

So, what's going on over at LIGO?

Stan Whitcomb

Physics Research Colloquium
Caltech
13 April 2006

Questions, Questions!

- What is LIGO?
- Why is LIGO?
- How does LIGO work?
- Where is LIGO?
- When is LIGO?
- How well does LIGO work?
- What's next for LIGO?
- Who is LIGO?

What is LIGO?

Numb3rs
"The Running Man"
February 3, 2005

- National facility operated by Caltech and MIT for NSF
- Cutting edge technology in lasers, optics, quiet mechanical systems, control systems, computational systems, ...
- Tabletop experimental physics on a really BIG scale
- Rich community of researchers and educators

Gravitational Wave Physics

- Einstein (in 1916 and 1918) recognized gravitational waves in his theory of General Relativity
 - » Necessary consequence of Special Relativity with its finite speed for information transfer
 - » Most distinctive departure from Newtonian theory
- Time-dependent distortions of space-time created by the acceleration of masses
 - » Propagate away from the sources at the speed of light
 - » Pure transverse waves
 - » Two orthogonal polarizations

Why is LIGO?

Physics

- »Existence of gravitational waves
- »Dynamics of General Relativity in the strong field regime

Astronomy

- »Sources of strong gravitational waves hard to study using electromagnetic radiation
- »Waves carry direct information about the source which are difficult or impossible to get in other ways

Short Gamma Ray Bursts (GRBs)

- GRBs: long-standing puzzle in astrophysics
 - » Short, intense bursts of gamma rays
 - » Isotropic distribution
- "Long" GRBs identified with type II (or Ic) supernovae

in 1998

- "Short" GRBs hypothesized as NS-NS or NS-BH collisions/mergers
- Inability to identify host galaxies left many questions

First Identification from SWIFT GRB050509b (May 9, 2005)

- Near edge of large elliptical galaxy (z = 0.225)
- Apparent distance from center of galaxy = 35 kpc
- Strong support for inspiral/merger hypothesis

Using Gravitational Waves to Learn about Short GRBs

Chirp Signal binary inspiral

Chirp parameters give:

- Masses of the two bodies (NS, BH)
- Distance from the earth
- Orientation of orbit
- Beaming of gamma rays (with enough observed systems)

Another Potential Source: Low-Mass X-ray Binaries

- Binary systems consisting of a compact object (neutron star or blackhole) and a <1 M_☉ companion star (example Sco X-1)
- Companion over-fills Roche-lobe and material transfers to the compact star (X-ray emission)
- Angular momentum transfer spins up neutron star
- Observed Quasi-Periodic
 Oscillations indicate maximum spin rate for neutron stars
- Mechanism for radiating angular momentum: gravitational waves?

Imagine the Universe
NASA High Energy Astrophysics Science Archive

How does LIGO work?

Numb3rs "The Running Man" February 3, 2005

 Need to do a bit more than just shoot the beams through a 4 km L-shaped vacuum pipe

Detecting GWs with Interferometry

Suspended mirrors act as "freely-falling" test masses (in horizontal plane) for frequencies f >> f_{pend}

Terrestrial detector For $h \sim 10^{-22} - 10^{-21}$ L ~ 4 km (LIGO) $\Delta L \sim 10^{-18}$ m

$$h = \Delta L/L$$

test mass

light storage arm

test mass

beam splitter

photodetector

Optical Configuration

LIGO

Test Mass/Mirrors

- Substrates: SiO₂
 - » 25 cm Diameter, 10 cm thick
 - » Homogeneity $< 5 \times 10^{-7}$
 - » Internal mode Q's > 2 x 10⁶
- Polishing
 - » Surface uniformity < 1 nm rms $(\lambda / 1000)$
 - » Radii of curvature matched < 3%</p>

Coating

- » Scatter < 50 ppm
- » Absorption < 0.5 ppm</p>
- » Uniformity <10⁻³
- Production involved 6 companies, NIST, and LIGO

LIGO

Test Mass Suspension and Control

LIGO-G060187-00-M

Caltech Physics Colloquium

How does LIGO work? Initial LIGO Sensitivity Goal

- Strain sensitivity
 <3x10⁻²³ 1/Hz^{1/2}
 - at 200 Hz
- Sensing Noise
 - » Photon Shot Noise
 - » Radiation Pressure
 - » Residual Gas
- Displacement Noise
 - » Seismic motion
 - » Thermal Noise

Where is LIGO?

