Managing the LIGO Project Ecole de Conduite de Projets - La Londe 11 au 16 Fevrier 1996

Gary H. Sanders LIGO Project Manager California Institute of Technology

Caveat

- These lectures are my personal approach to organizing and managing a project.
- Assume audience is a technically experienced group of engineers and scientists, but novices in project management of large projects. I apologize in advance if I insult the audience at this school.
- Assume a USA approach to project management, though I am familiar with organization of European projects.
- I will mix details of the LIGO Project Management with philosophical and personal comments.

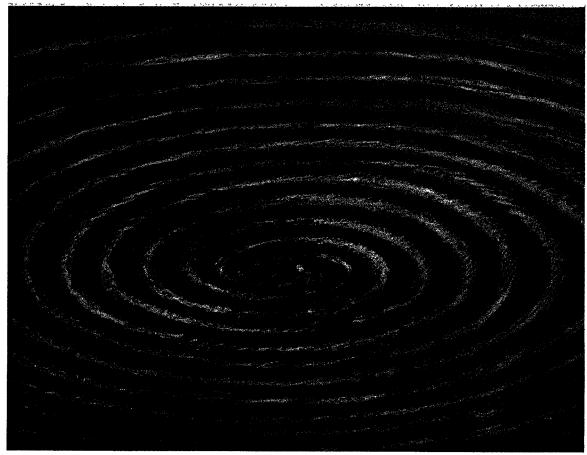
Organization of Two Talks

• LIGO Organization and Management

- » The LIGO Project Technical Introduction
- » Work Breakdown Structure
- » Organization
- » Management Processes
- » Review and Advisory Processes
- LIGO Cost, Schedule and Performance Control
 - » Cost Estimate and Cost Baseline
 - » Schedule Baseline
 - » Performance Measurement Baseline
 - » Tracking and Controlling Performance
 - » Change Control

The Goal of the Project Manager

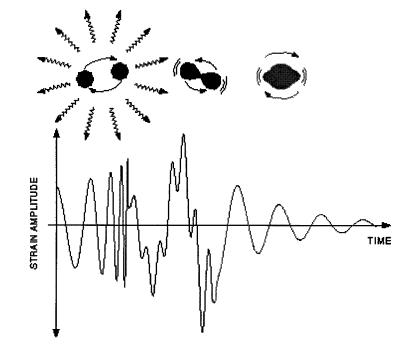
"See first that the design is wise and just: that ascertained, pursue it resolutely; do not for one repulse forego the purpose that you resolved to effect."


