Suspension Thermal Noise in Initial LIGO

Steve Penn, Gregg Harry, Andri Gretarsson

LSC Meeting - LSU - August 2006

LIGO DCC LIGO-G060477-00-Z

- Noise between 40 Hz and 150 Hz has slope near 5/2
- Level is high, but not impossibly high, to be suspension thermal noise
- Very similar level in all three interferometers

LIGO

- Noise between 40 Hz and 150 Hz has slope near 5/2
- Level is high, but not impossibly high, to be suspension thermal noise
- Very similar level in all three interferometers

LIGO

LIGO

H1: 14.5 Mpc, Predicted: 17, Feb 20 2006 05:42:50 UTC

Mechanical Loss in Wires

LIGO

LIGO

MIT Experiment

LIGO

Pathfinder Optic hung in spare frame with wire from the sites. Each wire monitored by eight shadow sensors.

LIGO Typical Violin Mode Loss

LIGO Violin Mode: Reused Clamp

LIGO Violin Mode: Reused Clamp

LIGO Violin Mode: Reused Clamp

Q vs. Amplitude

LIGO

13

Amplitude Dependence of Loss Angle

Clamp Friction losses

- Rubbing friction at high amplitude
 - Higher loss

LIGO

- Amplitude & frequency dependent
- Partial slip (slip-stick) at lower amplitude
 - Nearly frequency independent
 - Degrades with multiple measurements

Proper Clamping

- Clamp should not cause plastic deformation in clamp or fiber
 - Repeatability
 - No time variability
- No Clamp slippage
 - Hardened uniform clamping (collet)
 - Taper fiber ends

Data from Gretarsson thesis W wire in Al clamps. Loss is 100 x internal loss.

LIGO Measurement of Violin Modes at Sites

- Measured Q's are typically lower than the value expected if the loss was only due to the intrinsic loss in the wire (thermoelastic damping and structural loss)
- Mysterious changes in Q
 - Consistent within lock stretch
 - Not consistent between optics
 - Feedback effects? No dependence on optical power
 - Recoil Damping?
 - Clamp Losses?

Violin Mode Q's are inconsistent. Best Q consistent with fundamental mechanical loss.

UGO Violin Mode: Pristine Clamp

New DNA Collet Suspension

- Spring collets with bore of 0.2–0.3 mm
- Clamping is symmetric
- Hardened Tool Steel has no plastic deformation
- Clamping should be **Repeatable**!

Violin Mode: Collet Clamp

LIGO

¹⁹

Tapered Rod of similar temper steel

LIGO standard 12 mil music wire

Assembled using shrink fit with end spot weld

New Directions

- Test wire collets, without galling
- Test tapered wires held in collets
- Test Ribbons

LIGO

- Test for and correct friction at the standoff (HARD)
- Investigate other materials
- Tests for recoil damping (Easy test. Unlikely source of problem.)
- Use apparatus to test new earthquake stops

LIGO New Earthquake Stops

LIGO-Virgo Thermal Noise Meeting Saturday, 7 October 2006 at Virgo Observatory

LIGO Speakers

- **Gim Hough Future research directions**
- Sheila Rowan Next generation materials
- Gregg Harry Coating thermal noise
- **Given Stack Thermal Noise Interferometer**
- Stuart Reid Coating and bonding thermal noise
- Andri Gretarsson Thermorefractive noise
- Alastair Heptonstall Silica suspensions
- Vincenzo Galdi Genetic algorithms
- **9** Juir Agresti Mesa Beams
- **Steve Penn Silica substrates**

The End

Noise Budget

Estimate for thermal noise assuming the suspension noise for all test mass is the same as our result. $\phi = 2 \times 10^{-3}$

LIGO

Worst loss seen from measurements of violin mode at the sites is $\phi = 1.1 \times 10^{-2}$

Best fit to observed 40-10 Hz noise is $\phi \approx 7 \times 10^{-3}$

Strong indications that Suspension thermal noise is a major contributer to the 40–100 Hz excess noise.

Mechanical Loss in Wires

LIGO

LIGO Test for NonGaussian Noise

Q vs Temperature

• Does not seem to be a correlation with temperature

LIGO

• Calls into question recoil damping model to explain Q variation at sites

LIGO Suspension Cage Frequency Measurements

- Measurements on spare cage at ERAU
- Transfer function on top plate
- Compare frequencies with model and measurements at Caltech
- Verify temperature dependance
- Will attempt to modify frequency structure by clamping mass on cage

