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Advanced High Power Detectors

• An absorption level ~ 0.3-0.4 ppm is done currently on FP mirrors HR-Ti doped 
Ta2O5 coatings. 

• In advanced high power detectors almost a MW standing power will impinge the HR 
coating of FP mirrors over a gaussian spot of ~6 cm radius:

Expected heating power up to ~ 0.5 W  

• For a 6 cm radius spot over the mirror surface at room temperature (293 K):
– Fused silica emissivity ∼ 0.93, ( Wien law λ ∼ 10μm )
– Emissive power E = σεT4 ∼ 389 W/m2

Mirror spot emispheric emitted power P ∼ 4.4 W 

• At equilibrium the same amount is absorbed from the environmental 
thermal bath
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Principle of Directional Radiative Cooling (DRC)

• Establish thermal radiation heat exchange between a cold surface (masking 
partially the environment to the mirror) and the mirror hot spot surface

• The cold target could be a Li-N2 surface:
– higly efficient ∼99.6%
– emits only 0.4% thermal radiation than a room temperature body

Driving thermal radiation

• Proximity cooling

• Imaging cooling

• Baffled cooling
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Baffled DRC De-Focussing

• Defocused spot mimic gaussian profile
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Further Option for DRC

Mirror Focused DRC
• Liquid nitrogen cold targets focused with Au plated parabolic mirrors 

on stored beam spot
• Mimic Gaussian spot profile by moving cold targets out of focus
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First Experimental Results

Measurement of the cooling power of a LN2 cold target  focused on a 
linear array of temperature probes in air
(August 2008 - Caltech Lab.)
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Experimental Apparatus: Schematics

J. Kamp , H. Kawamura, R. Passaquieti, and R. DeSalvo:
Radiative cooling TCS , LIGO-G080414-00-R Pasadena 12 August 2008 (article inpreparation)

0.
55

 m

Thermometer array
(n. 8 - 2.5 cm sp.- LM 19 )

62 mm aperture
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Warming and Cooling Cycles

40W lamp
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Power Deposition/Extraction: Results

Result: 
measured cooling power ∼155 ±78 ±39 mW (average over 6 meas.)
(max theor. cooling power ∼ 260 mW)

40W lamp
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A Preliminary Case Study: Design and Simulation

Mirror DRC focused system dimensionally compatible with the 
actual Virgo vacuum chamber
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Model: Implementation of Parabolic Collectors

Cold Target

Parabolic Collector

ParabolicReflector
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Model Geometry
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Model Implementation in Virgo (4/5)
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Model Implementation: Problems
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ZEMAX IR Simulation Set Up

Source:
•Disc radius=6 cm
•T=293 K (λ∼10 μm)
•ε =0.93
•Flux= 4.4 W (100000 rays)
Angular cosine distribution:
I=I0 cos(θ)

Target :
BB Disc Detector (diam.= 5 cm)
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Target Power Distribution
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Detected Power on the Targets

Total detected power from 6cm radius spot:
∼ 170 mW each 

Pd∼ 0.7 W  !!
Assuming:
• 0.97 reflectivity of Au plated surfaces
• target emissivity ∼0.8
• (mirror 0.93 already considered)

Effective detected power
P= Pd X 0.972x0.8 ∼ 0.5 W
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Target Geometry Optimization
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Back-Radiation from 77 K Targets to Mirror

•Mirror:
•A BB detector of 35cm diam.

•4 targets at 77K:
•Flux= 3mW each (λ∼38 μm)
•Uniform distrib. On surface
•Cos angular distrib
•50000 rays each
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Back-Radiation Power Distribution on Mirror

12
cm

Total power
~5mW
Effective power
~4mW
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Back-Radiation from 200 K Targets to Mirror

•Mirror:
•A BB detector of 35cm diam

•4 targets at 200 K:
•Flux~ 140mW each(λ∼14 μm)
•Uniform distrib. on surface
•Cos angular distrib
•50000 rays each

Total Flux over the mirror ~ 230mW 

Considering:
• Target collector reflect. ~ 0.97 
• Mirror reflector  reflect. ~ 0.97 
• Mirror emissivity ~0.93

Total effective power on the mirror
Pback_refl ~ 200 mW
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Simulation Summary

• Thermal Radiation exchanges:
– Thermal radiation from 6 cm radius mirror spot to 4 targets (5 cm diam) ~

0.5 W  
– Thermal radiation from 4 cold targets (5 cm diam) to mirror:

• 77 K : ~ 4 mW
• 200 K: ~ 200 mW

– Net radiation flux from mirror 6cm radius spot to targets at 77 K: ~ 500 mW
• Use of  LN2 or low noise refrigerators (pulse-tube) 

– Net radiation flux from mirror 6cm radius spot to targets at 200 K: ~ 300 mW
• Possible use of peltier cells ( multilayer ΔT∼ 90 K)
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Other Radiation Cooling Control Methods

• Iris control:
– An iris placed in front of each target tuning the sink 

surface
– Require remote adjustment and moving parts in vacuum

• Target temperature control
– A resistor heater (C) tuning the target (D) temperature

• Reaction time depends on target heat capac.  

• Hot resistor power balance
– Shielded resistor heater and cold target both focussed 

on the mirror
• Fast
• Useful during unlock

• Remote driving of peltier-cells (if implementable)  
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Conclusions
• The feasibility of DRC has been recently tested and demonstrated with an experiment in 

air:
– an experiment in vacuum is required
– even better if performed with a silica bulk in a full 1:1 scale geometry set-up.

• Preliminary ZEMAX IR simulation of a case study model, fitting the Virgo payload 
geometry, has shown the interesting result of 0.5 W to 0.3 W heat power extraction from a 
mirror beam spot of 6cm radius.

• need to be optimized,
• reflector surface scattering need to be considered,
• target surface geometry need to be modified to mitigate scattered beams
• Noise sources need to be studied (cooling profile on mirror, alignment specs. 

refrig. specs., seismic attenuation specs., ...)   

• This system can be tuned to match the laser heat power released on the mirror beam 
spot       

• Thermal lensing could be at least mitigated without major modification of the payloads 
• Cold surfaces Cryopumping of organics impurities

• DRC has been recently presented in Virgo. No decision has been taken at the 
moment by the Virgo Collaboration about future plans for DRC in AdV.
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