

((O))/VIRGD

Radiative Cooling Thermal Compensation

LSC-Virgo meeting - Amsterdam - September 24, 2008

Justin C. Kamp^a, Hinata Kawamura^b, <u>Roberto Passaquieti^c</u>, and Riccardo DeSalvo^d

- a) Chalmers University of Technology, SE-412 96 Goteborg, Sweden
- b) Yokoyama middle school, Sanda, Hachioji, Tokyo, 193-0832, Japan
- c) Dip. di Fisica "EnricoFermi" and INFN Sezione di Pisa, Università diPisa, Largo Bruno Pontecorvo, I-56127 Pisa, Italy
- d) LIGO Observatories, California Institute of Technology, Pasadena, CA 91125, USA

LIGO-G080543-00-Z

- An absorption level ~ 0.3-0.4 ppm is done currently on FP mirrors HR-Ti doped Ta2O5 coatings.
- In advanced high power detectors almost a MW standing power will impinge the HR coating of FP mirrors over a gaussian spot of ~6 cm radius:

\rightarrow Expected heating power up to ~ 0.5 W

- For a 6 cm radius spot over the mirror surface at room temperature (293 K):
 - Fused silica emissivity ~ 0.93, (Wien law $\rightarrow \lambda \sim 10 \mu m$)
 - Emissive power E = $\sigma \epsilon T^4 \sim 389 \text{ W/m}^2$

LIGO

$\rightarrow\,$ Mirror spot emispheric emitted power P \sim 4.4 W

 At equilibrium the same amount is absorbed from the environmental thermal bath

- Establish thermal radiation heat exchange between a cold surface (masking ٠ partially the environment to the mirror) and the mirror hot spot surface
- The cold target could be a Li-N₂ surface: ٠
 - higly efficient ~99.6%

LIGO

emits only 0.4% thermal radiation than a room temperature body

Proximity cooling

Imaging cooling

Baffled cooling

Mirror Focused DRC

- Liquid nitrogen cold targets focused with Au plated parabolic mirrors on stored beam spot
- Mimic Gaussian spot profile by moving cold targets out of focus

First Experimental Results

Measurement of the cooling power of a LN₂ cold target focused on a linear array of temperature probes in air (August 2008 - Caltech Lab.)

J. Kamp , H. Kawamura, R. Passaquieti, and R. DeSalvo: Radiative cooling TCS , LIGO-G080414-00-R Pasadena 12 August 2008 (article inpreparation)

Amsterdam 24 September 2008

R. Passaquieti - Radiative Cooling Thermal Compensation

Warming and Cooling Cycles

Thermal Power= slopeA - slopeB [oC/s]

Amsterdam 24 September 2008

LIGO

((O))

Exchanged power = Gaussian spot surface S = m2*m4

Result:

LIGO

measured cooling power \sim 155 ±78 ±39 mW (average over 6 meas.) (max theor. cooling power \sim 260 mW)

Amsterdam 24 September 2008

R. Passaquieti - Radiative Cooling Thermal Compensation

A Preliminary Case Study: Design and Simulation

Mirror DRC focused system dimensionally compatible with the actual Virgo vacuum chamber

Model Implementation in Virgo (4/5)

Amsterdam 24 September 2008

R. Passaquieti - Radiative Cooling Thermal Compensation

igure 1. Emissivity Variation with Angle, Perfect Blackbody, Real Body. (Source Infrared Training Center)

LIGO

Target Power Distribution

((O))

Target Geometry Optimization

LIGO

Total power ~5mW Effective power ~4mW

LIGO

NUMBER OF PIXELS: 4950 TOTAL HITS = BL412 PEAK IRRADIANCE : L.SCIME+DDL WATTS/METER*2 TOTAL PONER: 2.312LE-001 WATTS •Mirror:

•A BB detector of 35cm diam

4 targets at 200 K:
Flux~ 140mW each(λ~14 μm)
Uniform distrib. on surface
Cos angular distrib
50000 rays each

Total Flux over the mirror ~ 230mW

Considering:

- Target collector reflect. ~ 0.97
- Mirror reflector reflect. ~ 0.97
- Mirror emissivity ~0.93

Total effective power on the mirror Pback_refl ~ 200 mW

- Thermal Radiation exchanges:
 - Thermal radiation from 6 cm radius mirror spot to 4 targets (5 cm diam) ~ 0.5 W
 - Thermal radiation from 4 cold targets (5 cm diam) to mirror:
 - 77 K : ~ 4 mW
 - 200 K: ~ 200 mW
 - Net radiation flux from mirror 6cm radius spot to targets at 77 K: \sim 500 mW
 - Use of LN₂ or low noise refrigerators (pulse-tube)
 - Net radiation flux from mirror 6cm radius spot to targets at 200 K: $\sim 300 \text{ mW}$
 - Possible use of peltier cells (multilayer $\Delta T \sim 90$ K)

• Iris control:

LIGO

- An iris placed in front of each target tuning the sink surface
- Require remote adjustment and moving parts in vacuum
- Target temperature control
 - A resistor heater (C) tuning the target (D) temperature
 - Reaction time depends on target heat capac.
- Hot resistor power balance
 - Shielded resistor heater and cold target both focussed on the mirror
 - Fast
 - Useful during unlock
- Remote driving of peltier-cells (if implementable)

Conclusions

- The feasibility of DRC has been recently tested and demonstrated with an experiment in air:
 - an experiment in vacuum is required
 - even better if performed with a silica bulk in a full 1:1 scale geometry set-up.
- Preliminary ZEMAX IR simulation of a case study model, fitting the Virgo payload geometry, has shown the interesting result of 0.5 W to 0.3 W heat power extraction from a mirror beam spot of 6cm radius.
 - need to be optimized,
 - reflector surface scattering need to be considered,
 - target surface geometry need to be modified to mitigate scattered beams
 - Noise sources need to be studied (cooling profile on mirror, alignment specs. refrig. specs., seismic attenuation specs., ...)
- This system can be tuned to match the laser heat power released on the mirror beam spot
- Thermal lensing could be at least mitigated without major modification of the payloads
- Cold surfaces Cryopumping of organics impurities
- DRC has been recently presented in Virgo. No decision has been taken at the moment by the Virgo Collaboration about future plans for DRC in AdV.