A new facility for thermal conductivity measurements

> Filippo Martelli Univ. of Urbino and INFN Florence

GWADW 2006 – 27/5-02/06 2006 – La Biodola

LIGO-G060313-00-Z

Activities on thermal noise in Florence

- Modelling of thermal noise for Virgo optics and suspensions
- Measurements on crystalline silicon fibres
- Study of new materials for 3rd generation interferometric GW detectors (JRA3-STREGA collaboration)

Cryogenic facility

Thermoelastic properties

- Knowledge of the thermoelastic peak is important for identification of the various contribution to the loss angle (study of bulk, surface, clamp....losses)
- Knowledge of thermal conductivity is crucial for suspensions to be used in cryogenic detectors (heat extraction)

Thermal conductivity of Si

The cryostat

Thermal conductivity measurement

Evaluation of the power loss

Heat loss is due mainly to radiation (small contribution by wire conduction)

Power loss estimation

Power loss estimation

Results

Thermal expansion measurement facility

$$\alpha = 10^{-7} \text{ K}^{-1} \pm 10\% \implies \frac{\Delta L}{L} = 10^{-8}$$

if L=10 cm
$$\Longrightarrow \Delta L = 10^{-9} \text{ m}$$

No hope with a simple Michelson !

Simple Fabry-Perot cavity

Problems from frequency stability !

Thermal expansion measurement facility

Measuring cavity

The reference cavity

Vacuum chamber hosting reference cavity

Heating wires for RC temperature control

Result of the temperature stabilization (Matteo Lorenzini)

T fluctuations must stay below 0.01 K

We now have a few mK stability

15 of 16

Conclusions

- We have a facility for direct measurements of thermal conductivity in samples shorter than 20 cm from 4 K up to room temperature
- First measurements on a Si sample down to 40 K show that the instrument is properly working (we need a better calibration)
- The setup for LHe should still be optimized
- We are studying the possibility of measuring the thermal expansion coefficient as well