William Shakespeare

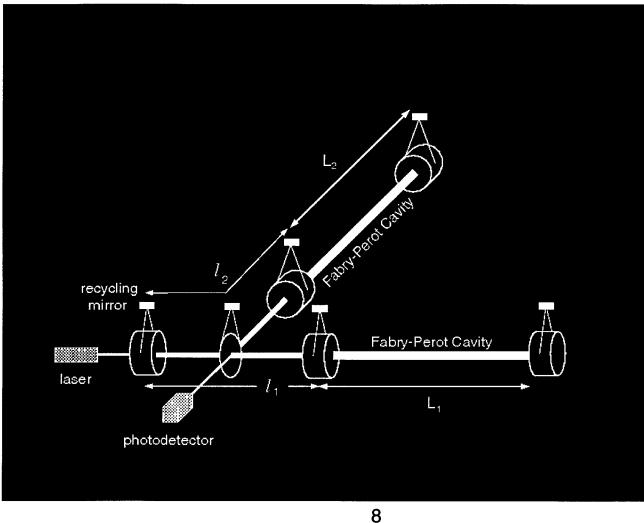
LIGO-G960008-00-M

The LIGO Project - Technical Introduction

Laser Interferometer Gravitational Wave Observatory

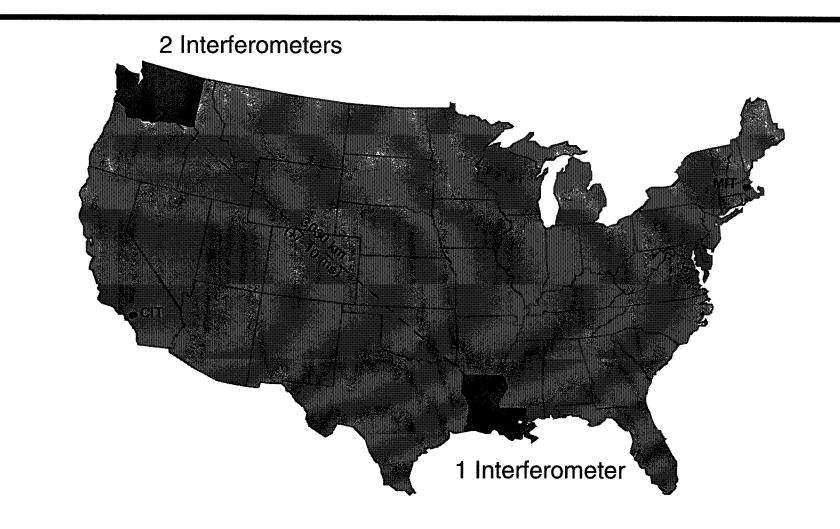

Sources of Gravity Waves

2-dim. display of space-time ripples from neutron star inspiral


LIGO Project

A Gravitational Wave Signal

Signal from a neutron star - neutron star binary inspiral/coalescence


A LIGO Interferometer

LIGO Project

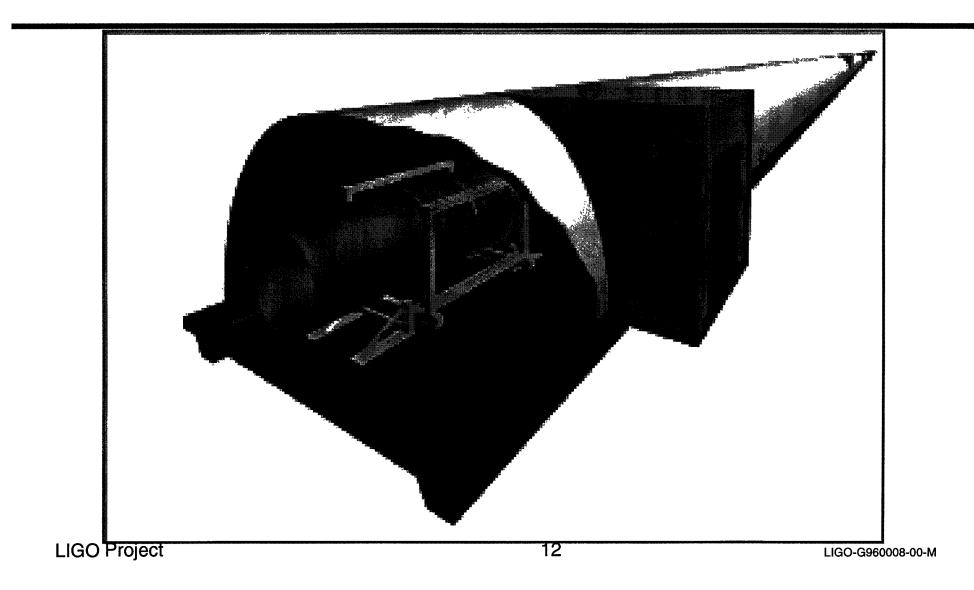
LIGO-G960008-00-M

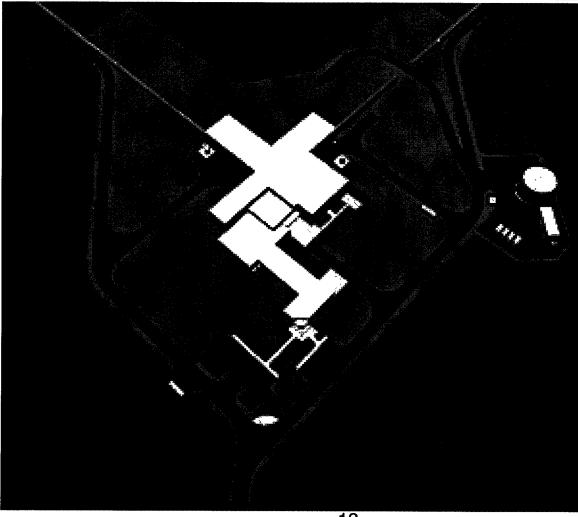
Two Sites - Three Interferometers

LIGO Vacuum System

LIGO Project

LIGO-G960008-00-M

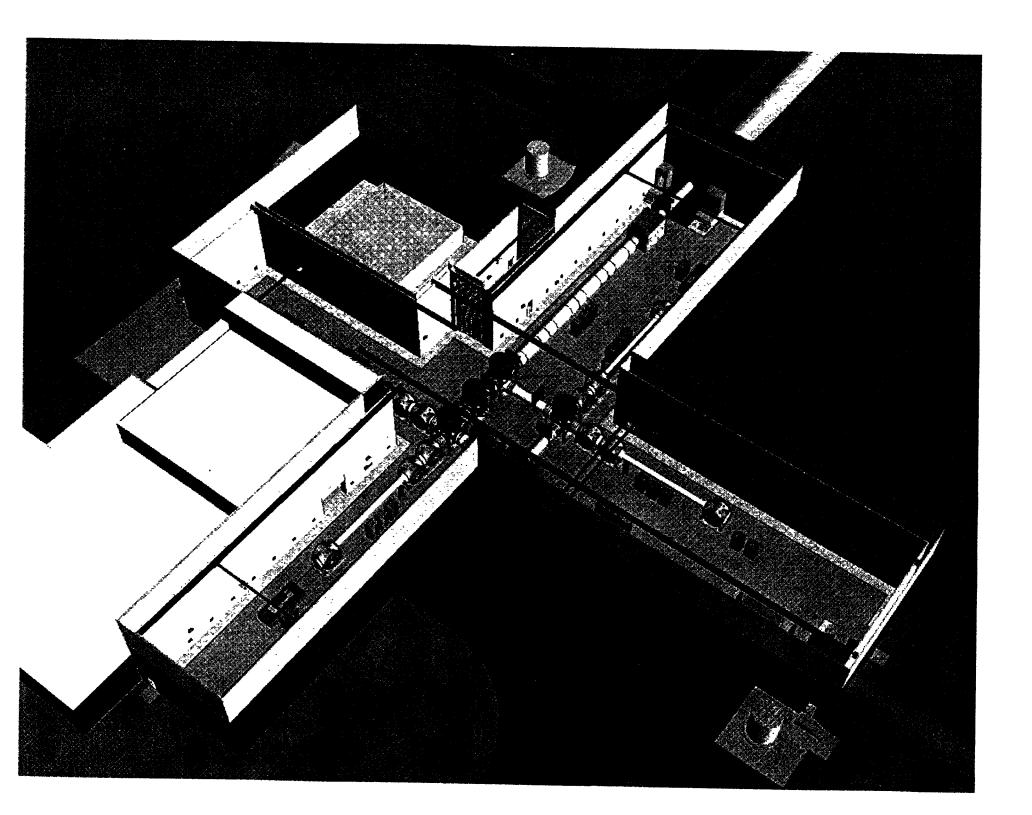

LIGO Beam Tube

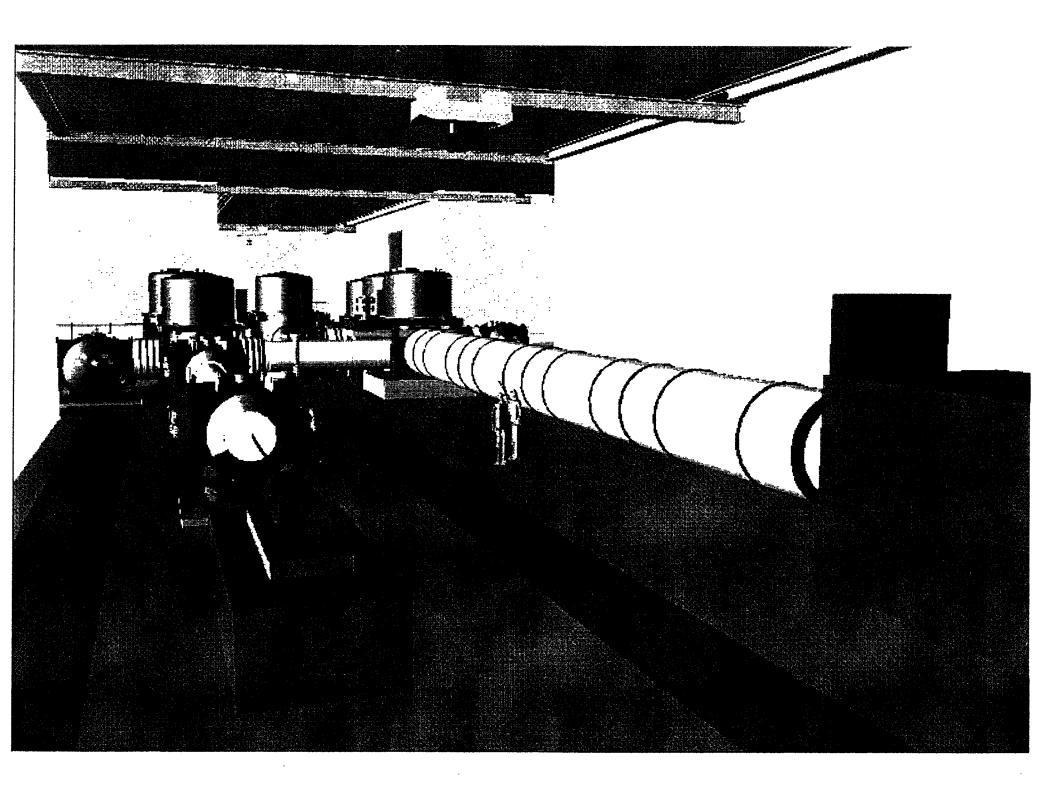

LIGO Project

LIGO-G960008-00-M

LIGO Beam Tube Enclosure

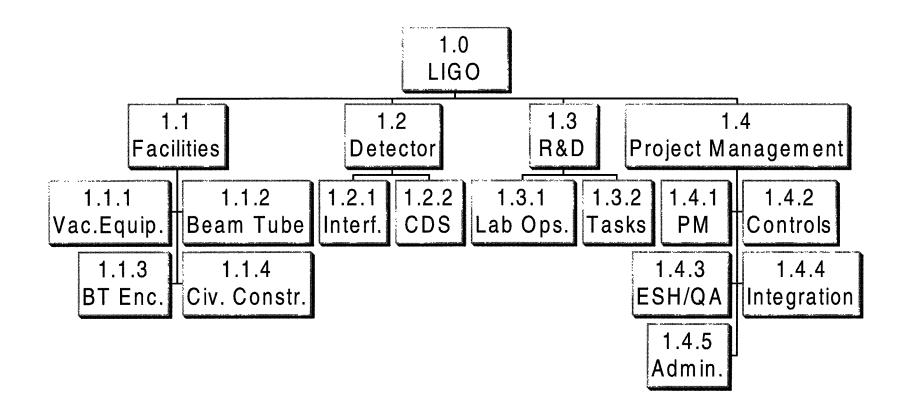
LIGO Conventional Facilities

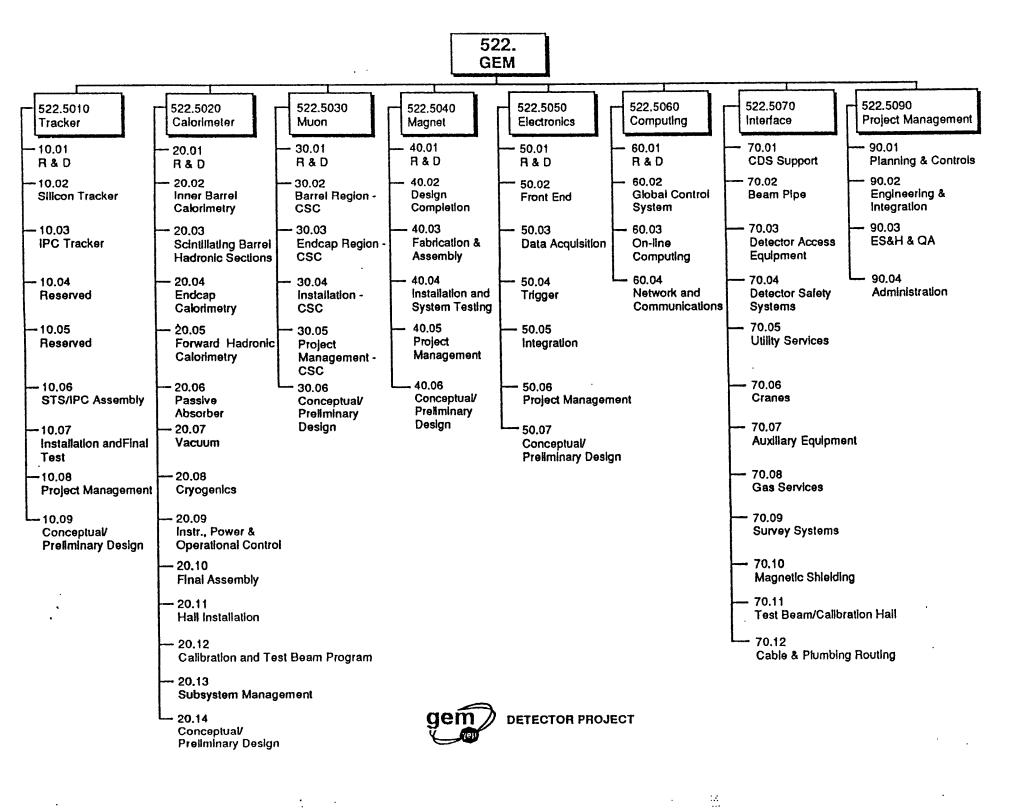



LIGO Project

LIGO PROJECT FACILITIES PRELIMINARY DESIGN

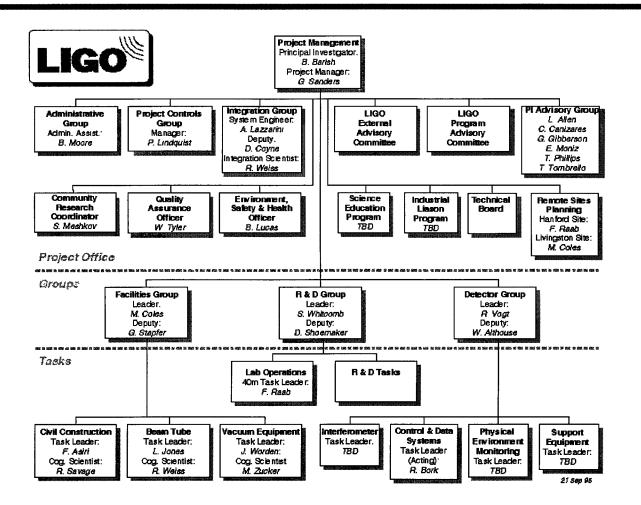
Antonie


NOVEMBER 0,1995 THE RALPH M. PARSONS COMPANY



Work Breakdown Structure Organization Management Processes Review and Advisory Processes

