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Organization of talk

- follow several limitations to sensitivity from physics to solutions

overview of LIGO, status

LIGO: Laser Interferometer Gravitational-Wave Observatory

project to build observatories for gravitational waves (GWs)
two sites, each with a 4km installation

to enable an initial detection, then an astronomy of GWs
group effort of colleagues at MIT, Caltech

supported by the National Science Foundation
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Coalescing Compact Binaries

Standard candle: Binary stars
« Taylor-Hulse Binary 1913+16 shows clear spin-up
almost certainly due to GW radiation at present 8h period

later in life (108 yr.), period shortens to audio frequencies

spends ~1 minute in frequency range from ~30 Hz-1 kHz
« good target frequency range for ground-based ifos.
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Other possible sources

Stellar core collapse - supernova

« symmetric collapse/expansion does not radiate, but...

- rotation can lead to flattening, then formation of a ‘bar’

« either a spin-up (100 to 1000 Hz) or spin-down (100 to 10 Hz)
 radiator resembles binary, similar strains; rate unknown

Stochastic Background

« Several possible (speculative) sources:
> primordial ‘big-bang’ background
> cosmic strings
> confusion limit

« possible to make ‘blind’ search - correlation of interferometers
« signals probably quite small (COBE, Pulsar, Doppler limits)

Periodic sources
« binaries, early in life (space-based detectors needed)
« asymmetric pulsars (e.g., Crab): synchronize with Radio signals

Resume of sources
« sources with well-understood signal forms
« sources with several possible forms
 uncertain rates, signal sizes
 surprises ‘certain’
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Basic principle of detection

Laser Interferometry
« almost ideal gedanken experiment

N

QH Pout
GW strain induces differential length changes in arms
> proportional to arm length, up to fraction of GW wavelength

lengths are measured using light beams and ‘free masses’

broadband response to GWs of varying frequency

at least 4 independent discoveries of method
> Pirani ‘56, Gerstenshtein and Pustovoit, Weber, Weiss
> Weiss 72: practical approach, scaling laws, limitations
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Fundamental limits

Shot or Poisson noise
« intensity at ifo output is a function of arm length difference:
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Quantum Noise

Radiation Pressure

« quantum-limited intensity fluctuations anti-correlated in two
arms

> can be seen as the action a statistical beamsplitter
> better, as result of vacuum fluctuations entering ‘dark port’

- photons exert a time varying force, with spectral

o~ 2Th P,
densityf = X
C

« results in opposite displacements of EACH of the masses:

hP. ~
x(f) = 1 i or strain i = & = 2%
mfZN 8T A ! L

« NOTE: scaling with /P.

log strain h

scaling with the arm length L

~ - — — -

Total readout, or quantum noise log frequency
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shot
« frequency dependence according to ifo configuration, but
« always a minimum for a given frequency as a function of Power

 for simple Michelson, POpt = T[c)\mfz; later limitation, not now
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Realistic optical configurations

Interaction time with the GW

« signal &/ grows as length of interferometer L grows

« up to limit where L = A5,/ 4, order of hundreds of km

« not practical to make 100km straight path, so fold it

« Delay line

laser ———»

[

laser

B

> simple, but requires large mirrors and limited storage time

« Fabry-Perot

> compact, but imposes modes, resonance constraints

« 1 msec storage time for initial system
> optimum sensitivity around 100 Hz; ~100 bounces, ~4km
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Realistic optical configurations

Insufficient raw laser power

 predicted sources require shot noise of ~300 W on beamsplitter
- suitable lasers produce ~10 W, only ~5W at ifo input

Make resonant cavity of interferometer and additional mirror
« can use ifo at ‘dark fringe’; then input power REFLECTED back

_—— — — — — — —

« known as Recycling of light (Drever, Schilling)
« Gain of ~40 possible, with losses in real mirrors
« allows present lasers to deliver needed power

Something for nothing?
 increases stored energy

« just extract small amount (10749 or so) if GW passes
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Control systems

