LIGO: Progress toward Gravitational Wave Detection

David Shoemaker
MIT, LIGO Project

8 February 96

G960074-00-D

Organization of talk

- nature of GWs, sources within range of technologies
- fundamentals of detection mechanism
- follow several limitations to sensitivity from physics to solutions
- overview of LIGO, status

Introduction

LIGO: Laser Interferometer Gravitational-Wave Observatory

- project to build observatories for gravitational waves (GWs)
- two sites, each with a 4km installation
- to enable an initial detection, then an astronomy of GWs
- group effort of colleagues at MIT, Caltech

MIT:

Scientists	Graduate students	Engineering, Technical, Support
Peter Fritschel	Brett Bochner	Ralph Burgess
Gabriela Gonzalez	Peter Csatorday	Tom Evans
David Shoemaker	Brian Lantz	Ed Kruzel
Daniel Sigg	Nergis Mavalvala	Will Plummer
Kris Sliwa (Tufts)	Partha Saha	Michael Richard
Rai Weiss		John Tappan
Mike Zucker		

Other efforts

- VIRGO: French-Italian, one 3 km antenna near Pisa
- GEO-600: German-Scots, one 600 m antenna near Hannover
- TAMA-300: Japanese, one 300 m 'antenna' near Tokyo

Nature of Gravitational Radiation

Assume General Relativity (Einstein 1916)

- wave is transverse, spin 2
- propagation following the wave equation $\left[\frac{\partial^2}{\partial x_1^2} \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right] h(x, t) = 0$
- passing GW leads to change in proper distance $\delta l \approx \left(\frac{1}{2}h(t)\right)L$ between points of initial separation L

This is the key for the detection of GWs

Characteristics of radiative process

Conservation laws:

- conservation of mass → monopole radiation forbidden
- conservation of momentum \rightarrow no dipole radiation

Lowest order radiation term: quadrupole

- wavefield proportional to \ddot{Q} , second derivative of quadrupole
- or, non-spherical part of kinetic energy
- dimensional analysis leads to $h \approx \frac{G \ddot{Q}}{c^4 r}$
- $G/c^4 = 10^{-33}$ (MKS), numerically very small
- $h \approx 10^{-20} \left(\frac{E_{\text{non-sphere, kinetic}}}{M_o c^2} \right) \left(\frac{15 \text{Mpc}}{r} \right)$, solar mass, Virgo cluster

Contrast with E&M astrophysical sources

E&M

space as medium for field incoherent superpositions of atoms, molecules

wavelength small compared to sources images

absorbed, scattered, dispersed by matter

10⁷ Hz and up

GW

spacetime itself
coherent motions of
huge masses (or energy)

wavelength ~large compared to sources no spatial resolution

very small interaction; no shielding

10⁴ Hz and down

- very different information
- mostly mutually exclusive
- difficult to predict GW sources based on E&M observations

Coalescing Compact Binaries

Standard candle: Binary stars

- Taylor-Hulse Binary 1913+16 shows clear spin-up
- almost certainly due to GW radiation at present 8h period
- later in life (10^8 yr.) , period shortens to audio frequencies
- spends ~1 minute in frequency range from ~30 Hz-1 kHz
- good target frequency range for ground-based ifos.

for most of life, waveform well known if masses known

- Newtonian/quadrupole approximation
- allows calculation of signal amplitudes, optimal filters
- measurable relativistic corrections ~10%; requires 3 PN orders
- end of life (coalescence) yet to be calculated (measure first?)
- typical number: $h \approx 10^{-21}$ for 1.4 M_o, 200 Mpc, ~3 events/yr.
- since $h = \delta l/L$, expect $\delta l = 10^{-21}$ m for L = 1 m

Coalescing Compact Binaries

Waveforms of final minutes, for various ellipticities

Spectral representation, with LIGO sensitivity curves

Other possible sources

Stellar core collapse - supernovæ

- symmetric collapse/expansion does not radiate, but...
- rotation can lead to flattening, then formation of a 'bar'
- either a spin-up (100 to 1000 Hz) or spin-down (100 to 10 Hz)
- radiator resembles binary, similar strains; rate unknown

Stochastic Background

- Several possible (speculative) sources:
 - > primordial 'big-bang' background
 - > cosmic strings
 - > confusion limit
- possible to make 'blind' search correlation of interferometers
- signals probably quite small (COBE, Pulsar, Doppler limits)