LIGO Work Breakdown Structure


Work Breakdown Structure (WBS)

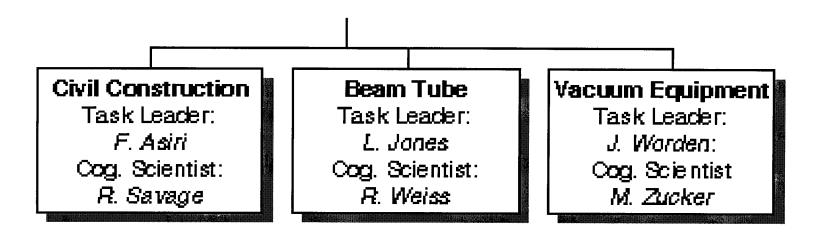
- Break down <u>all</u> of the work required to complete the project
 - » Include all physical deliverables, subsystems
 - Include R&D, design, prototyping, fabrication, installation, acceptance testing leading to a deliverable product
 - Include administration, integration, purchasing, reporting not directly related to deliverable products
 - » Break work down to 5-8 levels from top when mature
- Organize work in a way to support delivery of "products"
- If work will be accomplished through major contracts, represent them in the WBS

Work Breakdown Structure (WBS)

- WBS will structure cost estimating, schedule planning, tracking of actual costs and progress
- It should reflect how you will manage the project toward its goals
- Do not make the common mistake of organizing it to keep accountants happy, or to reflect geography or existing organizations
- Structure your organization to parallel the WBS
- Write a Work Breakdown Structure Dictionary and maintain it

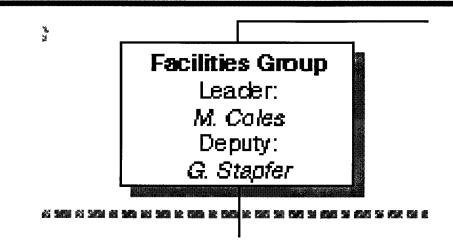
LIGO Organization

LIGO Project


LIGO-G960008-00-M

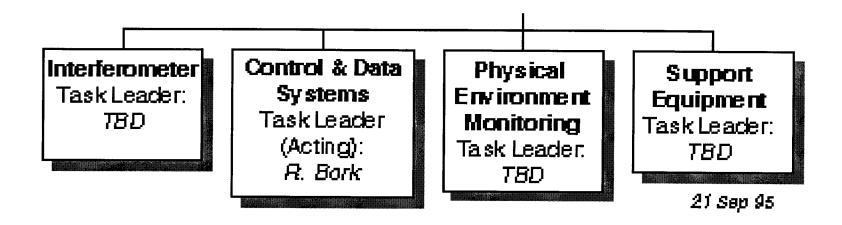
LIGO Organizational Philosophy

• Organization has only three levels

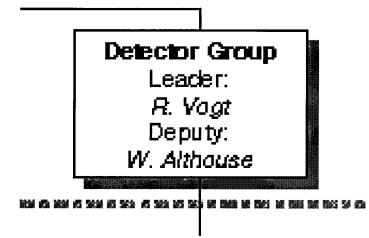

- » Tasks execute specific tasks
- » Groups coordinate related work
- » Project Office integrate and insure progress and control
- "Product Oriented"
 - » Middle managers under pressure to deliver a "product"
- Integration
 - » Project Management at top level provides integration

Facilities Task Leaders

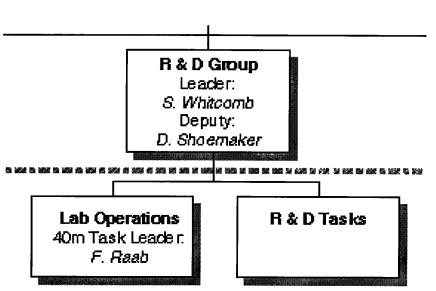
- Task Leader is an experienced engineer
- Cognizant Scientist provides scientific support, but not management of task, nor signature responsibility
- Task Leader has sole signature authority for written directions to outside contractors
- Project approval required for cost/schedule actions >\$50K/one month or technical changes affecting other systems
 LIGO Project


Facilities Group Leader

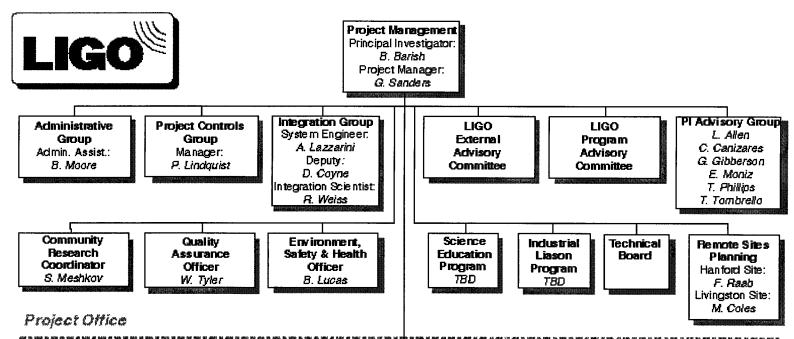
- Group Leader is a physicist, Deputy is an engineer
- Both will move to a site as operating site leaders strengthening responsibility
- Responsible to deliver functioning facilities ready for detector
- Responsible to manage interfaces between subsystems
- Responsible for cost/schedule integration and corrective actions in execution of project


LIGO Project

Detector Task Leaders


- Task Leaders are scientists or engineers
- Responsibilities similar to Facility Task Leaders
- As design/fabrication is more in-house, these Leaders are more directly responsible for managing the design and fabrication and acceptance process
- CDS electronics could be organized within other subsystems

Detector Group Leader


- Group Leader is a physicist, Deputy is an engineer
- Responsible to deliver functioning detector (3 interferometers)
- Responsible to manage interfaces between subsystems
- Responsible for cost/schedule integration and corrective actions in execution of project

R&D Group

- Led by scientists
- Responsible to deliver R&D results when needed by Detector schedule
- Responsible to deliver operational expertise and competence needed at operating sites
- Managed as a "level-ofeffort"

Project Office

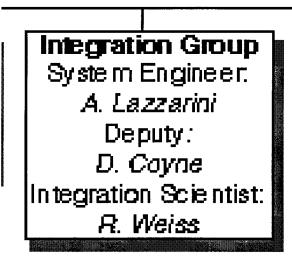
- Principal Investigator and Project Manager are both scientists
- Responsible for overall technical/cost/schedule integration
- Left side chart are Project Office functions
- Right side chart are Project advice, review, external relations

LIGO Project

Project Management

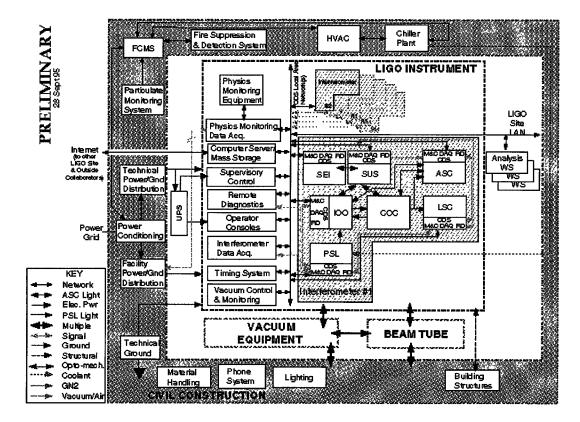
Project Management

Principal Investigator: *B. Barish* Project Manager: *G. Sander*s


- Responsible to deliver the Project Manage integration and Project cost/schedule/technical progress
 Assure scientific success
 Chair Technical Board/Change Control Board
- Chair weekly Project Control Meeting
- Chair monthly Cost/Schedule Meeting
- Responsible for interactions with funding agency (NSF)

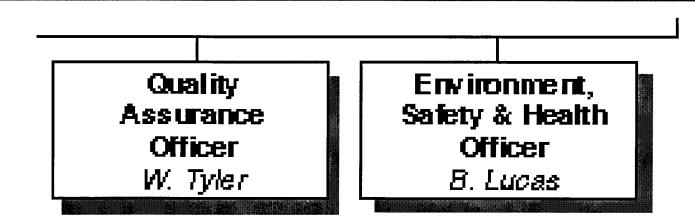
Project Controls Group

Project Controls	
Group	
Manager:	
P. Lindquist	


- Responsible to provide detailed visibility of Project performance in cost and schedule
- Manage review of technical configuration changes
 - Manage cost estimating and revisions
- Manage schedule development and routine and urgent revisions
- Manage performance measurement
- Manage formal reporting to NSF
- Manage procurements, industrial contracting and payment actions
- Manage all documentation

