

Core Optics

Requirements and Design Breakout Presentation NSF Review of Advanced LIGO Project

Gregory Harry LIGO Lab – MIT

Core Optics Functions

- Serve as test masses for interaction with gravitational waves
- Creates high finesse optical cavities to increase signal
 - » Radius of curvature and surface figure must match to the TEM₀₀ spatial mode of the input light
 - » Reflectivity must be high enough on end test masses to achieve required finesse
 - » Reflectivity of input test masses must allow for specified finesse
 - » Microroughness must be low enough to limit scatter losses to acceptable levels
 - » Optical homogeneity of the transmitting optics must be good enough to preserve the shape of the incident wavefront
- Minimize thermal vibrations and other noise sources in gravitational wave band
 - » Materials used for coating and substrate must have low enough mechanical loss to limit in-band thermal noise to acceptable levels
 - » Mass must be high enough to keep radiation pressure noise low
 - » Charge buildup must be low enough to keep charging noise to acceptable levels
- Minimize problems acquiring and keeping the interferometer locked
 - » Interaction between optical cavity mode light and mirror mechanical modes must be controlled to keep parametric instability from causing difficulties
 - » Substrate and coating optical absorption must be low enough to limit the effects of thermal distortion on the interferometer performance

Core Optics Requirements

Mass	40 Kg
Dimensions	340 mm x 200mm
Surface figure	< 1 nm rms
Micro-roughness	< 0.1 nm rms
Optical homogeneity	< 20 nm rms, double pass
Bulk absorption	< 3 ppm/cm
Bulk mechanical loss	< 3×10 ⁻⁹
Optical coating absorption	< 0.5 ppm (required) < 0.2 ppm (goal)
Optical coating scatter	< 2 ppm (required) < 1 ppm (goal)
Optical coating mechanical loss	< 2×10 ⁻⁴ (required) < 3×10 ⁻⁵ (goal)
Arm cavity optical loss / round trip	< 75 ppm

Core Optics Baseline Design

- Fused silica will be used as substrate for all core optics (5.2 M\$)

 - » Four 40 kg Input Test Mass blanks provided by University of Glasgow
- Polish using initial LIGO techniques over larger area (6.4 M\$)
- Connection with suspension to be done with silicate bonded "ear"

From input optics

- Coating with low optical absorption ion beam sputtering 1.6 M\$)
 - » Silica/titania-doped tantala coating for input and end test masses
 - Ongoing research into other options
 - Silica/tantala coating for other optics

Response to 2003 recommendations - 1

"A presentation at a major SPIE or OSA coatings conference ..."

» OSA Topical Meeting - Optical Interference Coatings, Tucson, 2004, Boulder Damage Symposium – Boulder CO, 2003, Materials Research Society - Boston 2003, 2004, SPIE General Meeting – Denver 2004, SPIE North – Ottawa 2004, American Society for Precision Engineering, Connecticut, 2005, SPIE Regional Conference – San Jose, 2006

"Establish close contact with academic thin film research community ..."

» Angus Macleod, University of Arizona; Doug Wolfe, Penn State; Ian MacLauren, Glasgow University; Pierre Khuri-Yakup, Stanford University; Steve Bull, University of Newcastle; Kyrstyn van Vliet, Franz Kaertner, Yoel Fink, MIT; Hai Ping Cheng, University of Florida; Donna Hurley, NIST; Ping Hou, Nortel Networks

"Test of other high index materials"

» Hafnia, Titania-doped Tantala, Lutetium-doped Tantala, Cobalt-doped Tantala, Silica-doped Titania

"Not narrowing vendor options ..."

» Continuing to work with both CSIRO and LMA on research, roughly three other vendors who do ion-beam deposition

"Continue to run long term exposure tests on the optics ..."

- » Long term contamination cavity test runs at Caltech
- » Have witness samples in Hanford vacuum chambers
- » High power test facilities being developed at both LIGO Livingston Observatory and Perth Australia

Response to 2003 recommendations - 2

- "Ensure that silica has been adequately characterized ..."
 - » Optically well understood
 - » Thermal noise Comprehensive paper Penn et al, Physics Letters A, 352, (2006), 3-6.
- "Explore possible gains to be made in stabilization of the feedback loops if the present quadrant detectors were to be replaced by ones with larger arrays"
- "Continued develop of active thermal compensation"
 - » Currently working on initial LIGO
 - » See Auxiliary Optics talk by P. Willems for Advanced LIGO plans
- "Rather than spending money on developing a second source for the sapphire ... do designed experiments in process parameters and starting material"
 - » Lower priority since silica has been chosen
 - » Low level research continues on sapphire both in LIGO Science Collaboration for third generation and possible fallback and in larger community
- "Continue efforts to obtain improved quality of both TGG and RTP"
 - » See Input Optics talk by D. Reitze

Core Optics development status

Silica

- Mechanical loss modeled from Q data
- Polishing will use initial LIGO technique
- Metrology close to adequate to guide polishing
- Substrate optical absorption less than coating and acceptable with planned thermal compensation
- Silicate bonding acceptable for connecting "ears" with suspensions

April 27, 2006

Coating

- Low mechanical loss silica/titania-doped tantala demonstrated on small test samples
- Direct observation of thermal noise from silica/titaniadoped tantala coatings confirms thermal noise reduction
- Optical absorption near required level
 - Silica/silica-doped titania also shows improved mechanical loss
- Scatter requires improvement over initial LIGO levels

Challenges

Coating thermal noise and heating

- » Further reduction in coating mechanical loss and optical absorption
- » Ensure a working plan to maintain cleanliness of optics during installation and handling

Observed high scatter in initial LIGO optics

- » Investigate cause of scatter in initial LIGO
- » Work with coating vendors to insure low scatter coatings

Polishing

- » Modeling work to determine effect on sensitivity and performance
- » Improved metrology development of Shack Hartmann sensors at Adelaide University
- » Thermal compensation as partial mitigation

Parametric instability

- » Further modeling and prototyping
- » Investigate possible mitigation spoiling Q, lower power, moving modes, etc.

Noise effects of charge

- » Continuing Kelvin probe work to determine level of expected noise
- » If needed, explore changes in surface conductivity through ion implantation, etc.

Silica thermal noise

- » Measure mechanical loss at lower frequencies and at different sample sizes
- » Investigate annealing

Development work plan

- Qualify vendor(s) with demonstration of polishing
- Work with pathfinder optic blanks obtained by University of Glasgow
 - » Finalize polishing and coating over large area
- Obtain noise prototype for engineering and noise tests in MIT test interferometer (LASTI)
- Continuing research and development on coatings and silical
- Demonstration of coating stress effects on beam splitter
- Continue to develop plans to maintain optic cleanliness from coating through installation