CLIO Development in

KAMIOKA

and

LCGT, CLIO collaborators

GWADW Isola d'Elba Italy 2006/5/31

LCGT Budget Application (2005-2006)

Budget Application

Basic Process

- Physics Society Support
- (Astrophysics, High Energy, Nuclear, Cosmic Ray ...)
- Ranking in University of TOKYO
- · Ranking in The Ministry of ECSST
- Approval at The Ministry of Finance

· 2005

- Physics Society Support OK
- Low Ranking in Univ of TOKYO
- Not listed in the plan from The Ministry of ECSST to Finance, then ended.

· 2006

- Physics Society Support OK
- High Ranking in Univ of TOKYO
- Ranking in The Ministry of ECSST is on progress.

Advertisement

Visitors

- The minister of the ministry of ECSST (2005)
- The Secretary of State (IT minister) (2006)
- · USA
- A party of European Scientific Institutes (2005)
- Financial staff of the ministry of ECSST (2005, 2006)
- · Pro. Koshiba (2006)
- Technical Advisory Committee for LCGT (2005)
- Famous English translator of novel (2005)

Public Advertisement

- Symposium entitled "The cosmos probed by Gravity". (ICRR, ERI, NAOJ, ASAHI Newspaper,)
- Symposium in Amaldi6.
- Small symposium is planned.

Over Views

Interferometer Design

- Over View -

Detector parameters

Site		Mirror	
Kamioka mine		Sapphire substrate + mirror	
Laser		coating	
Nd:YAG laser (1064nm)		Diameter :	25cm
Injection lock + MOPA		Thickness :	15cm
Power :	150 W	Mass :	30 kg
Main Interferometer		Absorption Loss : 20p	opm/cm
Broad band RSE configura	tion	Temperature :	20 K
Baseline length :	3km (2.7km?)	$\mathbf{Q}=\mathbf{10^8}$	
Beam Radius :	3-5cm	Loss of coating :	10-4
Arm cavity Finesse :	1550		
Power Recycling Gain: 11		Final Suspension	
Signal Band Gain :	15	Suspension + heat link	
Stored Power :	771kW	with 4 Sapphire fibers	
Signal band :	230Hz	Suspension length :	40cm
Vacuum system		Fiber diameter :	1.5mm
Beam duct diameter :	100cm	Temperature :	16K
Pressure :	10 ⁻⁹ Torr	Q of final suspension	10 ⁸ : 10

Recent R&Ds

Sapphire Mirror - Production, Polishing and Coating -

Production

Polishing

Coating

Size: Substrate (**\$\$250 x 150**)

Company: CSIRO or ... ??

Company: Japan Aviation Inc

Company: Crystal Systems or Rubicon Technology

Method: **HEM or ES2-GSA**

Issues:

Absorption identification be satisfied at the same and decrease

Micro Roughness & RMS: < 1A, 1nm

Curvature & Waviness : 10km order, $\lambda/100$

Issues :

These requirements can time?

Method: IBS

Absorption Loss & area: 1 ppm, \$\$250

Issues:

seems to be optimistic.

Sapphire Mirror - Absorption Identification and Its Decrease-

- Laser absorption is important factor for cooling.
- LCGT target
 - Substrate: 20ppm/cm \rightarrow 250mW
 - Coating: Ippm \rightarrow 40mW
- Current status
 - Substrate : 40 60ppm/cm (CSI Hemex white grade)
 - 20 30ppm/cm (use annealing) (R. K. Route et al., LIGO-G040084-00-Z)
 - Coating: Ippm (R. K. Route et al., LIGO-G030023-00-Z)

Absorption is close to the target value even now.

Our current cryogenic design is possible to cool the mirror, even if the substrate has 60ppm/cm absorption.