Resume of sources

- sources with well-understood signal forms
- sources with several possible forms
- uncertain rates, signal sizes
- surprises: a new domain, hidden from radio, visible

Basic principle of detection

Laser Interferometry

almost ideal gedanken experiment

- GW strain induces differential length changes in arms
 - > proportional to arm length, up to fraction of GW wavelength
- lengths are measured using light beams and 'free masses'
- broadband response to GWs of varying frequency
- at least 4 independent discoveries of method
 - > Pirani '56, Gerstenshtein and Pustovoit, Weber, Weiss
 - > Weiss '72: practical approach, scaling laws, limitations

Fundamental limits

Shot or Poisson noise

• intensity at ifo output is a function of arm length difference:

$$P_{\text{out}} = P_{\text{in}} \left(1 + \frac{1}{2} \cos \left[\frac{2\pi}{\lambda} (l_1 - l_2) \right] \right); (l_1 - l_2) = h(t)L$$

- maximum slope: $\frac{dP}{d\delta l} = \frac{2\pi}{\lambda} P_{\text{in}}$
- uncertainty in intensity due to counting statistics: $p_{\text{out}} = \sqrt{\frac{h_{\text{Pl}}\omega}{P_{\text{in}}}}$
- can solve for equivalent strain: $h_{\rm shot} = \frac{\delta l}{L} = \frac{1}{L} \sqrt{\frac{h_{\rm Pl} c \lambda}{2\pi P_{\rm in}}}$
- Note: scaling with $1/\sqrt{P_{in}}$; gives requirement for laser power

Quantum Noise

Radiation Pressure

- quantum-limited intensity fluctuations anti-correlated in two arms
 - > can be seen as the action a statistical beamsplitter
 - > better, as result of vacuum fluctuations entering 'dark port'
- photons exert a time varying force, with spectral

density
$$\tilde{f} = \sqrt{\frac{2\pi h P_{in}}{c\lambda}}$$

• results in opposite displacements of EACH of the masses:

$$\tilde{x}(f) = \frac{1}{mf^2} \sqrt{\frac{hP_{\text{in}}}{8\pi^3 c\lambda}}, \text{ or strain } h = \frac{\delta l}{l} = \frac{2\tilde{x}}{L}$$

- NOTE: scaling with $\sqrt{P_{\rm in}}$
- scaling with the arm length L

Total readout, or quantum noise

- quadrature sum $i_q = (h_{shot}^2 + h_{rad press}^2)^{1/2}$
- frequency dependence according to ifo configuration, but
- always a minimum for a given frequency as a function of Power
- for simple Michelson, $P_{\text{opt}} = \pi c \lambda m f^2$; later limitation, not now

Realistic optical configurations

1) Interaction time with the GW

- signal δl grows as length of interferometer L grows
- up to limit where $L \approx \lambda_{GW}/4$, order of hundreds of km
- not practical to make 100km straight path, so fold it

- Delay line
 - > simple, but requires large mirrors and limited storage time
- Fabry-Perot
 - > compact, but imposes modes, resonance constraints
- 1 msec storage time for initial ground-based system
 - > optimum sensitivity around 100 Hz; ~100 bounces, ~4km

Realistic optical configurations

2) Insufficient raw laser power

- predicted sources require shot noise of ~100 W on beamsplitter
- suitable lasers produce ~10 W, only ~5W at ifo input

Make resonant cavity of interferometer and additional mirror

• can use ifo at 'dark fringe'; then input power REFLECTED back

- known as Recycling of light (Drever, Schilling)
- Gain of ~30 possible, with losses in real mirrors
- allows present lasers to deliver needed power

Something for nothing?