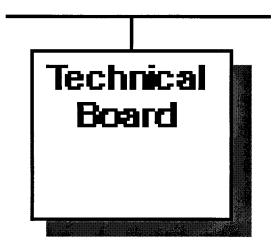
Integration Group

- Technical integration of requirements, specifications, interfaces is a Project responsibility
- Led by a scientist with industrial experience
- Includes also all system modeling and simulation and computing
- All technical work in Project is visible to this Group
- Technical management of configuration changes
- Specialized external technical consulting


Interface Control

Document and control all interfaces between subsystems Detector - Civil Construction Interface example

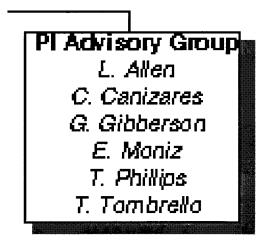
LIGO Project


ES&H/QA

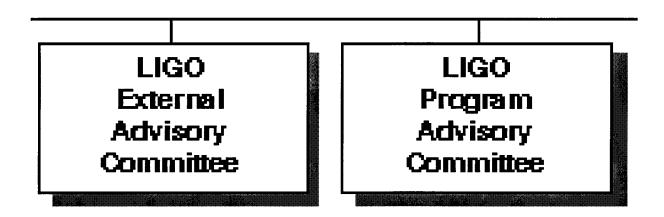
- Responsibility of the Project Manager !
- QA Officer responsible for qualifying all processes, procedures, and materials, supervising technical oversight of fabrication and acceptance testing
 - » Most direct Quality Assurance done by technicians and engineers
- ES&H Officer responsible for identifying all hazard scenarios in system and insuring that hazards are addressed by design, procedures or training

LIGO Project

Technical/Change Control Board


- Members are Group Leaders for Facilities, Detector, R&D, Integration, Project Controls
- Review of all requests for:
 - » cost changes >\$50K
 - » milestone changes > 1 month
 - » technical interface or performance changes
- Recommendation to Project Management
- Reviews all major technical choices
 - » example Argon vs NdYAG laser

Remote Sites Planning


- Led by two scientists who will head the two LIGO sites
- Responsible for all LIGO systems delivered to the sites
- Responsible to build onsite staff
- Responsible to plan all infrastructure for onsite staff (office space, local technical resources, medical insurance...)
- Responsible to establish functional relations with local authorities and institutions
- Initiate onsite construction management

Advisory/Oversight Committee

- Chaired by retired Director of Jet Propulsion Laboratory
- Members include two senior faculty each from Caltech and MIT and a former senior manager of major space projects
- Reports to Caltech and MIT management
- Quarterly meetings to monitor progress and difficulties in Project with written reports to Caltech/MIT management
- Provides advice to LIGO Project Management

EAC/PAC

- External Advisory Committee provides technical advice on system choices and technical challenges (laser type, lightening protection, spiral welding of thin walled stainless steel...)
- Program Advisory Committee reviews proposals from outside LIGO to use LIGO facilities for experiments
- Both committees structured by a temporary committee

Project Management Plan

- Write a Project Management Plan
- Include:
 - » Project Description, Objectives and Scope
 - » Organization and Responsibilities
 - » Work Plan
 - Subsystems, Integration, QA, ES&H, Procurement
 - » Cost Estimate Summary
 - » Major Schedule Milestones
 - » Management and Control
 - Cost, Schedule, Subcontracts, Configuration Change Control
 - » External Reporting

LIGO Cost, Schedule and Performance Control

Ecole de Conduite de Projets - La Londe 11 au 16 Fevrier 1996

Gary H. Sanders LIGO Project Manager California Institute of Technology

Cost Estimate - Basis

- Establish detailed Work Breakdown Structure
- All estimating to be done "bottom up" by the engineers and scientists directly responsible for each item
- Establish a written Cost Estimating Plan that defines uniform formats and procedures for all estimators
- Each estimated item should have all information supporting the estimate for that item recorded in a standard Basis of Estimate worksheet for that item. The Basis sheet should be signed and dated by the estimator.

GEM COST ESTIMATE SUMMARY

FY93 U.S. Dollars

GEM DETECTOR SYSTEM

.

WBS Code	Description	WBS Level	Material, k\$	ManHours	Labor, k\$	M + L, k\$	Markup, k	%	Contingency, k	\$ %	TOTAL, k\$
	-GEM DETECTOR SYSTEM	00	274,531	3,657,544	167,306	441,837	6,029	1%	103,362	23%	551,228
10	-CENTRAL TRACKER	01	12,168	190,275	9,786	21,954	0	0%	5,369	25%	27,324
20	-CALORIMETER	01	68,570	1,012,430	37,976	106,548	0	0%	28,870	27%	135,415
30	-MUON	01	40,631	891,791	36,819	77,449	0	0%	20,897	27%	98,347
40	-MAGNET	01	64,787	348,234	33,232	98,019	6,029	6%	21,277	21%	125,325
50	-ELECTRONICS	01	52,619	465,971	22,552	75,171	0	0%	17,100	23%	92,272
60	-COMPUTER & CONTROLS	01	10,390	168,299	5,478	15,869	0	0%	3,591	23%	19,460
70	-INTERFACE SYSTEMS	01	21,814	122,305	3,587	25,381	0	0%	4,433	18%	29,813
90	-PROJECT MANAGEMENT	01	3,551	458,239	17,897	21,448	0	0%	1,825	9%	23,274

.

.

4/26/93

VESSEL SUPPORT STRUCTURES FAB/ASSY 40.03.1.2.3

							MATER	IAL	LABOR]	TOTALS			
	ITEM CODE	ITEM DESCRIPTION		QUANTITY		COST BASIS	UNIT COST	TOTAL MAT'L,\$	CRAF		MH/ UNIT	TOTAL HOURS		OTAL ABOR,\$	MAT'L+ LABOR,\$
1	1&A	Coordinator Suppt D	uring	3.00	ММ	BU			INSPA	D 60	147	441	8,859	26,578	26,578
	M&S P/F	Const Weld Inspec Qa Time Saddles 304I Ss W/ 8	e 3%	0.50 262.00		BU BU	97,610 4,154	48,805 1,088,243							48,805 1,088,243
4 5 7 8	P/F P/F P/F P/F P/F	Waste Support Blocks 3041 Transportation Plate Section Burning Web Section Burning Weld Fixturing &	9	120.00	LOADS SECTION WLDMNTS	BU BU BU BU BU	4,154 2,596 623 1,817 41,536	332,288 51,920 74,765 14,538 41,536							332,288 51,920 74,765 14,538 41,536
9 10 11 12 13 14	P/F P/F P/F P/F P/F 1&A	Alignmnet Welding Blasting Rigging Hydraulic Jacking Sy Transporter Grease On/off Site Inspection	Pads	8.00 16.00 1.00 1.00 24.00 2.00	WLDMNTS LS LS EA		10,384 2,596 103,840 207,680 8,650	83,072 41,536 103,840 207,680 207,597	INSP/	\D 60	147	294	8,859	17,719	83,072 41,536 103,840 207,680 207,597 17,719
SUB	TOTAL -	40.03.1.2.3	VESSEL SU	PPORT STRU	JCTURES FA	B/ASSY	_	\$2,295,819				735	<u></u>	\$44,297	\$2,340,117
-												PRIME CON	ITRACTOR MARKUR	P 7.719	6 \$180,373
	•														\$2,520,490
													CONTINGENCY	22.00%	6 \$ 554,508
													COST PLUS CON	TINGENC	<u>Y</u> \$3,074,998
COST MATRIX							L	ABOR		RISK					
		ŀ	ENG/DES	M&S	INSP/ADM	PROC/FAB	ASSBL	Y INSTAL		<u> </u>					
	•	LABOR MATERIAL	. 0 . 0	48,805	44,297 0		;	0		TOUCH LAB		\$0 \$44.297	Technical Risk Cost Risk Schedule Risk	6% 8% 8%	

MATERIAL	• 0	48,805	0	2,247,015	0	0
TOTAL, \$	0	48,805	44,297	2,247,015	0	0
MANHOURS	0		735		0	0
b				·····		

ESTIMATOR: G. DEIS/J. BOWERS DATE OF ESTIMATE: 06/15/92

TOUCH LABOR = EDIA LABOR =

\$44,297

.

Page 74

۰.

Magnet Basis of Estimate Item: <u>Vessel Support Structures</u> Rev: <u>OC</u>By: <u>G. Deis/J. Bowers</u>

Element Scope: This element includes all of the hardware required to physically support the coil, vessel, and muon sector assemblies in the underground hall. This will include the saddles to support the outer vessel as well as any jacking hardware provided to align the magnet, to compensate for ground motion, or to move the magnet assemblies. This does not include any concrete structures, such as piers or support beams, which are assumed to be parts of the hall facility.

Technical design description:

WBS: 40.03.1.2.3

Date: 6/15/92

The saddle support structures are low carbon steel weldments consisting of large flat plate sections. Four saddle weldments are provided to support each vessel assembly, including the magnet and all internal detectors. Total weight supported by four saddle supports is conservatively 3000 tons.

It is assumed that all four saddles see equal dead loads and horizontal loads.

All saddles can be hydraulically jacked to transport the vessel system and for alignment. The jacking system is part of the transporter, and will be capable of lifting the weight of the vessel system plus the saddles, and have sufficient control to enable pitch, roll and elevation positioning.

