two polarizations + and ×
- Effect from gravity is tidal
- For astrophysical sources $h \sim 10^{-22} 10^{-21}$
- Generated by the bulk motion of matter

GW Sources in LIGO Band 50-1000 Hz

• Compact binary inspirals:

"chirp"

"burst"

- NS-NS waveforms are well described.
 - 1.4 *M*_{solar} NS/NS inspiral is a standard candle.
- BH-BH waveforms are rapidly improving
- Supernovae / Mergers:
 - Short signals. Waveforms not well known.
 - Search in coincidence between two or more interferometers and possibly with electromagnetic and/or neutrinos signals

• Spinning NS:

"continuous"

"stochastic"

- search for signals from observed pulsars
- all-sky search computing challenging
- Cosmic Background:
 - Metric fluctuations amplified by inflation, phase transitions in early universe, topological defects
 - Unresolved foreground sources

Interferometer Optical Layout

End Test Power Recycled Mass Michelson 4 km Fabry-Perot Interferometer arm cavity with Fabry-Perot **Arm Cavities Power Recycling Input Test** Mirror Mass 20 kW 300 W Laser 6 W 50/50 Beam Splitter Signal \propto Phase shift between Photo the arms due to GW detector

Initial LIGO Interferometer Sensitivity

LIGO Observatories

Hanford, WA (H1 4km, H2 2km)

LIGO

- Interferometers are aligned to be as close to parallel to each other as possible
- Observing signals in coincidence increases the detection confidence
- Determine source location on the sky, propagation speed and polarization of the gravity wave

Livingston, LA (L1 4km)

August 30, 2006

What Is Inside

1.2 m diameter - 3mm stainless 50 km of weld 10⁻⁹ torr vacuum and no leaks!

Seismic isolation Stack of masses and springs

Coils and magnets to control the mirror

Fused silica mirror 25 cm diameter 10 kg mass

LIGO

Laser Optical Table

Common arm signal

10 W NdYAG laser λ =1.064 um Stabilized in frequency and intensity

Electro-optic modulators

Dark Port Optical Table

LIGO Scientific Collaboration ~40 institutions, ~550 scientists

Caltech

LIGO Laboratory

MIT

LIGO Hanford Observatory

University of Adelaide ACIGA Australian National University ACIGA **Balearic Islands University** Caltech LIGO Caltech Experimental Gravitation CEGG Caltech Theory CART University of Cardiff GEO **Carleton College Cornell University Embry-Riddle Aeronautical University** University of Florida-Gainesville Glasgow University GEO NASA-Goddard Spaceflight Center Hobart – Williams University India-IUCAA IAP Nizhny Novgorod **IUCCA** India Iowa State University

LIGO Livingston Observatory

Loyola New Orleans Louisiana State University Louisiana Tech University MIT LIGO Max Planck (Honnover) GEO Max Planck (Potsdam) GEO University of Michigan Moscow State University NAOJ - TAMA Northwestern University University of Oregon Pennsylvania State University Southeastern Louisiana University Southern University Stanford University Syracuse University University of Texas-Brownsville Washington State University-Pullman University of Western Australia ACIGA University of Wisconsin-Milwaukee

LIGO Science Run

- The fifth science run started in November 2005
- S5 goal is to collect one year of triple coincidence data at the design sensitivity
- Optimistic event rates: NS/NS ~3/year, BH/NS ~30/year Nakar, Gal-Yam, Fox, astro-ph/0511254
- Plan to reach the Crab pulsar spin down limit
- Expect to beat the Big-Bang Nucleosynthesis limit on gravitational wave density in the LIGO band
- GEO interferometer joined the S5 run in January 2006.
- Virgo interferometer plans to join S5 later this year.

LIGO NS-NS Inspiral Range Improvement

August 30, 2006

S5 Duty Factor

S5 Duty Factor

	H1	H2	L1
Uptime	72%	79%	60%
Wind, Storms, Earthquakes	4.5%		9%
Nearby Logging, Construction, Trains	-	-	10%
Maintenance, Commissioning, Calibration	10%		9%
Hardware and Software Failures	3.5%		7%
Lock Acquisition, Other	10%		5%

H1&H2&L1 = 45% H1||H2||L1||G1 close to 100%

LIGO

Triple Coincidence Accumulation

Expect to collect one year of triple coincidence data by summer-fall 2007

Sometimes You Get Lucky

- Large mirror (ITMY) was wedged into the earth quake stops
- Vented the vacuum and released it. Adjusted EQ stop.
- Noise improved!? 12->14 Mpc

LIGO

Summary

- The fifth science run started in November 2005
- LIGO instruments are performing at the design sensitivity level. Duty factor is improving.
- Expect one year of triple coincidence data by summer-fall 2007