- no, cannot use all that light to heat room
- just extract small amount (10^{-20} or so) if GW passes

Control systems

Gives 6 suspended optics, 4 length DOF to control

- Michelson dark fringe condition
- both Fabry-Perot arms on resonance (maximum $d\phi/dL_n$)
- recycling cavity on resonance/laser wavelength correct

Analyze as common mode/differential mode

Angular alignment also required

- all optical cavity axes must be aligned with input beam
- leads to $\sim 10^{-8}$ rad requirement
- use techniques similar to length readout, but with spatial info

Excess phase noise

many sources of imperfection:

- ifo asymmetries
 - > lengths (intentional!)
 - > losses
 - > beamsplitter
- ifo control errors
 - > length
 - > alignment

- laser source
 - > fluctuations greater than shot noise
 - > angular or translational beam pointing fluctuations
- sensing systems
 - > linearity
 - > spatial uniformity

much of the technical effort goes into these noise sources

- complicated sensing and control problems
- state-of-the-art optics
- state-of-the-art lasers
- beautiful and delicate experiments

Vacuum system requirements

Light must travel 4 km without attenuation or degradation

- index fluctuations in gas cause variations in optical path
 - > pressure, polarizability, molecular speed of various species
 - > counting statistics; net effect $h(f) \approx 4\pi\alpha \left(\frac{2\rho}{v_0 w_0 L}\right)^{\frac{1}{2}}$
- requirement for quality of vacuum in 4 km tubes from this
 - \rightarrow H₂ of 10^{-6} torr initial, 10^{-9} torr ultimate
 - > H_2O of 10^{-7} torr initial, 10^{-10} ultimate
- vacuum system, 1.22 m diameter, ~10,000 cubic meters

Also have requirement on contaminants

- low-loss optics can not tolerate surface 'dirt'
- requires strict control on in-vacuum components, cleaning

Scattered light

Scattered light: ~ 60% of light lost here!

- most is lost as heat (to walls of beam tube)
- some recombines with main beam, adding small random vector
- suffers additional time-varying phase shift
- all optics have some finite backscatter (~100 ppm/bounce)
- spurious interferometers abound; care with all stray beams

Light from mirror surface

- typically from imperfection on ~0.5 cm scale, height 1 nm
 - > corresponds to $\sim \lambda / 800$ for center ~ 10 cm of mirror
- scatters out of main beam, onto beam tube, back onto mirror
- baffles used to strongly attenuate paths, leaves 1m aperture

Thermal Noise

Mechanical systems excited by the thermal environment

- results in physical motions of the tests masses
- total energy of $k_B T$, leads to $\tilde{x} = \sqrt{\frac{k_B T}{k_{\text{sping}}}}$ for integrated motion
- spectrum according to Fluctuation-Dissipation theorem:

$$\tilde{x}(f) = \frac{1}{\pi f} \sqrt{\frac{k_{\rm B}T}{\Re(Z(f))}}$$
, $\Re(Z(f))$ the real (lossy) impedance

- e.g., damping term in an oscillator: $F_{\text{ext}} = m\ddot{x} + \Re(Z(f))\dot{x} + kx$
- usually think of viscous damping: $\Re(Z(f)) = b$, a constant
- most real materials show internal friction,
- F = -kx replaced by $F = -k(1 + i\phi(f))x$, $\phi(f)$ often constant
- peak 1/φ above 'plateau'
- rises as $1/\sqrt{f}$ below resonance
- falls as $1/f^{5/2}$ above resonance

log frequency

Thermal Noise

Two regimes of interest: Below or Above resonance

• (note: Resonant mass detectors ('bars') ON resonance)

Below resonance: internal modes of test masses

- test masses are fused silica cylinders, 25cmX10cm
- many modes contribute to net surface motion
 - > drumhead modes, compressional modes
- typical loss on resonance of 10^{-6}
- most important in range $100 \rightarrow 300 \, \text{Hz}$

Above resonance: pendulum suspension

- test masses suspended as ~1 Hz pendulum
- minimizes loss of both pendulum and test-mass
- seismic isolation $(1/f^2)$ above resonance), positioning
- pendulum mode excited by thermal noise forces
- typical loss on resonance of 10^{-6}
- most important in range $10 \rightarrow 100 \text{ Hz}$

Both of these noise sources scale with arm length 1/LThermal (with other stochastic force terms) determines LLeads to LIGO 4km length; h=x/L

Test Mass and Suspension

Objective: to minimize losses of mechanical modes

- also need ability to control mass position, angle
- extensive experience in prototypes
- confirmation of thermal noise models for internal modes

Seismic Noise

Motion of the earth

- driven by ocean tides, wind, volcanic/seismic activity, humans
- for LIGO sites, characterized by $10^{-7}/f^2$ m/ $\sqrt{\text{Hz}}$
- requires e.g., roughly 10⁹ attenuation at 100 Hz
- ~300 micron tidal motion, microseismic peak at 0.16 Hz...