Interface to the building foundation is through shim blocks mounted to the floor.

Total weight of four saddle support weldments is 121 tons

Two sets of four are required, one set for each vessel.

Inspection/Admin Basis:								
coordinator support during construction off-site/on-site inspections	3 mm 2 mm							
EDIA/QA Material&Services Basis: Quality Assurance weld inspection t	time .5my							
Procurement/Fabrication								
Basis: each vessel raw materials								
saddles: 121 tons 304L stainless steel in finished structures								
add 8% waste giving 131 tons of raw mate								

mill rate = \$2.00/ lb yielding \$524K

support blocks: 40 tons 304L stainless steel in finished structures mill rate = \$2.00/ lb yielding \$160k weld material cost is included in welding cost

transportation \$2500/load x 10 loads = \$25k

plate section burning 0.5 days/ section, 600/ section x 60 sections = 36k

machine base plate 2 days/ weldment x 4 weldments = 8 days = \$7k

weld fixturing and alignment \$20k

welding \$10k per weldment x 4 weldments = \$40k

blasting \$2.5k per weldment x 8 weldments = \$20k

rigging \$50k

total cost per vessel= \$882k

total cost for two vessels = \$1764k

Cost of hydraulic jacking system \$200k

Cost of 24 transporter grease pads \$200k

<u>Installation/Ass'y</u> Material (\$k): <u>0</u> Basis: This is covered in WBS 40.02.9.2.1, 40.04.1.1 - Magnet Installation

 Unit type: ea
 Number of units: 2

 Estimate Type: BU
 Number of units: 2

 Risk Factors:
 Technical: 2

 Basis: Fabrication techniques are standard. Simple shapes and interfaces. Loose tolerances. Common materials.

 Cost:
 4

 Basis: Vendor quotes on hydraulics and bottom up construction factors for structural assemblies. Mill costs for steel will vary

 based on the state of the national economy at the time of construction.

 Schedule:
 8

 Basis: If built in sections off site, will have minimal inpact on vessel installation schedule.

Misc Comments:

Current assumptions of floor movement vary up to 15 cm up and down.

Cost Estimate - Base Currency Year

- All estimates to be performed in the currency for the year in which the estimate is made, as if the work is performed or contract placed in the current year
- Define a standard table of currency inflation for all years in which the project is to be executed
- Old industrial price quotations should be corrected for inflation up to the current year if a new estimate is not obtained from industry

REPORT: RATELIST FILE: LIGOBCE	RATE TABLE LISTING	9FEB96 Page 1
DATE	RATE	
RATE TABLE: ADMIN	[ADMINISTRATION]	
	23.0300	
RATE TABLE: COST	[COST (RATE OF 1, USED FOR COST CALCS)]	
01JAN91	1000.0000	
RATE TABLE: ENG		~~~~~~~~
01DEC91	37.7900	
RATE TABLE: ESCALAT	ION [Escalation]	
01DEC91 01DEC92 01DEC93 01DEC94 01DEC95 01DEC96 01DEC97 01DEC98 01DEC99 01DEC99 01DEC00 01DEC01 01DEC02	.0000 .0000 .0220 .0450 .0700 .0965 .1240 .1900 .2240 .2600 .0000	
RATE TABLE: FRINGE	[FRINGE BENEFITS]	
01DEC91	.3400	
	[GRAD STUDENTS]	
01DEC91	9.3500	

Cost Estimate - Source of Estimate

• Clearly identify the type of the source of the estimate

- » Engineering Estimate (EE) least reliable
- » Vendor Quotation (VQ) better, but likely to increase
- » Placed Order (PO) even better
- » Actual Costs (AC) best
- » Other methods include Parametric, Trends, Specific Analogy
- For every material subsystem, work to increase the fraction of the estimate based upon industrial vendor quotations

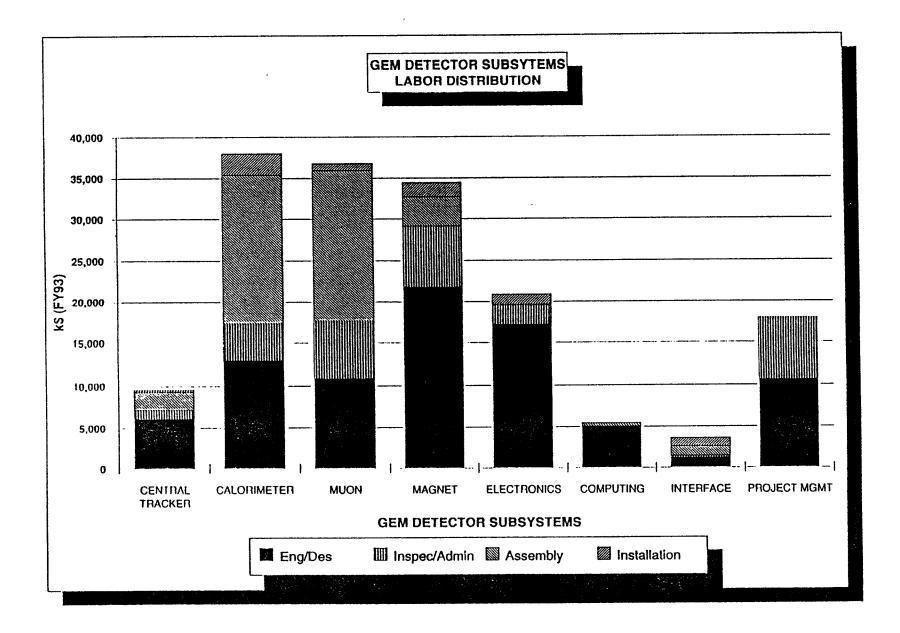
Cost Estimate - Roll Up

- Structure estimate so that all costs for a component can be "rolled up" and costs for the subsystem including the component can be "rolled up" and costs for the entire system can be...
 - » This creates a framework for tracking actual costs during the Project execution

Cost Estimate - Labor Rates

- Define all generic labor categories for labor charged to the Project (manager, engineer, scientist, technician, secretary, construction worker,...)
 - » Use appropriate level of detail for maturity of Project
- Establish a standard labor rate for each category based upon market survey in base currency year
- Use labor "crew" mixes if appropriate for an operation
- Replace standardized rates with specific rates only when actual labor source is certain
- Consider vacation/sick time factors

REPORT: RATELIST FILE: LIGOBCE	RATE TABLE LISTING	9FEB96 Page 2
DATE RA		
RATE TABLE: MGMT		
01DEC91	54.2400	
RATE TABLE: MM	[Manmonths mm = HOURS / MM]	
01DEC91	.0068	
RATE TABLE: OVERHEAD		
01DEC91	.5800	
RATE TABLE: PROF_FAC	[PROFESSIONAL FACULTY]	
01DEC91	85.0000	
RATE TABLE: SCI		
01DEC91	33.9400	
RATE TABLE: TECH	[TECHNICIAN]	
01DEC91	22.0000	
RATE TABLE: UNDERGRAD	[UNDERGRADUATE STUDENTS]	
01DEC91	9.3500	


_ _ _ _ _

Cost Estimate - Labor Rates

- Do estimate in man-hours and apply rates later!
- In mass production operations, include the "learning curve" factor
- In mass production operations, consider "crew" quality and trade off cost for productivity

Cost Estimate - Audit

- Audit all detailed estimates for uniform application of Cost Estimating Plan
- Compare labor estimates for comparable operations
- Compare material costs
- Compare fraction of estimate based upon vendor quotes
- Compare risk analysis
- Use an outside and disinterested firm to independently develop or audit estimate

.

GEM DETECTOR PROJECT

.

GEM DETECTOR LABOR RATE ANALYSIS

				COST C.	ATEGORI	E9			
	Eng/design		Inepec/Admin				Installation		
	Labor	Rate	Labor	Flate	Labor	Rate	Labor	Rate	
SUBSYSTEMS	my	k\$/my	my	k\$/my	my	k\$/my	my	k\$/my	
CENTRAL TRACKER	54	112	11	97	34	63	4	82	
CALONIMETER	129	100	88	64	306	59	43	60	
MUON	90	120	55	123	318	58	16	50	
MAGNET	37	133	53	138	89	52	30	57	
ELECTRONICS	175	98	25	94	4	61	26	48	
COMPUTING	84	60	1	40	10		0		
INTERFACE	18	72	3	75	25	46	21	48	
PROJECT MGMT	127	83	132	50	0		0		
MIN		60		40		40		48	
WEIGHTED AVG		96		85	5	57	1	56	
MAX		133		136	3	63	3	82	

.

