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End-Pumped Slab Research

Review Shally Saraf’s work / Our Architecture
What's been happening lately

Current Slab Amplifier Testbed

Slab Status / Recent Results

e Our Future Plans
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End Pumped Slab Layout
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Results of Shally’s MOPA experiment
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The Hope
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Packaging Improvements
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Setup for MOPA experiment
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« Shally had used a spot size of 300um at slab center

« Our attempt to re-create showed tremendous thermal lensing and

much lower extraction (only 17W at P,,,,=400W)
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275um spot at slab center (cold pass) Same spot pumped by 200W /side
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Days of Manipulation + Luck + a New Slab=
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Oddities / Hope / Future Slabs

 We did manage to extract 42W in a single-pass
(60W double pass)
— Spot size of 120um
— Previously spot size was 300um

* Next slab tested only offered 25W/pass (as of
now)

e Second slab amplifier shows similar behavior
(9ol matches that of 15t setup)

 We are ready to continue double-passing 2
slabs as soon as they are available




Fibers
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e Overview and advantages of fiber amplifiers

High Power Fiber Research

Numerical modeling and simulation
Experimental setup and results
Vision of the future

Future Work
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Fiber Laser Sources for High Power

Advantages

Disadvantages

Highly efficient due to excellent
overlap of the pump with signal

Long absorption length allows
smaller heat dissipation per unit
length

Guiding nature can help ensure
transverse mode quality of beam

Nonlinear effects can limit output
power

Glasses tend to have lower
thermal conductivity than
crystals




Single Mode Fiber Amplifier Challenges

e Coupling pump into fiber

— Single mode fiber coupled diode laser pumps
are limtedto~1W

Solution: Couple multimode pumps

e Nonlinear effects

— Undesirable nonlinear effects (SRS, SBS)
scale approximately with product of
Interaction length and average intensity

Solution: Increase core area
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Large Mode Area Double Clad Fiber

- Inner cladding permits multimode
pumps to be coupled into fiber

e Large mode area decreases
average intensity in fiber

LMA Fiber Types
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Bending losses [dB/m]

Maintain spatial mode by
employing differential
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J. Limpert et al., Photonics West 2003
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Fiber Amplifier Modeling

Birefringence Spontaneous
tensor emission factor

) 1 /
Fd (4, +6}<z> 1,05, +E.@)
AN

Stokes vector  pueller Gain

Background loss
components Matrix

“Wagener et al., JLT 1998

Software predicts amplifier and laser output power
versus pump power, fiber length, ion doping, etc.

Code also calculates
— ASE power and spectrum - Nonlinear effects
— Polarization properties - Fiber temperature profile
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Model Verification

=
]

B Output Signal
® Residual Pump

Yb™ doped fiber

Glass slides

Dichroic

Residual pump f

] é Focusing lens
AWA
Collimating lens C Dichroic % U U T | | |

Collimation lens 20 25

Sou\,tvilﬁtrﬁggf@ﬁ:; D Focusing lens Launched Pump Power (W)
90% Reflector

10% Transmitter —t Cylintrical lens
<> for circularizing Pump diodes

940nm
A _J > Collimation lens

OSA
o‘"’
s | Eu 1 Input signal
v Flipper p Qt
Isolator power meter
NPRO I:|

Power at fiber end (W)
o N A ® ® O

o
o
—_
o
—_—
o

Master osillator I: — D

Half-wave plate \‘

Polarizing beam splitter

LSC (Byg’}

Beam dump




SBS avoidance
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High Power Fiber Amplifier Setup
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High Power Fiber Amplifier Results (1)

Power curve for Fiber MOPA
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High Power Fiber Amplifier Results (2)

Reflection versus Voltage
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Analysis of mode cleaner reflection spectrum indicates that less than 1.5%
of the output power is contained in the higher order modes at 10 W level




Improving Output Characteristics

« Alternate fiber from another vendor (Liekki)

Power Data versus Incident Pump Power
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Vision of the Future

Yb-doped
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Increasing Reliability -- Silicate Bonding

e No high temperature processes

 Bond is as strong as substrate in silica/silica bonds

* Low optical absorption

== 15.0 20.1 nmM

0

bhond.013

Courtesy of Sheila Rowan

0.0 nm

Fused silica

Fiber in capillary bonded to optical flat
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Measured Silicate Bond Properties
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Future Work

» Continue characterizing Liekki gain fibers

 Machine new mounts for fiber laser to increase stability
* Obtain 150 W of output power

» Characterize fiber amplifier output

 Manufacture/obtain taper and compare free space noise
amplifier properties to tapered input properties

* Look at new material systems which may offer lower
SPONTANEQOUS Brillouin scattering noise (i.e.
phosphates)
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