

Demonstration of lock acquisition and optical response on Detuned RSE interferometer at Caltech 40m

GWADW-VESF meeting @ Elba

May 31, 2006

Osamu Miyakawa, Caltech

+ 40m team

LIGO- G060231-00-R

Advanced LIGO optical configuration

Historical review of Advanced interferometer configuration

Caltech 40 meter prototype interferometer

An interferometer as close as possible to the Advanced LIGO optical configuration and control system

- Detuned Resonant Sideband Extraction(DRSE)
- Power Recycling

- Suspended mass
- Digital controls system
- To verify optical spring and optical resonance
- To develop DC readout scheme
- To extrapolate to AdLIGO via simulation

Signal extraction scheme

- Arm cavity signals are extracted from beat between carrier and f_1 or f_2 .
- Central part (Michelson, PRC, SRC) signals are extracted from beat between f_1 and f_2 , not including arm cavity information.

Mach-Zehnder interferometer to eliminate sidebands of sidebands

LIGO- G060231-00-R

LIGO

Pre-Stabilized Laser(PSL) and 13m Mode Cleaner(MC)

LIGO-I type single suspension

- Each optic has five OSEMs (magnet and coil assemblies), four on the back, one on the side Suspension Block Suspension Support Structure Suspension Wire Magnet/Standoff Assembly Stiffener Bar Guide Rod & Wire Standoff Head Holder Sensor/Actuator Head Safety Stop Housing
 - The magnet occludes light from the LED, giving position
 - Current through the coil creates a magnetic field, allowing mirror control

LIGO

DARM Optical response LIGO with fit to A.Buonanno & Y.Chen formula

Description of data, fit: http://arxiv.org/abs/gr-qc/0604078 LIGO- G060231-00-R GWAWD-VESF meeting at Elba, May 2006

Mathematical description for optical spring in detuned RSE

ABYC equation:relation using two photon mode among input vacuum **a**, output field **b**, input power and gravitational wave *h*

LIGO

LIGO G060231-00-R

$$\begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} = \frac{1}{M} \begin{bmatrix} e^{2i\beta} \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} + \sqrt{2\kappa} \tau e^{i\beta} \begin{pmatrix} D_{1} \\ D_{2} \end{pmatrix} \frac{h}{h_{SQL}} \end{bmatrix}$$

a :input vacuum h_{SQL} :standard quantum limit \bullet : transmissivity of SRM $\& c$: input power coupling h :gravitational wave ϑ : GW sideband phase shift
Strain sensitivity: ratio h and **a** on **b** $h_{n}(\varsigma) = \frac{h_{SQL}}{\sqrt{2\kappa}\tau} \begin{bmatrix} \sqrt{(C_{11} + C_{22})^{2} \sin \varsigma + (C_{12} + C_{21})^{2} \cos \varsigma} \\ D_{1} \sin \varsigma + D_{2} \cos \varsigma \end{bmatrix} e^{i\beta} = \frac{\sqrt{(C_{11} + C_{22})^{2} \sin \varsigma + (C_{12} + C_{21})^{2} \cos \varsigma}}{M} e^{i2\beta}$
Optical noise: ratio between **a** and **b** $\frac{b_{\varsigma}}{a_{\varsigma}} = \frac{\sqrt{(C_{11} + C_{22})^{2} \sin \varsigma + (C_{12} + C_{21})^{2} \cos \varsigma}}{M} e^{i2\beta}$
Measurement of optical response: ratio h and **b** $\frac{b_{\varsigma}}{h} = \frac{\sqrt{2\kappa}\tau}{h_{SQL}} \begin{bmatrix} D_{1} \sin \varsigma + D_{2} \cos \varsigma \\ M \end{bmatrix} e^{i\beta}$ **a** <

GWAWD-VESF meeting at Elba, May 2006

16

Simple picture of optical spring in detuned RSE

Let's move arm differentially, X arm longer, Y arm shorter from full RSE

Power

X arm down, Y arm up

- Radiation pressure
 X arm down, Y arm up
- Spring constant
 Positive (optical spring)

LIGO- G060231-00-R

X arm down, Y arm down X arr

N/A

X arm up, Y arm down

X arm up, Y arm down

Negative (no optical spring)

GWAWD-VESF meeting at Elba, May 2006

X arm down, Y arm down

Frequency sweep of optical spring

CARM optical resonance and Dynamic compensative filter

CARM optical springs

CARM optical springs at different CARM offsets

140 Arm power = 6Arm power = 8Arm power = 10 130 120 CARM optical response (dB) 110 100 90 80 10^{2} 10^{3} f (Hz)

Solid lines are from TCST
Stars are 40m data
Max Arm Power is ~80

LIGO

LIGO- G060231-00-R

GW readout, Systems

• DC rather than RF for GW sensing

- » Requires Output Mode-Cleaner to reject RF
- » Offset ~ 1 picometer from dark fringe can tune from 0 to 80 deg with 0-100 mW of fringe offset power

Noise Source	RF readout	DC readout
Laser frequency noise	~10x more sensitive	Less sensitive since carrier is filtered
Laser amplitude noise	Sensitivity identical for frequencies below ~100 Hz; both driven by technical radiation pressure	
	10-100x more sensitive above 100Hz	Carrier is filtered
Laser pointing noise	Sensitivity essentially the same	
Oscillator phase noise	-140 dBc/rtHz at 100 Hz	NA

LIGO Squeezing Tests at the 40m

- Go from MIT group brought an audio frequency squeezer to 40m, and injection of squeezed vacuum will be tested.
- SHG, OPO ready, homodyne detector being developed.
- Time to take steps toward injection to 40m interferometer
 - » DRSE configuration will be tested
 - » LIGO-like control systems for eventually porting squeezing technology to long baseline ifos AP Table

- Low frequency-low frequency RF modulation scheme (40m:33-55MHz, AdLIGO:27-45MHz) instead of LF-HF RF
- Alignment Sensing and Control (ASC) on detuned RSE with LF-LF RF modulation
- ASC with lighter mirrors in order to investigate pitch and yaw optical springs
- Variable band operation using SRC error signal normalized by LF f2 power