Sapphire Mirror Absorption - Cathode luminescence Measurement -

Sapphire Mirror Absorption - Fluorescence using 1064 nm light-

Sapphire Mirror Absorption - Fluorescence using 1064 nm light (Raman Shift) -

チャート15 酸化アルミニウムのラマンスペクトル(横軸ラマンシフト表示)

ラマンシフト表示にしますと、励起波長を変えても同じラマンシフトの波数位置にサファイヤ(酸化アルミニウム)のラマンスペクトルが検出されているのがわかります。

GWADW Isola d'Elba 2006/5/31

Ľ

Sapphire Mirror Absorption - Fluorescence using 532 nm light-

Amount of Cr³⁺ is quite different between CSI and Orbe Pioneer's, but they shows same level of absorption. Then Cr3+ is not the source of absorption. On the other hand, Ti3+ is relatively same level.

Sapphire Mirror Absorption - Trial to decrease F center -

Anneal treatment using HIP (Yamanashi Univ.)

If HIP annealing is effective, it contributes to reduction of F center and change of ion number

HIP condition Ar 80%, O₂ 20. Temperature : 1500. Pressure :200MPa

Sapphire Mirror Curvature Manufacturing - Curvature (~10km) production by coating technique -

- **Q** : Low waviness ($\lambda/100$) and low micro-roughness (0.1 nm rms) are simultaneously satisfied by the present polishing technique?
- A : Not impossible but still difficult ! because the super -polishing treatment, which enables 0.1 nmrms micro-roughness, spoils the waviness.

Change the point of view

Sapphire Mirror Curvature Manufacturing - Curvature (~10km) production by coating for SiO2 -

$R = 10255 \pm 120 m$

Measured by ZYGO-GPI-XP at NAOJ

Sapphire Mirror Curvature Manufacturing -Curvature (~10km) production by coating for SiO2 -

$$2$$
 ~20 nm (~ $\lambda/30$ < Spec. ~ $\lambda/20$)

Accounting for the result 1 and 3, the waviness was estimated not to be spoiled by the coating film.

Micro Roughness : 0.4 nm

[nm]

E 2.

GWADW Isola d'Elba 2006/5/31

Search for Ta₂O₅ replacement ? - KT crystal (KTaO₃) by NTT advanced technology Inc. -

KT crystal has

- comparable refractive index with Ta_2O_5 (n~2.2),

- transparence from 365nm To 4000nm,

-No birefringence -Stable

- Linear Coefficient of Thermal Expansion
- 30 centigrade to +20 centigrade :_{2.30} 6.3 x 10-6 / .
- +20 centigrade to +70 centigrade : 2 6.7 x 10-6 / .

Abbe's Number

.d = 17.3 (@ 28 .)

Sapphire Fiber Bonding and Bending - How to suspend ? -

- There are two approaches (1) Bonding between the mirror and the fiber
 - (i) Direct bonding.(ii) Bending using heat treatment.
- (2) Shape machining into U shape

Elastic bending using CO2 Laser Heating - \$\$\overline{425um fiber -}

CW 50W CO₂ LASER , spot~2 mm

Prof. Limin Tong, State Key Lab. Of Modern Optical Instrumentation, Zhejiang University They successfully bent the sapphire fiber without cracks. More practical shaping, strength Q and thermal conductivity measurement will be planed.

Elastic bending using CO2 Laser Heating - \$\$\overline{1.8mm}\$ fiber -

CW 80W CO₂ LASER Spot ~ ϕ 2mm

Prof. Limin Tong, State Key Lab. Of Modern Optical Instrumentation, Zhejiang University Cracks took place because of small spotting and steep temperature gradient. Now they are preparing high power CO2 laser and bending mechanics.

Summary of LCGT

-In 2006, LCGT will be proposed to the ministry of ECSST from the University of TOKYO as a high ranked project.

-LCGT budget is strictly requested to be cut. From \$160M(2005) to \$140M(2006).

-Several R&Ds about sapphire substrate, polishing and bonding (bending) techniques have been kept going small step by step.