MEZ August 31, 1994

L190-9940006-00-D

Strategy

- Divide suspended components into classes according to motion sensitivity
 - I/O optics (mostly)
 - Core optics
- Net beam motion after input chain sensed and stabilized using "Initial Beam Direction Servo"
 - Introduce new large-bore optic (sampling periscope)
 - Requires large suspended mirror pair to actuate corrections
- Core optics individually sensed and controlled with "standard" optical levers mounted to external monuments
 - Need "fiducial" (transmitted beam) control to eliminate laser direction drift (adds complexity; three monuments, two sensors per component)
 - Keep baselines ≥ 10 m to suppress monument translation

Sample Layouts	Sam	pie	Lay	outs
----------------	-----	-----	-----	------

Due to extreme aspect ratio, layouts are unreadable in this format. E-size drawings will be shown at review. For preview, load "mike/vacequip/auxbeams/horwedge/zfig2laux and "mike/vacequip/auxbeams/verwedge/zfig2m.a into the IDEAS drafting application."

MEZ August 31, 1994

RESULTS OF TRIAL LAYOUTS Port Locations

Port Functions

- Pump, vent/purge and gauge ports
- Electrical/fiberoptic feedthrough
 - Large reserve capacity
 - In fixed body (no disconnects req'd for access)
- Interferometer support structure feedthrough
 - Bellows isolate IFO supports from vacuum chamber walls
 - In fixed body (HAM), base (BSC), trunk between airlock and dome flange (TMC)
- Inspection & TV beam imaging
 - High and/or low view angle
 - Can image cavity mirrors at < 60 degrees off normal
 - HAM: on removable covers
 - BSC, TMC: on chamber body

- Interferometer laser beam I/O
 - Require full size beam I/O at +/- 12 degree incidence (to clear specular reflection at 1m)
 - 10" nom. O.D. ConFlat type on minimum neck is adequate
 - Implemented on removable covers for reconfigurability
- Auxiliary alignment laser beam I/O
 - Implemented on removable covers
 - Generally in pairs, symmetric about beam axis/component normal
 - Port arrangement in manifold endcaps specific to TM placement in tube aperture

Interferometer laser beam I/O

1. HEADS ARE ASME F&D.

- 3. INCLUDE CENTERING PINS ON NOZZLE FLANGES WHERE APPROPRIATE.
 3. VIEWPORT (ITEM (F)) MEASUREMENTS REFER TO INTERSECTION OF VIEWPORT AXIS WITH OUTER SURFACE OF VACUUM WALL.
- 4. TOLERANCES, UNLESS OTHERWISE SPECIFIED: LINEAR, ±0.25 CM ANGULAR, ± 1 DEGREE

5. NOZZLE SCHEDULE PER TABLE BELOW:

ITEM	SIZE	QUANTITY	FLANGE TYPE	PURPOSE
(A)	213cm ID TUBE	2	0/0-0/METAL+	MAJOR ACCESS
(B)	152cm ID TUBE	2	0/0-0/METAL *	LASER BEAM
	35cm TUBE	1	CONFLAT**, WITH BLIND FLANGE	ION PUMP/AIR SHOWERS, BACK-TO-AIR PURGE
0	25cm OD TUBE	8	CONFLAT**, WITH BLIND FLANGE	ELECTRICAL FEEDTHROUGHS, UTILITY
(E)	30cm OD TUBE	4	CONFLAT **	SUPPORT BEAMS
(G	20cm OD TUBE***	10	CONFLAT**, WITH BLIND FLANGE	OBSERVATION, PICKOFFS
©	3.8cm TUBE	1	CONFLAT**, WITH BLIND FLANGE	ANNULUS PUMPOUT (NOT SHOWN)

- * DUAL O-RING DESIGN, WITH CAPABILITY OF REPLACING INBOARD O-RING WITH METAL SEAL. THESE FLANGES EACH INCLUDE AN ANNULAR CHANNEL BETWEEN O-RINGS, MANIFOLDED TO A SINGLE PUMPOUT PORT ON EACH CHAMBER, WITH CONFLAT ** SEAL.
- ** REGISTERED TRADEMARK, VARIAN VACUUM PRODUCTS; COMPATIBLE ALTERNATIVES ARE ACCEPTIBLE
- *** THESE FLANGES ARE TANGENT TO LOCAL VACUUM WALL, WITH MINIMUM NECK LENGTH

Figure 11.

LIGO PROJECT HORIZONTAL AXIS MODULE (HAM)

1101010

SUPPORT BEAM -1101018 BY OTHERS

SHOWN WITH TOP

COVER REMOVED

1101011 4 PL-

BY OTHERS

1, HEADS ARE ASME F&D.