Approaches to limiting seismic noise

- careful site selection
 - > far from ocean, significant human activity, seismic activity
- careful building design
 - > low coefficient of drag for wind
 - > low air velocities in HVAC, put refrigeration at a distance
- active control systems $(0.1 \rightarrow 30 \text{ Hz})$
 - > accelerometer measures motion w.r.t. inertial mass
 - > servo system and actuator corrects for perceived motion
- simple damped harmonic oscillators in series
 - > LIGO: 'stacks', using lossy Viton springs and SS masses
 - > VIRGO: multiple low-Q pendulums in a vertical chain
- one or more low-loss pendulums for final suspension
 - > gives $1/f^2$ for each pendulum

Seismic Isolation systems

Passive elastomer-steel 'stacks'

- damped SHOs in series
- in-vacuum: extra design constraints

Gravity Gradients

Local 'static' gravitational force sum of mass distributions

- dominated by unchanging attraction of earth
- additional time-varying contributions from other sources:
- seismic compression
 - > surface seismic waves compressing nearby earth
- weather
 - > variations in atmospheric pressure changing air density
- moving massive objects
 - > humans passing close (<10 meters) to test masses
- for moving/changing mass element $M, \hat{F}(t) = \frac{GM(t)m\hat{r}}{r^2}$

Places limit on lowest frequencies detectable by ground-based interferometers

- some engineering solutions to ground variations, nearby activity
- nothing to do about the weather!
- practical limit: roughly 10 Hz
- encourages space-based interferometers (different problems...)

Another crucial reason to make interferometers long: these motions must be small compared with GW strains

Summary of initial interferometer

Optics

- Michelson interferometer to read out strain
- 10W Nd:YAG laser, stabilized in frequency, intensity, position
- vacuum path to control noise from residual gas
- baffles in beam tube to control scatter
- folded optical paths to increase interaction time with GW

Mechanics

- thermal noise controlled by material selection, suspension
- 4 km long arms to keep mechanical noise terms manageable
- choice of sites, buildings limit input seismic noise
- seismic noise reduced by passive, active filters
- control systems to maintain interferometer operational

LISA: What changes for a space-based interferometer?

- still use Michelson interferometer, but no folding of arms
- arm lengths of 5×10^9 meters, sensitivity $10^{-5} 10^{-1}$ Hz
- orbit at 1 AU, following earth
- drag-free technology instead of seismic isolation
- LOTS of guaranteed sources...and a target date of ~2015

Initial LIGO sensitivity

Limits due to facilities

LIGO

Observatory characteristics

- Two sites separated by 3000 km
- each site carries 4km vacuum system, infrastructure
- each site capable of multiple interferometers
- start with 2 (full, half-length) at one site, 1 at other site
- coincident observation in all 3 interferometers
 - > crucial to reduce accidentals due to non-gaussian noise

Evolution of interferometers in LIGO

- initial ifos to be used in coincidence with French/Italian VIRGO
- and other interferometers: German/Scots, Japanese, Australian
- multiple users of LIGO, simultaneous operation, focussed searches
- lifetime of >20 years
- goal: to be compatible with all technology developments for terrestrial interferometers

LIGO Sites

Hanford, WA

- located on DOE reservation
- treeless, semi-arid high desert
- 25 km from Richland, WA

Livingston, LA

- located in forested, rural area
- commercial logging, wet climate
- 50km from Baton Rouge, LA

LIGO Status

Civil construction (Parsons)

- rough grading finished at both sites
- preliminary design review November
- buildings to be finished mid-'98

Beam tube (Chicago Bridge & Iron)

- beam tube test (preparation, welding, cleaning, leak test)
- final arrangements for fabrication
- beam tubes and covers to be finished spring '98, spring '99

Vacuum Equipment (Process Systems International)

- conceptual design finished
- preliminary design review October
- vacuum equipment installed end-'98

Detector (MIT/CIT)

- R&D well advanced on subsystems
- detailed tests on high-sensitivity prototypes at MIT and CIT
- interfaces and detailed requirements for subsystems underway
- subsystems delivered early-'99
- first observations in 2001