

Radiative Cooling Thermal Compensation for Gravitational Wave interferometer mirrors.

Justin C. Kamp^a, <u>HinataKawam</u>ura^b, Roberto Passaquieti^c, and <u>Riccardo DeSalvo^d</u>

- a) Chalmers University of Technology, SE-412 96 Goteborg, Sweden
- b) Yokoyama middle school, Sanda, Hachioji, Tokyo, 193-0832, Japan
- c) DipartimentodiFisica "Enrico Fermi" and INFN Sezionedi Pisa, Universita` di Pisa, Largo Bruno Pontecorvo, I-56127 Pisa, Italy
- d) LIGO Observatories, California Institute of Technology, Pasadena, CA 91125, USA

High power interferometers

- The main Fabry Perot mirrors of advanced interferometers will be subject to almost a MW of standing laser light over a Gaussian spot size of ~6 cm radius
- high reflectivity coatings absorb >0.25 ppm
- The mirrors receives 0.25 ~ 0.5 W of heating
- The deposited power distribution matches the stored beam profile

Thermal lensing problem

• Thermal lensing impede the performance of the interferometer

 Problem already present in Virgo and LIGO at lower power, due to the higher absorption of their mirrors

LIGO

Present solution

- Thermal Compensation System (TCS)
- shape an annular CO₂ laser beam and project it on the mirror periphery
- generate counter thermal lensing

- Problem for Advanced interferometers:
- Radiation pressure and thermoelastic noise on test mass affect the GW signal

Advanced solution

• Hot ring on a compensation plate

 Generates negative thermal lensingon an optical element that does not otherwise affect the interferometer performance

• Technique tested on main mirrors by GEO

Advanced Virgo problem

• Very difficult to implement compensation plate

Alternative solution

• Directional cooling of the stored beam spot

• Passive, no forces on the test mass

Directional Radiative Cooling (DRC) working principle

- Image a cold surface on the laser spot
- The thermally radiated heat from the spot is absorbed by the cold target
- The cold target, being colder, returns less heat to the laser spot

LIGO

DRC basics

• DRC takes advantage of the heat emitted by the spot BECAUSE it is at room temperature

• Simply balances the laser deposited power with robbed thermal power

• DRC applied in absence of stored power would generate a cold spot on the mirror

DRC Facts

• The mirror is subject to less thermal radiation radiation pressure

actually quieter than without cooling
– (no practical advantage though)

Feasibility of DRC

- At room temperature a black body emits 146W/sr-m²
- Fused silica emissivity is close to that of a black body 0.93 engineering toolbox http://www.engineeringtoolbox.com/
- A 6 cm radius spot emits 1.64W/sr
- Black Body Emission Calculator <u>http://infrared.als.lbl.gov/calculators/bb2001.html</u>
- 0.25-0.5 sr coverage sufficient to rob the 0.25—0.5W deposited by the laser spot

DRC required temperature

 Liquid nitrogen cooled black bodies emit only 0.4% thermal radiation than a room temperature body

• Li-N₂ targets would be 99.6% efficient

How to "direct" radiative cooling

• Proximity cooling

• Baffled cooling

• Imaging cooling

LIGO

Proximity DRC

- A 6.2 cm radius, liquid-nitrogen-cooled disk placed in front of the test mass would suck out 5.1 W
- Advantages:
 - simple solution
- Disadvantages:
 - Obstruct the stored light beam
 - Suck out too much power

Baffled DRC

- A large Li-N₂ target is used
- Pyramidal Baffles restrict the line of view of the cold target to the stored beam spot
- Pyramids can be located outside the beam line outer envelope

LIGO

Baffled DRC de-focussing

 Cooling spot can be defocussed to mimic a Gaussian by playing with longitudinal positioning of the baffles

Baffled DRC disadvantages

Advantages

LIGO

- Large cooled surface acts as cryo-pump for organics
- Disadvantages
 - Bulky baffle array,
 - Large Li-N₂ cooled target
 - Large cooling power requirement, potentially mechanically noisy