Gives 6 suspended optics, 4 length DOF to control
« Michelson dark fringe condition
- both Fabry-Perot arms on resonance (maximum d¢/dL )

« recycling cavity on resonance/laser wavelength correct

Analyze as common mode/differential mode

phase —
modulation { ‘ L,
| | i
| | ﬂ l
N/ 1
laser i l U H
o o

Angular alignment also required
- all optical cavity axes must be aligned with input beam

. leads to ~10~8 rad requirement
« use techniques similar to length readout, but with spatial info
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Excess phase noise

Many sources of imperfection:

- ifo asymmetries

> lengths (intentional!) 5P [ Ry, 8,
> beamsplitter H
ifo control errors R, T
’ [,,R,,0
> length 2722

. O
> alignment \[/

laser source
> fluctuations greater than shot noise
> angular or translational beam pointing fluctuations

« sensing systems

> linearity
> spatial uniformity

Much of the technical effort goes into these noise sources

complicated sensing and control problems
state-of-the-art optics

state-of-the-art lasers

beautiful and delicate experiments
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Vacuum system requirements

Light must travel 4 km without attenuation or degradation

« index fluctuations in gas cause variations in optical path
> pressure, polarizability, molecular speed of various species
1

2p )5
vaOL

> counting statistics; net effect 4(f) = 4110((

« requirement for quality of vacuum in 4 km tubes from this
> H, of 107° torr initial, 10~ torr ultimate

> H,0 of 1077 torr initial, 10~19 ultimate

« vacuum system, 1.22 m diameter, ~10,000 cubic meters

Also have requirement on contaminants
 low-loss optics can not tolerate surface ‘dirt’

- circulating powers of ~10-50 kW, 1-10 cm?2
 requires strict control on in-vacuum components, cleaning
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Scattered light

Scattered light: ~ 60% of light lost here!

« most is lost as heat (to walls of beam tube)

« some recombines with main beam, adding small random vector
- suffers additional time-varying phase shift

- all optics have some finite backscatter (~100 ppm/bounce)

« spurious interferometers abound; care with all stray beams

Light from mirror surface
« typically from imperfection on ~0.5 cm scale, height 1 nm
> corresponds to ~A/ 800 for center ~10 cm of mirror
« scatters out of main beam, onto beam tube, back onto mirror
 baffles used to strongly attenuate paths, leaves 1m aperture

g
\
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Thermal Noise

Mechanical systems excited by the thermal environment
« results in physical motions of the tests masses

kT
- total energy of k7', leads to X = B~ for integrated motion
ksping

« spectrum according to Fluctuation-Dissipation theorem:

~ _ _1_ kBT :
x(f) = Tz 1(Z(f)) the real (lossy) impedance

- e.g., damping term in an oscillator: F_ . = m¥+ U(Z(f))x + kx

« usually think of viscous damping: O(Z(f)) = b, a constant
- most real materials show internal friction,

« = —kx replaced by FF = —k(1 +i@(f))x, ©(f) often constant

pendulum
suspension
b4
c
e
°
-
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Seismic Noise

Motion of the earth
« driven by ocean tides, wind, volcanic/seismic activity, humans

. for LIGO sites, characterized by 10-7//2 m/ ./Hz

e requires e.g., roughly 109 attenuation at 100 Hz
« ~300 micron tidal motion, microseismic peak at 0.16 Hz...

Approaches to limiting seismic noise

« careful site selection
> far from ocean, significant human activity, seismic activity

« careful building design
> low coefficient of drag for wind
> low air velocities in HVAC, put refrigeration at a distance

« active control systems (0.1 - 30 Hz)
> accelerometer measures motion w.r.t. inertial mass
> servo system and actuator corrects for perceived motion

« simple damped harmonic oscillators in series
> Viton (or constrained layer) springs and SS masses

« one (or later, more) low-loss pendulums for final suspension
> gives 1//2 for each pendulum
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Gravity Gradients

Local ‘static’ gravitational force sum of mass distributions
« dominated by unchanging attraction of earth
« additional time-varying contributions from other sources:

