

Gravitational Wave Astronomy using LIGO

Stan Whitcomb (for the LIGO Scientific Collaboration)
Annual General Meeting (AGM) of the
Astronomical Society of Australia
8 July 2008

LIGO Scientific Collaboration LSC

WASHINGTON STATE I INIVERSITY

Science & Technology Pacilities Council Rutherford Appleton Laboratory

Outline of Talk

- Quick Review of GW Physics and Astrophysics
- LIGO Overview
- Recent Results
- The Future
 - » More sensitive detectors.
 - » Global network

gravitational radiation binary inspiral of compact objects (blackholes or neutron stars)

LIGO

Gravitational Wave Physics

- Einstein (in 1916 and 1918) recognized gravitational waves in his theory of General Relativity
 - » Necessary consequence of Special Relativity with its finite speed for information transfer
 - » Most distinctive departure from Newtonian theory
- Time-dependent distortions of space-time created by the acceleration of masses
 - » Propagate away from the sources at the speed of light
 - » Pure transverse waves
 - » Two orthogonal polarizations

$$h = \Delta L/L$$

Astrophysics Differences Electromagnetic vs. Gravitational waves

	Electromagnetic waves	Gravitational waves
Sources	Accelerations of individual charged particles	Coherent acceleration of very large masses
Examples	Atomic and nuclear transitions, plasmas, synchrotron radiation	Binary black holes, supernova core collapse, big bang
Propagation	Strong absorption Strong scattering Dispersion	Essentially, no absorption or scattering

Evidence for Gravitational Waves:

Binary Pulsar PSR1913+16

- Discovered by Hulse and Taylor in 1975
- Unprecedented laboratory for studying gravity
 - » Extremely stable spin rate
- Possible to repeat classical tests of relativity (bending of "starlight", advance of "perihelion", etc.

- After correcting for all known relativistic effects, observe loss of orbital energy
- => Emission of GWs

Astrophysical Sources for Terrestrial GW Detectors

- Compact binary inspiral: "chirps"
 - » NS-NS, NS-BH, BH-BH

- Supernovas or GRBs: "bursts"
 - » GW signals observed in coincidence with EM or neutrino detectors

- Pulsars in our galaxy: "periodic waves"
 - » Rapidly rotating neutron stars
 - » Modes of NS vibration

» Probe back to the Planck time (10⁻⁴³ s)

Detecting GWs with Interferometry

Suspended mirrors act as "freely-falling" test masses (in horizontal plane) for frequencies f >> f_{pend}

Terrestrial detector For $h \sim 10^{-22} - 10^{-21}$ L ~ 4 km (LIGO) $\Delta L \sim 10^{-18}$ m

$$h = \Delta L/L$$

test mass

light storage arm

test mass

beam splitter

photodetector

LIGO

LIGO

(Laser Interferometer Gravitationalwave Observatory)

One interferometer with 4 km Arms,
One with 2 km Arms

One interferometer with 4 km Arms

LIGO Interferometers

Ultra-precise $\lambda/1000$ optics

Low-noise Suspensions

Custom-built 10 W Nd:YAG Laser

Initial LIGO Sensitivity Goal

- Strain sensitivity
 <3x10⁻²³ 1/Hz^{1/2}
 - at 200 Hz
- Sensing Noise
 - » Photon Shot Noise
 - » Residual Gas
- Displacement Noise
 - » Seismic motion
 - » Thermal Noise
 - » Radiation Pressure

LIGO Sensitivity

Strain Sensitivity for the LIGO Hanford 4km Interferometer

LIGO Science Run ("S5")

- Nov 2005 Oct 2007 (23 months)
- One year of triple coincident data
- Virgo (Italian-French-Dutch collaboration) joined in June 2007 for last 7 months

S5 Sensitivity

Average range for a 1.4 - 1.4 solar mass Binary Neutron Star at SNR = 8

Nov 8 Jan 31 Apr 25 Jul 18 Oct 10 Jan 2 Mar 27 Jun 19 Sep 11

Nov 8 Jan 31 Apr 25 Jul 18 Oct 10 Jan 2 Mar 27 Jun 19 Sep 11 run time (2w)