Mirror focused DRC

- One or two small Li-N₂ cooled targets focused with Au plated spherical mirrors on stored beam spot
- Mimic Gaussian spot profile by moving cold targets out of focus

LIGO

LIGO

Controlling DRC power

- Three methods
 - Iris control
 - Target temperature control
 - Hot resistor power balance

Iris DRC power Control

- The DRC cooling power is directly proportional to the cold target area used.
- An iris placed in front of each target would naturally tune the cooling power
- Disadvantage:
 - Mechanical parts in vacuum

LIGO

Hinata Kawamura, Riccardo Desalvo

Iris DRC power Control

• Advantage:

LIGO

 A fixed iris can be used for static cooling power controls, to match the absorption of individual coatings and minimizing the dynamic range of active power controls

Target temperature Control

- The cold target "D" is separated from the Li-N₂ cooling bath "A" by a thermal resistor "B"
- The cold target temperature is controlled by a resistor "c" mounted on the cold target
- Disadvantages:
 - Reaction time of several seconds
 - Dumps power in thermal bath
- Advantages:
 - Can be used for small corrections

Hot resistor DRC power Control

- The cold target "A" is placed behind the mirror focal plane "c"
- A back shielded resistor "B" is placed in front of the focal plane
- Both defocused to generate Gaussian profile, the heating modulatable
- Disadvantages:
 - Heating power fluctuations can generate thermo-elastic noise on the main mirror,
 - can use with interferometer off,
 - need to limit the resistor applied power
- Advantages:
 - Fast reaction times (low resistor heat capacitance)
 - Does not dump power in thermal bath

Focused RTC further option

- Hot ring placed in focal plane is imaged on the mirror, can change mirror focal length
- Advantage:
 - Fine mirror focal length controls even in absence of beam power
- Disadvantage:
 - Possible thermo-elastic noise
 - Useful with interferometer off

Experimental measurements

LIGO Experimental Setup schematics

Liquid Nitrogen trap

62.5mm diameter orifice

Dewar

Pasadena 12 August 2008

Hinata Kawamura, Riccardo Desalvo - Radiative cooling TCS , LIGO-G080414-00-R

Pasadena 12 August 2008

Hinata Kawamura, Riccardo Desalvo - Radiative cooling TCS , LIGO-G080414-00-R

Building and testing the mirror

awamura, Riccardo Desalvo - Radiative cooling TCS , LIGO-G080414-00-R

Thermal sensors

2.5cm

LIGO

There were 8 thermal sensors, one broke half way. At the end only 7 thermal sensors left.

Pasadena 12 August 2008

Hinata Kawamura, Riccardo Desalvo - Radiative cooling TCS , LIGO-G080414-00-R

Building the box

Lined with black Felt to absorb Diffused radiation

Before lining

Pasa

Cold trapset-up

LIGO

40 W heater Lamp setup

Pasadena 12 August 2008

LIGO

Hinata Kawamura, Riccardo Desalvo - Radiative cooling TCS , LIGO-G080414-00-R

Warming and cooling cycle

Thermal Power= slopeA - slopeB [oC/s]

Pasadena 12 August 2008

LIGO

Hinata Kawamura, Riccardo Desalvo - Radiative cooling TCS , LIGO-G080414-00-R

Energy deposition/extraction

cooling

Exchanged power = Gaussian spot surface S = m2*m4

Hinata Kawamura, Riccardo Desalvo - Radiative cooling TCS, LIGO-G080414-00-R

Results

- Gaussian fit area results
 - 1.9W heating => S = 0.685±0.02
 - $\text{Li-N}_2 \text{ cooling} => S = 0.056 \pm 0.028$
- Cooling power
 - Measured
 - 1.9 [W] x (0.685/0.056) = <mark>155±78±39</mark> mW
 - Theoretical (all Σ = 1) 262 mW

LIGO

Conclusions

- Demonstrated the feasibility of
- focused radiative cooling
- Directly suck heat from mirror laser spot
- Passive and remote operation (low risk)
- Neutralize thermal lensingwithout perturbing the test masses
- Remote mirror focal length tuning capabilities
- Cryo pumping of organics impurities