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Outline of Presentation

o Description of an IFO Length Control System
and its modes of operation

> > Operations Mode

> > Acquisition Mode

o Motivation of need for a model of Acquisition
o Building Block Modeling Approach

> > Lessons for LIGO from Coupled Cavity Model

> > Lessons for LIGO from Recombined lfo Model

> > Recycled IFO Model

o Major challenges in locking LIGO
o Conclusions (i.e. importance of acquisition

modeling to LIGO)
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BLOCK DIAGRAM OF INTERFEROMETER
SEHVO CONTROL SYSTEMS
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I nterferometer Length Control
System

L = n),r12

RF=*

Operations Mode
)) IFO on resonance ==) AL <1 nm

> > Can model as a simple linear system

v(co)= rffirr)'^L

System
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Interferometer
Ciystem (

Control
2)

Length
contd.

L- nM2

RF-

Acquisition Mode
> > AL goes through many f ringes

) ) Control signal is usable for only psecs at a time

>> Can NOT model as simple linear system; is a system with
memory
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Error Signal vs. AL
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Optical Dynamics During
Acquisition (memory!)

. E field in cavity at time "t" equals I of fields due
to light entering cavity at discrete times, t, t-r,...

E field in cavity at t: E(t) - Q + tE,

E field in cavity al2r: E(2r) =Er* E.+ tE"

<-: V
Es(o)

*

E
2

L AL=VT
(path length difference
due to mirror motion)

E.(t)
J---||>
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Optical Dynamics During
Acquisition 2)(contd.

o Why do you see a fringe?

FIELDS WHEN IFO OFF RESONANCE:

%
€ERE's
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Vf

Field propogating to left is dorninated
by prompt reflection En

FIELDS WHEN IFO CLOSE TO RESONANGE:
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Field propogating to left has large component
of leakage field {contructive and destructive
interference creates fringe structurei
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Motivation of Need for a Model
of Acquisition

o Provides fundamental understanding of locking
process

> ) The single Fabry-Perot model introduced us to concept of
"Threshold Velocity"

o Diagnostic Tool

> ) Fringe gives information on relative velocity of test masses
(no other direct measurement of this has been done)

>> Other possibilities not yet explored???

o Opens up realm of possibilities for doing
computer control

> > We were able to use real-time fringe information to slow up
test mass in order to aid locking capability of analog servo
for Single Fabry-Perot
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ANALOG
CONTROLLER

To Coil-
Magnet
Drive

Demodulated
Reflected Light

DC Reflected
Light Trigger

t_

Controller
State Select

REAL TIME DIGITAL CONTROLLER

Experimental Acquisition time decreased
by a factor of 10 !!!

Waveform
Analysis

Pulse Width
Calculation



Acquisition Modeling Program :

Building Block Approach

SINGLE CAVITY:
(1) Confidence in modeling techniques
(2) Concept of thresh. vel. revealed
(3) Testbed for computer control

t

q

RECOMBINED IFO:
(1) ldentified Need for Switching

Feedback Signs During Acq

COUPLED CAVITY:
(1) Computational issues for Optical

Modeling solved
(2) Locking Sequence ldentified

tI

{
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For LIGO From
Cavity Modeling

Locking sequence predetermined by ifo config.
>> idea of sbs. resonating in rec. cavity first was a revelation

Analog control design strategy became obvious

,l- i," ro*
Ls rnt2 isb = tr!"tlf€Xc

STATE 2

bac* cavity reson€nce cftanges
effecfrye mirror ref by t80 deg

STATE 3

Lessons
Coupled
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WHY DOES REFLECTIVITY
OF CAVITY CHANGE BY 180 DEGS WHEN IT

STARTS RESONATING?

FIELDS WHEN IFO OFF RESONANCE:
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Lessons for LIGO from
Recombined I FO Modeling

o Polarity of certain signals switch as ifo goes
through state change

State 3

State 4
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Recycled IFO Configuration for
LIGO

Quad signals proportional to differential
motions

In-phase signals proportional to common mode
motions

tr" ro*
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L1.L2
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Lessons for LIGO from
Recycling Model

1. Only 1 locking sequence that works (profound
influence on control system design)
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Lessons for LIGO from R
Model (contd.2)

ecycling

2. Sensing points must be chosen so servos
stable in each state
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Lessons for LIGO from Recycling
Model (contd. 3)

3. lfo kicked out of lock every time sideband
resonates in arm cavity (could be disastrous
for "time to acquire")
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Lessons for LIGO from R
Model (contd. 4)

o Possible solutions to problem

> > Turn off recycling cavity length controllers for brief time
while back cavity goes through side band fringe

) ) "Pong" guided lock acquisition (play ping pong with the test
mass so that it never goes more than a quarter wave from
fringe central).

ecycling
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Lessons for LIGO from
Model (contd.

4, As in Recombination, Servos require Sign flips

q$ffi.

Big gain changes in servo loops as sequence
through locking states

Low threshold velocity in L1-L2 loop (will

require some form of "guided lock")

Recycling
5)
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Major Challenges in Locki ng
LIGO

Speed of acquisition hampered by sidebands
resonating in arm cavity---must find solution

Possible coupling with alignment system
> > Results to-date assume essentially perfect alignment

) ) Many locking problems in experimental setup tend to be

alignment related

> > Next step in modeling program is to add higher order

modes

Other unmodeled phenomena that rears its
ugly head
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Conclusions (i.e. lmportance of
Modeling to LIGO)

o Modeling provides fundamental understanding

>> Without Model:

- Feedback config. choice would have resulted in unlockable ifo

- Limited knowledge of correct locking sequence and sign-flips

- Problem of sidebands locking in arm would be solved by trial-

and-error in the field

o Ability to do "State of the Art" computer control

) ) Without Model:

- Speed of acquisition would be extremely slow

o Tool for trouble-shooting exp. locking problems

o Diagnostics (unexplored realm of possibilities)

) ) average test mass velocity

) > storage time of cavities (f ringe decay envelope)

) ) unexplored realm of possibilities: overcoupling/
undercoupling ???, contrast defe et???, etc.
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Comparison of Model and
Experimental Data For Single Fabry-Perot
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