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The Problem

• Noise between 40 Hz and 150 Hz has slope near 5/2
• Level is high, but not impossibly high, to be suspension thermal noise
• Very similar level in all three interferometers 
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The Problem

• Noise between 40 Hz and 150 Hz has slope near 5/2
• Level is high, but not impossibly high, to be suspension thermal noise
• Very similar level in all three interferometers 

Baseline 40–100 Hz, Feb 2006

Baseline 40–100 Hz, Aug 2006
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The Problem
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H1: 14.5 Mpc, Predicted: 17, Feb 20 2006 05:42:50 UTC
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The Problem
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Noise Model:                               φwire = 1 × 10
−3
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Mechanical Loss in Wires

Structural loss ≈ half of assumed design value.φstr = 1.70 × 10
−4
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The Problem

Noise Model:                               φwire = 1 × 10
−3

Free Wire:                                   φwire = 1.7 × 10
−4
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MIT Experiment

Pathfinder Optic hung in spare frame 
with wire from the sites.  Each wire 
monitored by eight shadow sensors.
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Typical Violin Mode Loss
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Violin Mode: Reused Clamp

10
10



Violin Mode: Reused Clamp
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Violin Mode: Reused Clamp
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Q vs. Amplitude
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Amplitude Dependence of Loss Angle
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Proper Clamping

• Clamp should not cause plastic 
deformation in clamp or fiber

• Repeatability

• No time variability

• No Clamp slippage

• Hardened uniform clamping (collet)

• Taper fiber ends

 Data from Gretarsson thesis
W wire in Al clamps. Loss is 100 x internal loss.

Clamp Friction losses

• Rubbing friction at high amplitude

• Higher loss

• Amplitude & frequency dependent

• Partial slip (slip-stick) at lower amplitude

• Nearly frequency independent

• Degrades with multiple measurements
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Measurement of Violin Modes at Sites

Violin Mode Q’s are inconsistent.  Best Q consistent with fundamental mechanical loss.

• Measured Q’s are typically lower than the 
value expected if the loss was only due to 
the intrinsic loss in the wire (thermoelastic 
damping and structural loss)

• Mysterious changes  in Q 

• Consistent within lock stretch 

• Not consistent between optics

• Feedback effects? No dependence on 
optical power 

• Recoil Damping?

• Clamp Losses?

(Sam W, LHO)

(Gregg H, LLO ITMX)

Q = 1.3 × 10
5

Q = 1.65 × 10
5
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• Reused Clamps

• Pristine Clamps, 0.7 Nm

• Pristine Clamps, 4.0 Nm

• Pristine Clamps, Max.
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Violin Mode: Pristine Clamp
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New DNA Collet Suspension
17
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New DNA Collet Suspension

• Spring collets with bore of 0.2–0.3 mm

• Clamping is symmetric

• Hardened Tool Steel has no plastic deformation

• Clamping should be Repeatable!
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Violin Mode: Collet Clamp

19



Tapered Wire Suspension

LIGO standard 12 mil music wire

Tapered Rod of 
similar temper steel

Assembled using shrink fit
with end spot weld
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New Directions

• Test wire collets, without galling

• Test tapered wires held in collets

• Test Ribbons

• Test for and correct friction at the standoff (HARD)

• Investigate other materials

• Tests for recoil damping (Easy test. Unlikely source of problem.) 

•  Use apparatus to test new earthquake stops
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New Earthquake Stops

Fused Silica Sphere

1/4”-28 Screw

1/2”-13 Screw

Lock-Nut System

Viton O-rings and 
    end cushion
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LIGO Speakers
Jim Hough – Future research directions

Sheila Rowan – Next generation materials

Gregg Harry – Coating thermal noise

Eric Black – Thermal Noise Interferometer

Stuart Reid – Coating and bonding thermal noise

Andri Gretarsson – Thermorefractive noise

Alastair Heptonstall – Silica suspensions

Vincenzo Galdi – Genetic algorithms

Juir Agresti – Mesa Beams

Steve Penn – Silica substrates
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LIGO-Virgo Thermal Noise Meeting
Saturday, 7 October 2006 at Virgo Observatory 
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The End
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Noise Budget
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Estimate for thermal 
noise assuming the 
suspension noise for 
all test mass is the 
same as our result. 
φ = 2 x 10-3 

Worst loss seen from 
measurements of violin 
mode at the sites is
φ = 1.1 x 10-2 

Best fit to observed 
40-10 Hz noise is
φ ≈ 7 x 10-3 

Strong indications that Suspension thermal noise is 
a major contributer to the 40–100 Hz excess noise.
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Mechanical Loss in Wires

Support

Collet

Isolation Bob
(Collet Block)

Silica Isolation Fiber

Gradient E
Field Excitor

Laser
Split
Photodiode

Wire Sample
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Test for NonGaussian Noise

Rayleigh Monitor 
indicates no major 
departure from 
Gaussian noise in 
40–100 Hz region.
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Q vs Temperature

• Does not seem to be a correlation with temperature

• Calls into question recoil damping model to explain Q variation at sites
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Suspension Cage Frequency Measurements

• Measurements on spare cage at ERAU

• Transfer function on top plate

• Compare frequencies with model and 
measurements at Caltech

• Verify temperature dependance

• Will attempt to modify frequency 
structure by clamping mass on cage
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