« seismic compression
> surface seismic waves compressing nearby earth

« weather
> variations in atmospheric pressure changing air density

¢ moving massive objects
> humans passing close (<10 meters) to test masses

GM()mr

r

« for moving/changing mass element M, ?(t) =

Places limit on lowest frequencies detectable by

ground-based interferometers
« some engineering solutions to ground variations, nearby activity

« nothing to do about the weather!
« practical limit: down to roughly 10 Hz
 lower frequencies are domain for space-based interferometers

Another crucial reason to make interferometers long:
these motions must be small compared with GW strains
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Summary of initial LIGO interferometer

Optics

« Michelson interferometer to read out strain
> Fabry-Perot cavities to increase interaction time with GW
> power recycling of light to achieve ~300 W circulating
> 25cm diameter, 10cm thick mirror-testmasses
> sub-nm optics surface figure

« 10W Nd:YAG laser, stabilized in frequency, intensity, position
> to use monolithic master oscillator, multipass amplifier

« vacuum path to control noise from residual gas

> 10,000 cubic meters of UHV (10~ torr ultimate)

- baffles in beam tube to control scatter
> glass on stainless steel (kitchen pot technology)

Mechanics

« thermal noise controlled by material selection, suspension
> fused quartz test masses, steel wire suspension

4 km long arms to keep mechanical noise terms manageable
> close to point of diminishing returns for today’s technology
> earth curvature gives vertical to horizontal coupling

choice of sites, buildings limit input seismic noise

remaining seismic noise reduced by passive, active filters
control systems to maintain interferometer operational
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LISA and Earth interferometers

Similarities, Differences, Challenges

Ground-based LISA
Frequency Range 10t — 1074 Hz 104 — 101 Hz
Burst/Integrated ~10-23 ~10-23
strain sensitivity (at ~100 Hz) (at ~0.001 Hz)
Arm Length ~1013 m ~1079 m
Displaggment ~1p-19_m ~10-12_m
sensitivity JHz JHz

Stochastic forces

Sensing system

seismic isolation,
suspensions,
thermal noise

laser power,
optics development

inertial sensing,
drag-free technology,
thermal distortions

clocks and corrections,
transponding system
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log10(Sensitivity) [m/rt(Hz)]

Initial LIGO sensitivity
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(model ‘snapshot’ of mid-July 96)
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Limits due to facilities
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LIGO

Observatory characteristics

Two sites separated by 3000 km

each site carries 4km vacuum system, infrastructure
each site capable of multiple interferometers

start with 2 (full, half-length) at one site, 1 at other site

coincident observation in all 3 interferometers
> to reduce accidentals due to non-gaussian noise

Evolution of interferometers in LIGO

establishment of a network with other interferometers

multiple users of LIGO, simultaneous operation and
development, focussed searches

lifetime of >20 years

goal: to be compatible with all technology developments for
terrestrial interferometers
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LIGO Sites

Hanford, WA
« located on DOE reservation

 treeless, semi-arid high desert
e 25 km from Richland, WA

Livingston, LA

« located in forested, rural area

« commercial logging, wet climate
« 50km from Baton Rouge, LA
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LIGO Status

Civil construction (Parsons, Levernier)

« beam tube slab finished in WA, covers in fabrication
 buildings in WA in construction

« buildings to be finished 9-97 (WA), 3-98 (LA)

Beam tube (Chicago Bridge & Iron)

 steel mill setup near WA site, welder set up, steel pre-baked
- baffles in fabrication (baked glass on stainless steel)

« beam tubes and covers to be finished spring ‘98, spring ‘99

Vacuum Equipment (Process Systems International)
- first article chamber in fabrication

« big gate valves in test

« vacuum equipment installed 3-98, 9-98

Detector (MIT/CIT)

« R&D well advanced on subsystems

 detailed tests on high-sensitivity prototypes at MIT and CIT

« interfaces and detailed requirements for subsystems underway
« subsystems delivered early-'99

« coincidence tests in 2001
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