2. INCLUDE CENTERING PINS ON NOZZLE FLANGES WHERE APPROPRIATE.

3. VIEWPORT (ITEM (6)) MEASUREMENTS REFER TO INTERSECTION OF VIEWPORT AXIS WITH OUTER SURFACE OF VACUUM WALL.

4. TOLERANCES, UNLESS OTHERWISE SPECIFIED: LINEAR, ±0.25 CM ANGULAR, ± 1 DEGREE

5. NOZZLE SCHEDULE PER TABLE BELOW:

	0. NOLECE 00NEOUT / EN NICE 144-11				
1 TEM	SIZE	QUANTITY	FLANGE TYPE	PURPOSE	
(A)	264cm ID TUBE	1	0/0-0/METAL *	MAJOR ACCESS	
(B)	152cm ID TUBE	2	O/O-O/METAL+	LASER BEAM, ACCESS (MINIMIZE NECK LENGTH)	
©	152cm ID TUBE	2	O/O-O/METAL*, WITH BLIND FLANGE	ACCESS (MINIMIZE NECK LENGTH)	
0	35cm OD TUBE	4	CONFLAT • •	SUPPORT BEAMS	
©	35cm OD TUBE ***	8	CONFLAT WITH BLIND FLANGE	AIR SHWR, BACK-TO-AIR PURGE ROUGHING & ION PUMPS, UTILITY	
©	25cm OD TUBE ***	-6	CONFLAT**, WITH BLIND FLANGE	ELECTRICAL FEEDTHROUGHS	
©	20cm OD TUBE ***	22	CONFLAT WITH BLIND FLANGE	OBSERVATION, BEAM PICK-OFFS	
B	3.8cm OD TUBE	1	CONFLAT WITH BLIND FLANGE	ANNULUS PUMPOUT (NOT SHOWN)	

*DUAL O-RING DESIGN, WITH CAPABILITY OF REPLACING INBOARD O-RING WITH METAL SEAL. THESE FLANGES EACH INCLUDE AN ANNULAR CHANNEL BETWEEN O-RINGS, MANIFOLDED TO A SINGLE PUMPOUT PORT ON EACH CHAMBER, WITH CONFLAT .. SEAL.

**REGISTERED TRADEMARK, VARIAN VACUUM PRODUCTS: COMPATIBLE ALTERNATES ARE ACCEPTABLE.
***THESE FLANGES ARE TANGENT TO LOCAL VACUUM WALL,

WITH MINIMUM NECK LENGTH.

LIGO PROJECT BEAM SPLITTER CHAMBER (BSC) 1101009

Figure 8.

Manifold Ports

Initial Interferometer Compatibility

- "Generic Interferometer" trial layouts successful and relatively straightforward
- Stray beam handling, auxiliary alignment systems took up much of space vacated by "excess" components found in '89 IFO design
- Unique wedge angles seem necessary for particular locations (some loss of optic interchangeability)
- Fine tuning of auxiliary laser paths much less stringent with "vertical" component wedges
- Compact alignment system, better AR coatings than assumed in baseline will increase margins still further

Advanced Interferometer/Phase C Compatibility

SATISFACTORY:

- 200 kg quartz TM's
- advanced (e.g. Perth design) stacks in BSC and TMC
- double suspensions (all chamber types)
- dual recycling
- output mode cleaners
- suspension-point interferometers

PROBLEMS:

- beam crossings for Phase C
 - proposal design (fancy crossing adapters) marginal, probable conflict with stray beam req's.
 - allowing periscopes to shift alternate HAM chains to higher tier solves problem
 - CRANE HOOK HEIGHT OVER HAM'S SHOULD BE ADEQUATE TO CLEAR TWO-TIER ARRANGE-MENT
- stray beam dumping for Phase C
 - better understanding of internal scattering needed to evaluate solutions
 - use of different wavelengths should mitigate interference between IFO's
- auxiliary laser alignment for Phase C
 - need compact alignment system
 - wavefront sensing a promising solution
- advanced (low frequency) isolation stacks in HAM chambers
 - intrinsic height restriction probably rules out sub-10 Hz isolation for mode cleaner, recycling mirror; resulting frequency noise too large to reject
 - · may be able to replace with tall chambers
 - may add external satellite chambers at support feedthroughs for new isolators (original design feature)
- 100 meter mode cleaners
 - require facility reconfiguration & building modification
 - BUILDING LAYOUT SHOULD PERMIT EXTENSIONS OF MC VACUUM SYSTEM ALONG ARM

Summary: Adopted Changes from '89 Proposal Design

- Pump strategy revised
- BSC 60" side ports symmetrized
- BSC switched to "high stack" design like TMC-2 (no trench in facility floor req'd.)
- (TMC-2 identical to BSC now; designation dropped)
- Height adaptation (offset adaptor) now between BSC and first HAM
- HAM chamber body lowered w.r.t. beam height to add more room for stacks
- Port locations finalized