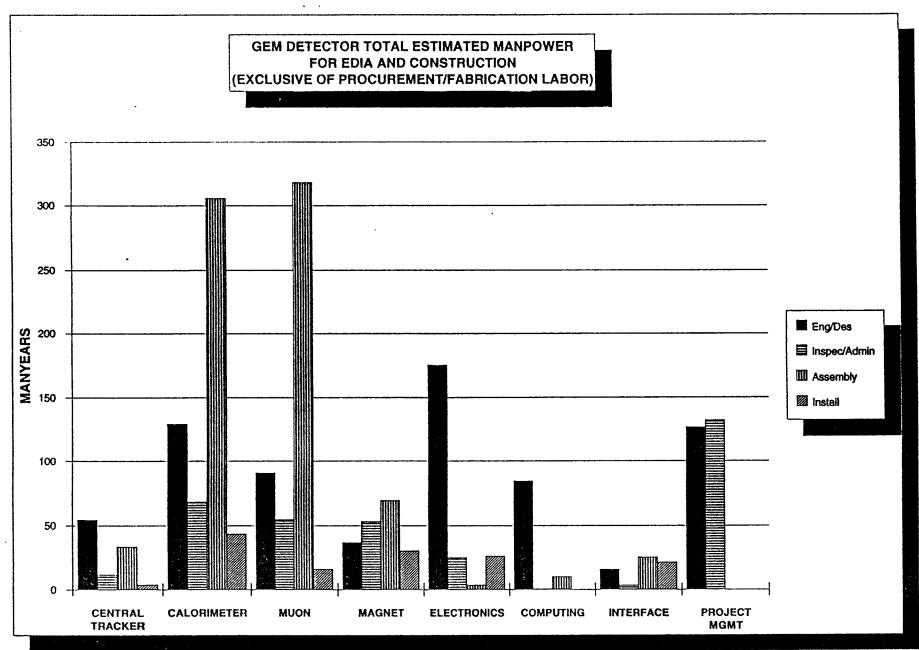

۰.

.

.

.

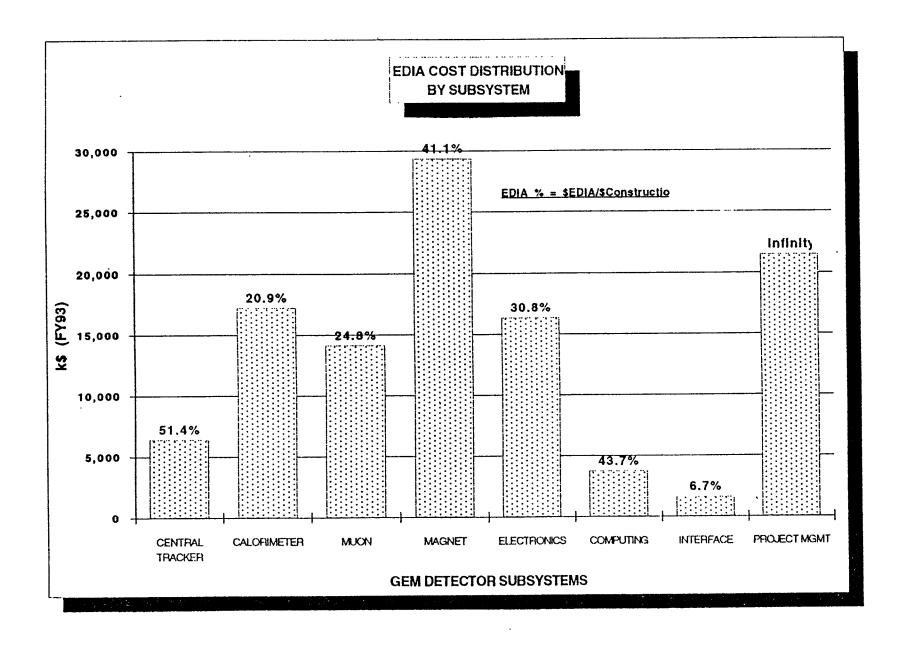
•


••

۰.

;

.

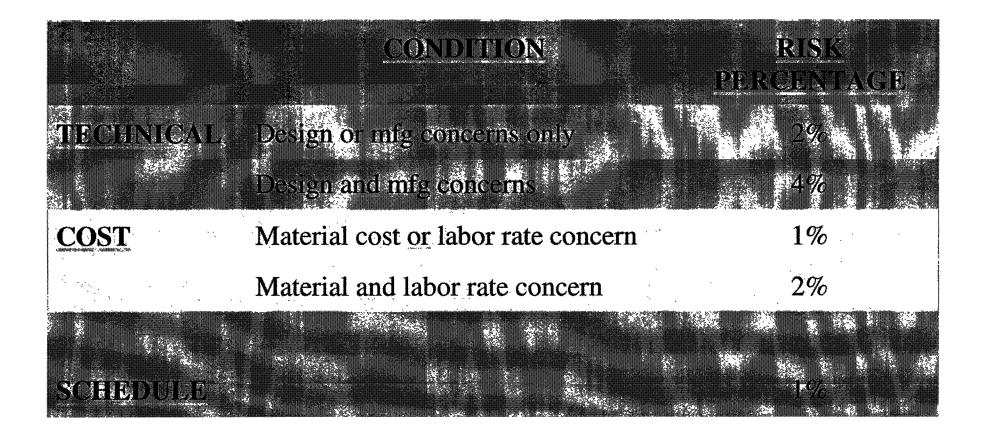

GEM DETECTOR PROJECT

GEM DETECTOR PROJECT

4/27/93

GEM DETECTOR PROJECT

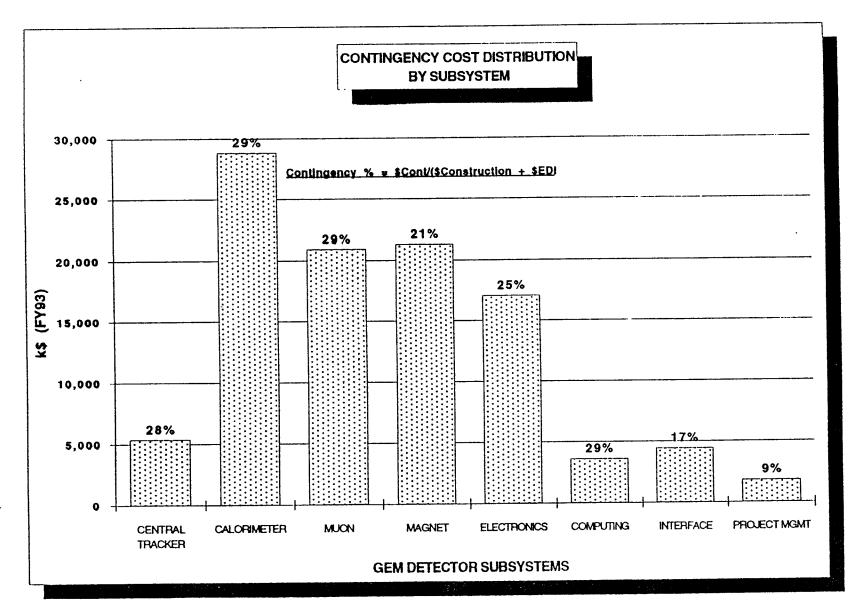
.


Cost Estimate - Risk Analysis

- Estimate for each item should be the expected cost of the item excluding unusual or adverse risks
- For each item, separately estimate the technical, cost and schedule risks for that item. Use a standardized and disciplined method for all items and all estimators. Develop an estimate of an amount of money to be held in reserve to deal with the average of all risks. Not all risks will actually take place during the Project. This amount of money is "contingency".
- Primitive method bulk percentage rule of thumb
- Better method Standard Risk Factor/Percentage

Cost Estimate - Risk Factors

Risk factor	Technical	Cost	Schedule
1	Existing design and off-the-shelf hardware	Off the shelf or catalog item	not used
2	Minor modifications to an existing design	Vendor quote from established drawings	No schedule impact on any other item
3	Extensive modifications to an existing design	Vendor quote with some design sketches	not used
4	New design within established product line	In-house estimate for item within current product line	Delays completion of non-critical path subsystem item
6	New design different from established product line. Existing technology	In-house estimate for item with minimal company experience but related to existing capabilities	not used
8	New design. Requires some R&D development but does not advance the state-of-the-art	In-house estimate for item with minimal company experience and minimal in- house capability	Delays completion of critical path subsystem item
10	New design. Development of new technology which advances the state-of-the-art	Top down estimate from analogous programs	not used
15	New design way beyond the current state-of-the-art	Engineering judgment	not used


Cost Estimate - Risk Percentages

Cost Estimate - Contingency %

Contingency (%) = Technical risk factor x Technical risk % + Cost risk factor x Cost risk % + Schedule risk factor x Schedule risk %

- Risk Factors from 1 to 15
- Risk Percentages 1% to 4%
- Range of contingency generated falls between 5% and 98%
- Best technical judgment used to override this specific graded approach to risk analysis

GEM DETECTOR PROJECT

4/29/93

Cost Estimate - Contingency

- Estimate of contingency made for each item at lowest practical level
- Percentage is converted to currency
- Contingency funds are held by the Project Manager and they lose their identification with each item!
- Each Task Leader controls the budget for a subsystem without the contingency funds
- Remember that the contingency pool is not designed to cover every possible risk all occurring during the Project

Cost Estimate - Request for Contingency Funds

- As the Project progresses, contingency funds can be requested by written application to the Project Manager
- Requests are reviewed by Technical Board/Change Control Board consisting of all other system leaders
- Project Manager grants requested funds, or rejects request, or requests change in schedule, technical scope or requests other corrective action
 - » Scope contingency require subsystem leaders to identify 10% reductions in subsystem scope
- Funds can be returned to contingency

Cost Estimate - Actual Costs and Estimate to Complete

- If Project is estimated properly, 100% completion of Project will use 100% of direct estimate + contingency
- As Project progresses, direct cost estimate is exceeded and contingency funds are used
- Periodically (annually?) cost estimate is revised to reflect all new information including actual costs and use of contingency funds. New estimate is called Estimate To Complete
- Track (%contingency used)/(% Project complete)