When is LIGO?

How well does LIGO work?

Measures of performance

- Spectral sensitivity
- Duty cycle
- Non-gaussian noise

How well does LIGO work? Sensitivity

Strain Sensitivity for the LIGO Hanford 4km Interferometer

How well does LIGO work? Progress toward Design Sensitivity

Displacement Sensitivity for the LLO 4km Interferometer

Just Increase the Laser Power?

- Importance of angular control of optics
 - » Servo control at low frequencies to maintain alignment
- Mirror twists
- Cavity mode moves laterally
- Poor overlap at beamsplitter increase light out the "dark port"
- Optical spring (radiation pressure) changes the frequencies of mirror's angular mode
- Need adaptive shaping for feedback dependent on power

photodiode

How well does LIGO work? Sensitivity

How well does LIGO work? Duty Cycle

How well does LIGO work? S5 so Far

How well does LIGO work? Non-Gaussian Noise

What's next for LIGO? S5 Results?

 Nergis Mavavala's Astronomy Colloquium next Wednesday

What is next for LIGO? A Global Network of GW Detectors

What's next for LIGO? A Global Network of GW Detectors

Virgo Italy

GEO 600 Germany

LIGO-G060187-00-M

Caltech Physics Colloquium

What's next for LIGO? Advanced LIGO

- Take advantage of new technologies and on-going R&D
 - » Active anti-seismic system operating to lower frequencies
 - » Lower thermal noise suspensions and optics
 - » Higher laser power
 - » More sensitive and more flexible optical configuration

x10 better amplitude sensitivity

 \Rightarrow x1000 rate=(reach)³

⇒ 1 day of Advanced LIGO

» 1 year of Initial LIGO!

Planned for FY2008 start, installation beginning 2011

What's next for LIGO? Targets for Advanced LIGO

- Neutron star & black hole binaries
 - » inspiral
 - » merger
- Spinning neutron stars
 - » LMXBs
 - » known pulsars
 - » previously unknown
- Supernovae
- Stochastic background
 - » Cosmological
 - » Early universe

Anatomy of the Projected Adv LIGO Detector Performance

What's next for LIGO? Beyond Advanced LIGO

- Third generation GW interferometers will have to confront (and beat) the uncertainty principle
- Standard Quantum Limit (early 1980's)
 - » Manifestation of the "Heisenberg microscope"
 - » Shot noise ~ P^{-1/2}
 - » Radiation pressure noise ~ P^{1/2}
 - » Together define an optimal power and a maximum sensitivity for a "conventional" interferometer
- Resurgent effort around the world to develop sub-SQL measurements ("quantum non-demolition")
 - » Require non-classical states of light, special interferometer configurations, ...
- Cryogenic? Underground?

Who is LIGO?

- LIGO Laboratory
 - » Four sites (Caltech, MIT, LIGO Hanford, LIGO Livingston)
 - » ~180 scientists, students, engineers, other staff
- LIGO Scientific Collaboration
 - » Over 500 members
 - » Over 40 universities or research centers
 - » Eight countries

Who is LIGO? The LIGO Scientific Collaboration

Who is LIGO? A Mixture of Experienced and New

Ranging from 25 days to 35 years

Who is LIGO? Students and Postdocs

A major driving force in LIGO today

Now have graduate students born after the start of

LIGO at Caltech

Who is LIGO? LIGO as a Sociology Experiment

 Harry Collins' (Cardiff) long-running sociological project on how scientists do their research

Who is LIGO? Education motivated by Research

 Outreach to communities, schools, based at two LIGO sites

1/3 of all people at sites are visitors!

Final Thoughts

- We are on the threshold of a new era in GW detection.
 - » LIGO has reached design sensitivity and is taking data
 - » First detections could come in the next year (or two, or three ...)
- A worldwide network is starting to come on line
 - » Groundwork has been laid for operation as a integrated system
- Second generation detector (Advanced LIGO) is approved and ready to start fabrication
 - » Will expand the "Science" (astrophysics) by factor of 1000
- Caltech is playing a leading role both in science and in management