

Generation of flat-top beam in a "Mexican hat" Fabry-Perot cavity prototype for advanced GW detectors

Marco G. Tarallo¹ (Universita` di Pisa – INFN Pisa)

In collaboration with J.Agresti¹, E.D'Ambrosio¹, R. DeSalvo¹, D.Forest², B.Lagrange², J.M.Mackowsky², C. Michel², J.Miller¹, J.L. Montorio², N.Morgado², L.Pinard², A.Remilleux², B.Simoni¹, P.Willems¹

¹LIGO Laboratory, Caltech ²LMA Laboratory/EGO

((O))) EGO

Mesa beam for advanced GWID

 Advanced GWIDs aim: sensitivity beyond the SQL

 Test mass TN will be the fundamental limit in the frequency band with highest sensitivity

- Gaussian beams sample a relatively small fraction of the mirror surface
- ⇒ widening and flattening the light probe will depress TN

LIGO Mesa beam for advanced GWID

Mesa beam/MH FP

- It is possible to have a nearly optimal flat top beam reshaping the FP arm cavity mirrors
- The "Mesa beam" is a multi-gaussian laser field designed as superposition of minimal Gaussians with $w_0 = \sqrt{(L/k)}$

The obtained wavefront phase gives the "Mexican hat" profile

to the phase graded mirror

Thermal Noise Prospects

Theoretical investigations:

thermal noise reduction

NS-NS inspiral Reach 193 Mpc 251 Mpc x 1.3

Detection Event Rate x 2.2

!! Mesa beam noise reduction is an additional factor to any other mirror development (optimized coatings, cryogeny, ecc.)

GWADW 2006 - Isola d'Elba (Italy), May 28

[ref. Agresti LIGO-G050310-00-R]

LIGO Mesa beam cavity prototype

- Experimental work before a direct application to a GWID :
- Starting the design of a prototype to generate flat "Mesa" beams (summer 2003, Willems, D'Ambrosio, DeSalvo)
- Design and construction of a suspended rigid FP cavity at Caltech (autumn 2003 – summer 2004, Simoni, DeSalvo et al.)
- Manufacturing first test Mexican hat (MH) mirrors (2004-2005, LMA laboratory)
- Full prototype experimental set up (autumn 2004 spring 2005, Tarallo, Willems, Agresti, DeSalvo)

- Testing MH mirrors and achieving the first flat Mesa beam (summer 2005, Miller, Tarallo, Willems et al.)

Mesa beam cavity prototype

- Necessity to verify the behavior of the mesa beam and study its generation and control before its possible application to GW interferometers
- We built a rigid, folded, suspended, 7.32m long FP cavity supporting a MH mirror to investigate the **modes structure** and characterize the **sensitivity to perturbations**

Mesa beam cavity experimental setup

- Input/output optics bench:
- Nd:YAG Mephisto laser
- Mode match telescope
- Fast photodiode for transmitted power readout
- CCD camera to control the locked TEM
- Suspended FP cavity, F ~ 100
- Profile readout bench (CCD camera, high resolution)
- Feedback control electronics
 & cavity mirrors DC driving

"Mexican hat" mirrors

- LMA laboratories provided three mirror samples
- C05004 (test run):
- Thin substrate (20 mm)
- large offset on the central bump
- C05008 & C05009:
- Thick substrate (30 mm)
- Both affected with a not negligible slope on the central bump

We can characterize how mirrors imperfections affects the beam in such a interferometer

FFT simulations

- Using paraxial approximation, FFT codes can simulate the propagation of actual TEM patterns on optical cavities
- A Mathematica FFT routine has been dedicated to simulate our cavity beam behavior: it gave us the best tool to choose the best MH: C05008

First implementation of MH C05008 map

FFT EM field on a ideal MH mirror

FFT simulations

 The slope on the central bump can be corrected applying the right mirror tilt

≈5 nm error central area

MH Cavity Alignment

- Spherical optics: tilt is translated in a change of the optical axis
- MH mirrors: only cylindrical symmetry
- -> resonant beam phase front change with the alignment
- Folded cavity: no preferential plane for mirrors alignment
- very difficult align withinrad precision

- Experimental setup (electronics, beam acquisition, locking...) tested with 8m r.o.c. spherical end mirror
- MH installation: no stable Mesa beam profile was acquired at the beginning
- Higher order modes were found very easily, good agreement with numerical prediction!

'TEM10' 1D profile fit:

Fit function: Mesa 'TEM10'

Fit function: Laguerre-Gauss TEM10

$$Rsq = 0.990$$

$$Rsq = 0.929$$

First Experimental Results

 Misalignments and mismatching effects has been modeled to recognize "strange" resonant modes

TEM00 tilt simulation

Systematics and following steps

- Strange evidence: every time we tried to align the cavity, mode shapes became worse and worse (as with spherical end mirror)
- Central part of the cavity seems "unstable": maybe the problem is not the MH but the other two mirrors

- Mechanical clamping, PZTs and screws stress ~ 60 nm deformation -> three times the height of the MH central bump
- We changed mirrors mounts reinforcing flexible mirrors with aluminum rings

LIGO-G0200XX-00-M **GWADW 2006 - Isola d'E**

First Mesa beam observations

 We were able to stably lock on the Mesa 'TEM₀₀'

Best Mesa beam

The result is consistent with the best achievable using our current prototype MH mirror

First Mesa beam observations

- Comparison with FF1 results:
- Jagged top due to MH bump imperfections both in FFT and in experimental profiles
- Deviation from the ideal Mesa field, almost the same
- Still same asymmetry due to flat mirrors imperfections
- The beam has the expected size within the experimental uncertainty
- Input and folding mirrors are the second main limitation

MH cavity characterization

- Remarkable agreement between numerical eigenvalues and experimental spectrum
- Cavity finesse and coupling are unavoidable depressed by flat mirror deviations (F_{exp} ≤ 68 instead of 100)

Tilt sensitivity

- A preliminary quantification of beam sensitivity to mirror tilts was carried on
- Simulations and experimental data shows the same trend but a factor 1.5 of disagreement (TBI)

Conclusions and Future

- We are able to produce acceptable flat-topped beams with imperfect optics
- Alignment more taxing than with spherical mirrors
- MH "profile deposition" technique is actable, but better for larger mirror radius
- Next steps:
- Study MH FP coupled with recycling cavities

LIGO-G0200XX-00-M