Cost Baseline

- Original full cost estimate including the separate pool of contingency funds is entered into a database and maintained throughout the life of the Project as the Cost Baseline
- All Project cost performance is measured monthly against the Cost Baseline in order to detect cost deviations as early as possible
- New Estimate to Complete is used after reestimate but original Cost Baseline is preserved in database
- Define time spread of costs using inflation factors in Cost Baseline for later use with schedule

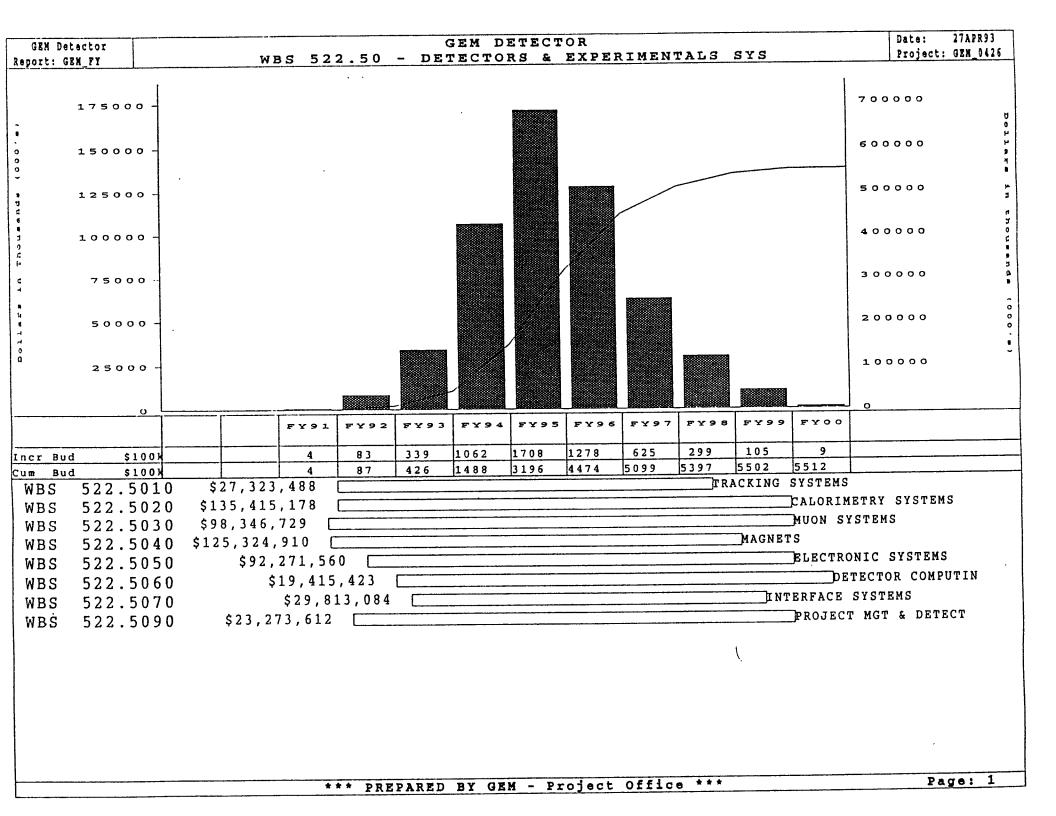
Schedule - Basic

- Prepare Integrated Project Schedule consisting of all linked schedules for each subproject in total Project
- Subproject structure organized to agree with Work Breakdown Structure and integrated together following WBS
- Project Management defines a set of useful major project milestones and requests development of lower level detailed schedules to conform to top level milestones. These top level milestones define the overall project strategy and priorities and the attention of project staff.

Significant Facility Milestones

MILESTONE NAME	WASHINGTON	LOUISIANA
Initiate Site Development	03/14/94	M 08/07/95
Beam Tube Final Design Review	04/21/94	common
Select A/E Contractor	11/15/94	common
Complete Beam Tube Qualification Test	01/16/95	common
Select Vacuum Equipment Contractor	03/28/95	sonimon.
Complete Performance Measurement Baseline	a hann 2 "Yen" i half ha falla balan ba	common
Initiate Beam Tube Fabrication	01/22/96	common
Initiate Slab Construction	02/05/96	01/06/97
Initiate Building Construction	06/11/96	01/06/97
Joint Occupancy	09/02/97	03/30/98
Accept Tube and Cover	03/16/98	09/28/98
Beneficial Occupancy (Accept Buildings)	03/16/98	09/28/98
Accept Vacuum Equipment	06/16/98	:09/28/98
Initiate Facility Shakedown	03/16/98	09/28/98

Schedule - Bottom Up


- Detailed schedules developed in same manner as cost estimate
 - » follow WBS
 - » developed by responsible task leaders
 - » basis recorded in standardized manner
 - » schedule risks considered in developing details
 - » technical estimate made of each task duration and dependence on other tasks
- Detailed schedule development is closely related to development of cost estimate detail

Schedule - Integration

- Project Management integrates detailed schedules and reviews all schedule ties between subprojects with those developing detailed schedules
- Identify all Critical Paths (paths through schedule with no extra time (slack))
- Test alternate approaches to Critical Path
- Test alternate project strategies
- Attempt to build schedule slack in critical operations
- Develop menu of "work arounds" for anticipated schedule risks

Performance Measurement Baseline

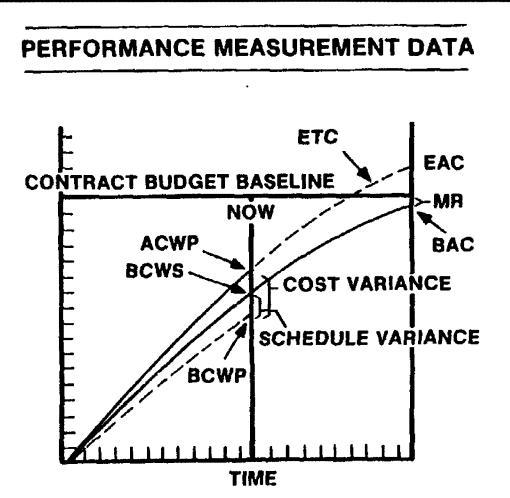
- Cost Baseline and Integrated Project Schedule are held by Project Management
- Create PMB by loading costs for each task into schedule task
 - » select flat, growing, falling, bell curve cost profile for each task
 - » select an appropriate level in WBS for combining costs and schedule tasks. Goal is performance measurement by Project Manager with lower level flexibility left to task leaders
 - » match to likely funding profile from funding source
- Load into database as Budgeted Cost of Work Scheduled

Tracking and Controlling Performance

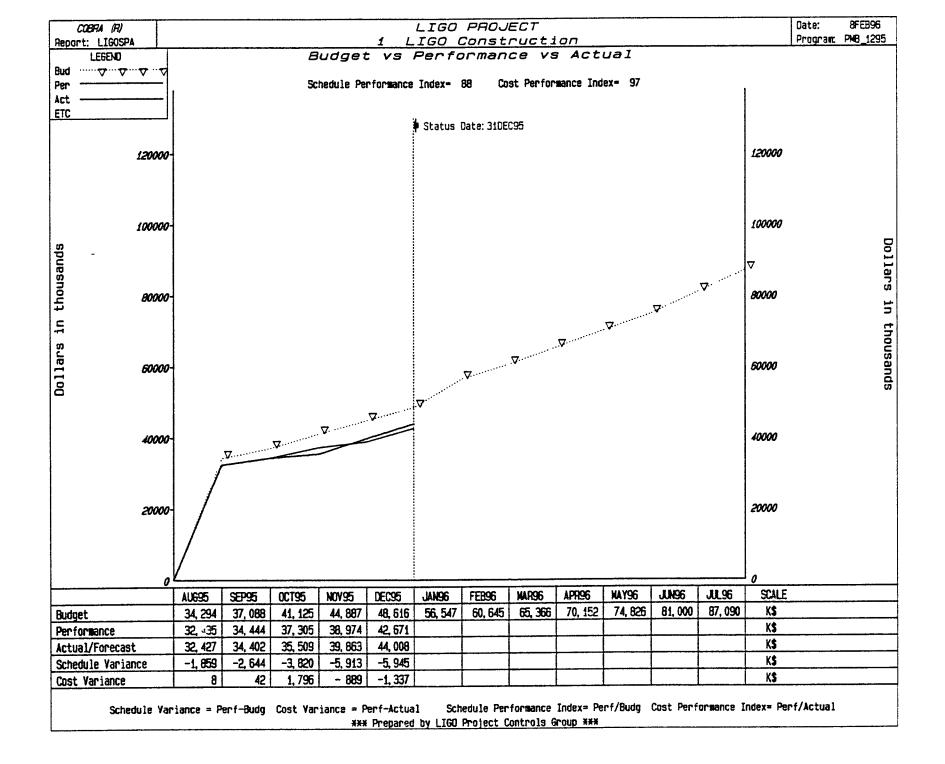
- Require contractors to report costs and schedule progress monthly to Task Leaders responsible for contract
- Task Leaders report cost and schedule progress to Project Management each month
 - » Only this system used by Task Leaders for performance measurement
 - » Must be implemented so as to be truly useful
- Progress measured by standardized methods and accumulated as Earned Value

