Pobbie, the Giral

flis is the Giral

draft of my

draft of my

transparencies.

David has

approved it.

Mardi- 930603

INTERFEROMETER TOPOLOGY AND CONTROL SYSTEMS

CANDIDATE LIGO INTERFEROMETER
OPTICAL AND SERVO TOPOLOGY:
ASYMMETRY MODULATION

M. Regehr June 8, 1993

"Asymmetry" Scheme for Gravitational Wave Signal Extraction and Auxiliary Sensing

- Method of extracting gravitational wave signal and auxiliary signals for control of mirror positions
- Status; Work remaining to qualify scheme for LIGO
- Caltech tabletop prototype

"Asymmetry" Scheme for Gravitational Wave Signal Extraction

(Schnupp, '86 or '87) Symmetric Michelson interferometer:

· Output dark for all wavelengths if dark for any.

Introduce asymmetry by shifting one mirror away from beamsplitter by a (large) integral number of half-wavelengths of green light:

Now output is dark for green, not dark for other wavelengths.

In particular: Modulate phase of input light at radio frequency

- · Modulation imposes sidebands on incident light.
- Effect of gravitational wave is slow motion of mirrors. Carrier ("green") light at output beats against sidebands, producing amplitude modulation.
- · Gravitational wave is detected by demodulation.

Full interferometer exactly analogous.

 High sideband transmission (from laser to output) possible because sidebands made to resonate in recycling cavity.

Signal at output:

$$V_1 \propto L_1 - L_2$$

 \propto Gravitational Wave Signal

- Planned asymmetry: 60 cm
- Shot noise level insensitive to details of modulation scheme
- No known mechanisms by which asymmetry would degrade noise performance measurably

"Asymmetry" Scheme for Auxiliary Sensing

Signals corresponding to remaining three degrees of freedom needing to be controlled also available:

$$V_2 \propto \delta L_1 + \delta L_2 + \varepsilon_2 (\delta l_1 + \delta l_2) \qquad \qquad \varepsilon_2 \simeq 0.006$$

$$V_3 \propto \delta L_1 + \delta L_2 + \varepsilon_3 (\delta l_1 + \delta l_2) \qquad \qquad \varepsilon_3 \simeq 0.002$$

$$V_4 \propto \varepsilon_4 (\delta l_1 - \delta l_2) \qquad \qquad \varepsilon_4 \simeq 0.002$$

Challenges:

"Ill conditioned" system: V_2,V_3 (and, if demodulator phase not quite right, V_4) all more sensitive to L_1+L_2 than to other two degrees of freedom.

Solution: separate signals by taking linear combinations, or use high gain in one loop

 When not near resonant state, gain in each loop depends on other degrees of freedom: difficult to understand acquisition (and to diagnose problems if not working)

May require use of alternate auxiliary sensing scheme for lock acquisition

Benefits:

Extreme optical simplicity

Progress:

- Low frequency analysis and numerical model completed
- Frequency response analysis nearly complete;
 Numerical model being debugged
- Prototype assembled and functioning

The Table-Top Prototype

Differences from LIGO:

- Lengths: arm cavities 6 m instead of 4000 m
- Characteristic frequencies 20 kHz, 200 kHz instead of 5 Hz, 90 Hz
- Spectra of disturbances \sim 500 Hz (acoustic) instead of \sim 5 Hz (seismic/stack)

Similarities:

- Mirror transmissions: 20% recycling mirror, 10% cavity input mirrors (3%, 3% respectively in LIGO)
- Modulation frequency: 12 MHz

Results

Model verification for the 'coupled cavity' subsystem

- Lock acquisition for full interferometer
- Low frequency model verification in progress

Work remaining:

- Complete experimental verification of low frequency model
- Verify frequency response analysis and numerical model against each other, and possibly against prototype
- Design a controller for LIGO and verify performance by modelling

- [0?] Introduction: statement (in about two sentences) summarizing what is about to be presented
 - method of extracting gravitational wave signal and auxiliary signals
 - work done; work remaining to qualify scheme for ligo
 - Caltech tabletop prototype

Gravitational Wave Signal Extraction

- [2] mechanism one transparency (2?); use sideband (preferred) or common mode/differential phase modulation explanation
 - mention fact that sidebands resonate in recycling cavity
 (hard to explain in common mode/differential phase modulation
 framework)
- [1] size of asymmetry planned shot noise identical to within a few percent for all modulation techniques considered no known mechanisms by which asymmetry could degrade noise performance measurably advantage: extreme optical simplicity

Auxiliary Signal Extraction

- [1] schematic showing where light extracted and demodulated statement of dependence of signals on lengths in interferometer
- [1] challenges:
 - "ill conditioned' system: V2,V3 (and, if demod phase not quite right, V4) all more sensitive to L1+L2 than to other two degrees of freedom.

Solve by decoding or high gain in one loop

- when not near resonant state, gain in each loop depends on other degrees of freedom: difficult to understand acquisition (and to diagnose problems if not working)

May require use of alternate auxiliary sensing scheme for lock acquisition

- [1] Strategy of verifying adequacy for ligo
- low frequency analysis and numerical model
- frequency response analyzed; numerical model being debugged
- prototype
- [1] The Experiment
- differences from ligo

lengths, characteristic frequencies

spectra of disturbances, bandwidth limitations in actuators

- similarities:

mirror reflectivities (list values)
modulation frequency

[1] - results:

model verification (including servo model and proposed method of dealing with ill conditioning) for coupled cavity experiment (show diagram)

[1] lock acquisition for full interferometer (show photograph)

low frequency model verification in progress; would like to test frequency response as well

[1]Work Remaining

verify frequency response analysis and computer model against each other

design a controller for ligo and verify performance by modelling

Represent with a phasor diagram in which carrier is stationary and sidebands rotate:

In absence of gravitational wave, only sidebands at output (sideband transmission maximum for quite large $(\lambda_m/4)$ asymmetry):

• Intensity of output light has only DC and 2ω frequency components.

In presence of gravitational wave, carrier plus side-

bands:

Output intensity contains component at frequency ω , proportional to gravitational wave amplitude.

Detectable by demodulating at frequency ω .

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Inter feromotor

NUMEVICAL Example

•

Case 1: Fredback to masses without "inversion"

$$C = \begin{bmatrix} 0 & 0 \\ 3 & 0 \\ 0 & g_2 \end{bmatrix}$$

Set g, , g2 S.t. gain through dulum masses = 100 (ie. $[1+CP]_{22}^{-1} = [1+CP]_{33}^{-1} = \frac{1}{101}$)

measure of performance: weighted disturbance Suppression

in this case, was element of W [1+CP]"

15 1.4

Case 2: High gain feedback to laser:

Same constraint on gain through droven mass,

but allow hish gain in feedback to lasor

[1+CP] = 16000

Now man dement of W [1+C8]-1

£.