Short Gamma Ray Bursts (GRBs)

"Long" GRBs identified with type II (or Ic) supernovae in 1998

"Short" GRBs hypothesized as NS-NS or NS-BH

collisions/mergers

GRB050509b

First Identification from SWIFT

 Observation supports NS-NS or NS-BH hypothesis

Gehrels et al., *Nature*, **437**, 851 (2005)

Using Gravitational Waves to Learn about Short GRBs

Chirp Signal binary inspiral

Chirp waveform gives:

- Masses and spins of the two bodies (NS, BH)
- Distance
- Orientation of orbit
 - Determine beaming of gamma rays (with enough observations)

GRB 070201

- Detected by Konus-Wind, INTEGRAL, Swift, MESSENGER
- Duration ~0.15 s, followed by a weaker, softer pulse with duration ~0.08 s
- Location error box overlaps Andromeda galaxy
- D_{M31}≈770 kpc
- Two LIGO detectors operating (Hanford)

ng

LIGO

LIGO Observations

- Searched for compact binary inspiral signal, over the range 1 M_{\odot} < m_1 < 3 M_{\odot} and 1 M_{\odot} < m_2 < 40 M_{\odot} ,
- Location in M31 excluded at > 99% confidence

Gravitational Waves from Rotating Neutron Stars

S3 and S4 data

- Rapidly rotating neutron stars can radiate GWs due to deviations from axi-symmetry
- Known pulsars allow long integrations
- Measured spin down rates set upper limits on GW strength (emitted power in GWs)

LIGO Limits on Gravitational Wave Contribution to Spin-Down

- Highest spin-down limit of all pulsars in the LIGO frequency range
- Crab pulsar glitch in Aug 2006 makes for convenient

10^{39|}

break-point in the

analysis

 First 9 months gives upper li h^{95%} < 3.5x10 Matthias Vigelius,
"Neutron star astrophysics
with gravitational waves"

 GW emission accounts for <6% of spin-down power

"Beating the spin-down limit on gravitational wave emission from the Crab pulsar", arXiv:0805.4758, accepted by ApJ Letters

uniform prior

restricted prior

spin-down limit

What's Next? Advanced LIGO

- Take advantage of new technologies and on-going R&D
 - » Active anti-seismic system operating to lower frequencies
 - » Lower thermal noise suspensions and optics
 - » Higher laser power
 - » More sensitive and more flexible optical configuration

x10 better amplitude sensitivity

- \Rightarrow x1000 rate=(reach)³
- ⇒ 1 day of Advanced LIGO
 - » 1 year of Initial LIGO!

2008 start Installation to begin 2011

What's next for LIGO? Targets for Advanced LIGO

- Neutron star & black hole binaries
 - inspiral
 - merger
- Spinning neutron stars
 - **LMXBs**
 - known pulsars
 - » previously unknown
- Supernovae
- Stochastic background
 - Cosmological
 - Early universe

Enhanced LIGO

- Enough time for one significant set of enhancements
- Aim for a factor of 2 improvement in sensitivity (factor of 8 in event rate)
- Early tests of Advanced LIGO hardware and techniques

What else is Coming? A Global Network of GW Detectors

Why a Global Network?

Virgo Italy

GEO 600 Germany

ASA Annual General Meeting

AIGO (Australian International Gravitational-wave Observatory)

- 8km x 8km AIGO site 70km north of Perth granted 1998.
- Site development begun 1999
- Currently operating 80m High Optical Power test facility in collaboration with LIGO

Importance of AIGO

- AIGO provides strong science benefits e.g. host galaxy localization
- Comparable sensitivity to Advanced LIGO
- Australian Consortium seeking partners and funding

Final Thoughts

- We are on the threshold of a new era in GW detection
 - » LIGO has reached design sensitivity and is taking data
- First results are yielding interesting new results
 - » First detection could come at any time...
- Second generation detector (Advanced LIGO) has started
 - » Will expand the "Science" (astrophysics) by factor of 1000
- A worldwide network is starting to come on line
 - » Groundwork has been laid for operation as a integrated system
 - » Australia could play a key role