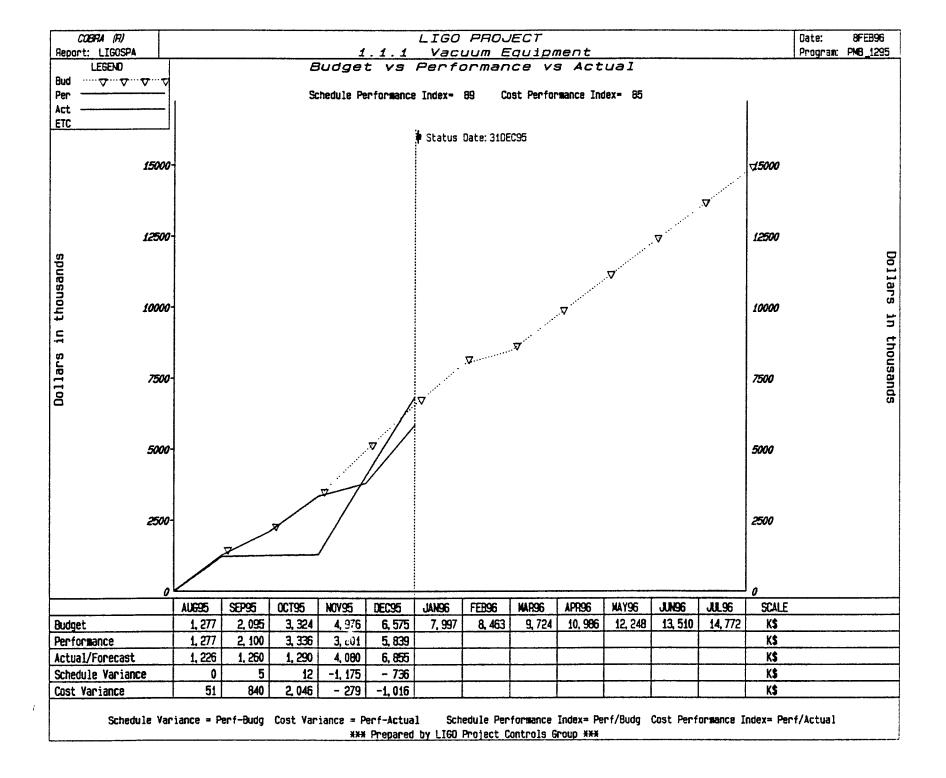
Earned Value Reporting

- Monthly measurement of progress in each task accumulated as Earned Value
 - » % Complete
 - » Milestones Completed
 - » Progress Payments Earned
 - » Level of Effort


Performance and Variances

- Budgeted Cost of Work Scheduled (BCWS)
- Budgeted Cost of Work Performed (BCWP)


» earned value


- Actual Cost of Work Performed (ACWP)
- Cost Performance Index (CPI) = BCWP/ACWP
- Schedule Performance Index (SPI) = BCWP/BCWS
- Cost Variance (CV) = BCWP ACWP
- Schedule Variance (SV) = BCWP BCWS

Performance Measurement Display

	*************************		*******													
/A - W/P	Description	PMT	BAC	EAC		BCWS	Cumulativ BCWP	ACWP	 <u></u>	BCWP	eriod ACWP	Status	Start	duled Finish	Start	:/Est Finish
*******	***********************		32223322	======	22382			3222322		.======			22322222			.=======:
	terferometer Design/															
E511	SEISMIC ISOLATION DESIGN	+++														
ilestone	Description	Weight														
1111013	HAM REQUIREMENTS	8			30									01MAR96		E O1MAR9
1111015	HAM PRELIMINARY DESIGN	6			0									01AUG96		E 01AUG9
1111017	HAM FINAL DESIGN	5			0									22NOV96		E 22NOV90
1111020	HAM 1ST ART. ASSEMBLY/TEST	1			0									27JUN97		E 27JUN97
1112029	BSC/THC REQUIREMENTS	8			30									01MAR96		E 01MAR90
1112031	BSC/TMC	6			0									01AUG96		E O1AUG90
1112033	PRELIMINARY DESIGN BSC/TMC FINAL	5			0									22NOV96		E 22NOV90
1112036	DESIGN BSC 1ST ART.	57			0									26JUN97		E Z6JUN9
1112038	ASSEMBLY/TEST TMC 1ST ART. ASSEMBLY/TEST	3			0									29JUL97		E 29JUL9
		M/S	968	968	5	127	7 46	27	7 2	1	0	0 0	02JAN95	29JUL97 /	A 02JAN95	E 29JUL9
 E512	PSL DESIGN	• • • • • • • • •	••••	• • • • • • • • •	• • • • •		•••••	•••••	•••••		• • • • • • • • •		•••••	•••••	• • - • • • • • • •	•••••
ilestone	Description	Weight														
1120102	PSL REQUIREMENTS	4			100									01FEB95		A 01FEB9
1120104	SPEC PSL PRELIMINARY DESIGN	6			100									02MAY95		A 01JUN9
1120105	PSL PROTOTYPE	30			100									01NOV95		A 30NOV9
1120108	TESTS/MODS PSL FINAL DESIGN	36			0									17APR96		E 10JUN9
1120111	PSL 1ST ART. ASSEMBLY/TEST	24			0									15SEP97		E 15SEP9
		M/S	220	220	39	118	8 87	167	7 1	,	0	80	08DEC94	15sep97 /	08DEC94	E 15SEP9
 E513	I/O OPTICS DESIGN	•••••	•••••	•••••	••••			••••	•••••			•••••		•••••		••••
.========					=====			=======					20552332			

ت

COBRA(R) WST Corp.		С	DST/SCHEDULE	STATUS REPO	AT			Page	
CONTRACTOR: Caltech LOCATION: Pasadena, CA		ACT TYPE/NO: 210038	PROJECT NA LIGO Maste PMB - WBS	r Merged	REPORT PERIOD: 30NOV95-31DEC9	SIGNATURE: TITLE / DATE:			
			CONTRAC	T DATA		l			
ORIGINAL CONTRACT TARGET COST	NEGOTIA Contra Changi 292, 100,	CT ES	CURRE TARGET 292, 100	COST	ESTIMATED AUTHORIZED WORK	NPRICED BASE		T BUDGET LINE 00.000	
			PERFORMA	NCE DATA		L.			
		CUI	ULATIVE TO D	ATE	<u> </u>		AT COMPLETION		
MPR Level	BUDGET	ED COST	(3) ACTUAL V COST		RIANCE	(5)	(7)	(8)	
	(1) WORK SCHEDULED	(2) WORK PERFORMED	WORK PERFORMED	(4) SCHEDU (2-1)	LE (5) COST (2-3)	(5) BUDGETED	ESTIMATE AT COMPLETE	VARIANCE (6-7)	
<pre>1.1.1 : Vacuum Equipment 1.1.2 : Beam Tubes 1.1.3 : Beam Tube Enclosur 1.1.4 : Facility Design & 1.2 : Detector 1.3 : Research & Developme 1.4 : Project Office</pre>	6575 2963 517 9943 3956 14660 10002	5839 2963 517 7644 1872 13834 10002	6856 2789 477 7221 2602 13427 10636	(736) 0 (2299) (2084) (826) 0	(1015) 174 39 423 (730) 407 (634)	41957 43922 18062 50405 48081 23400 22791	41957 43922 18062 50405 48081 23400 22791		
SUBTOTAL	48616	42671	44008	(5945)	(1337)	248618	248618	0	
CONTINGENCY	V////////			7///////		0	43482	(43482)	
MANAGEMENT RESERVE	777777777					43482	0	43482	
TOTAL	48616 42671		44008 (5945)		(1337)	292101	292101	0	

16JAN96 08: 43: 19

COBRA (R) by WST Corp.

e,

Reestimate and Rebaseline

- Include revised information from actual experience and signed contractor cost/schedule commitments
- Must revise BCWS to reflect most realistic plan so that performance measurement is meaningful
 - » If not, Task Leaders will not use system
- Cost, Schedule and PMB changes made annually on average and only after careful review by Technical/Change Control Board

Contract Planning

- All contracts or purchases of \$500K or more go through a formal planning process
 - » market survey
 - » careful consideration of contract type
 - fixed price
 - cost reimbursable + fee
 - incentives/penalties
 - » structure of bid package or tender
 - competition
 - multiple awards followed by final selection
- Contract change management is a crucial element of project management

Reviewing a Procurement (Source Selection)

- RFP (Tender) includes Statement of Work, legal requirements and criteria for selection of contractor
- Proposals are reviewed by Proposal Evaluation Team which develops a rigorous selection recommendation
- Recommendation reviewed of Review Committee which comments to Project Management
- Selection is finalized by a Source Selection Board from outside LIGO representing Caltech

Managing Contractors

- Crucial to manage multiple contractors on "noninterfering" basis
- Crucial to have a rigorous system to track and control all contacts between Project and contractors
- Crucial to rigorously, but quickly, manage contractor change orders
- Managing "fixed price" contracts is very different from managing "cost reimbursable" contracts

Other Crucial Factors

- People
- Clear, shared agendas
- Communicating openly and listening
- Teambuilding
- Share project goals and subordinate individual goals
- Delegate authority to lowest appropriate level but make accountability very clear
- Draw organization around people, instead of trying to fit people into a predetermined organization
- Clear process