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Can this be used by LIGO!?




Parameter Estimation

Data: s(t) = h(t) + n(t)
A

Includes all detectors Includes time delays
in the network and antenna patterns

Given some model M for h,want to compute posterior
PDF p(X|s) for the parameters X that describe h(\, t).
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Parameter Estimation

Data: s(t) = h(t

) + n(t)

Includes all detectors Includes time delays
in the network and antenna patterns

Given some model M for h,want to compute posterior

PDF p(X|s) for the parameters X

that describe h(\, ).

Prior

p(M)|p(s|\)

Likelihood

Evidence

p(s)




Computing the Posterior Distribution

Prior

(informed by theory,
EM observations)

Likelihood

(Stationary, Gaussian Noise)

Evidence

(expensive to compute for
large dimension models)




Bayesian Learning

Posterior Belief o< (Prior Belief) x (Likelihood of data)

Bits of Information Obtained From Data

I = /dip(x\ ) logs (




Markov Chain Monte Carlo

Yields p(\|s) for parameters X given
data s for any non-trivial ¢

Avoids the need to compute the Evidence

Transition Probability
(Metropolis-Hastings)
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Markov Chain Monte Carlo

Always go up, . 3
Sometime come down 7§/ Yields p(\|s) for parameters \ given
data s for any non-trivial ¢

Avoids the need to compute the Evidence

q(Z|Y) Transition Probability
q(y_’ f) (Metropolis-Hastings)

Proposal

ihood ~ €_X2/2




Example: Spinning MBH, LVG Network

f (Hz)

m1 = 10Ms mo = 5Mg sl/m% = 0.7 SQ/mg = 0.5 Dy =10 Mpc




Example: Spinning MBH, LVG Network
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(Cornish, Hughes, Lang & Nissanke, 2008)
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|5 signal parameters, 4 x 26 =104 noise parameters




Bayesian Model Selection

Probability of Model M:  p(M|s) o< p(M) p(s|M)

z'S)

Odds Ratio: O b M [5)
j S

M;) p(s|M;)
M;) p(s|M;)
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Prior Odds x Bayes Factor

How do we compute the Bayes Factor (Evidence Ratio)?




Frequentist Model Selection

To test a hypothesis H1 consider another hypothesis, called the nul/l
hypothesis, Ho, the truth of which would deny Ai. Then argue
against Ho. ..

Use the data you have gathered to compute a test statistic Aops which
has a calculable pdf i1f Ho 1s true. This can be calculated
analytically or by Monte Carlo methods.

Look where your observed value of the statistic lies in the pdf, and
reject Ho based on how far in the wings of the distribution you
have fallen (but make no statement about how unlikely under any
other scenario, including H»).

AN
P(A|Hy)

X% of the (taken from lecture
area notes by Alicia Sintes)




Frequentist Model Selection

Set threshold A, such that A > A, favors hypothesis H;

Type | error - False Alarm

Type Il error Type | error Type |l error - False Dismissal




Neyman-Pearson

For fixed false alarm rate, the false dismissal rate
is minimized by the likelihood ratio statistic

h, M) _ o= (slh)+3 (hlR)
OaMO)

This quantity is maximized over the signal parameters

c.f. Bayesian alternative where the evidence is marginalized
(integrated) over the signal parameters




Standard Detection Procedure

|. Set a threshold on the (network) search
statistic using time slides of the data to give
acceptable false alarm rate.

. For each candidate detection look in more
detail at the monitoring channels to see if
anything might have been missed by the
VetoOS. (R. Gouaty, arXiv:0805.2412)




Standard Detection Procedure

|. Set a threshold on the (network) search
statistic using time slides of the data to give
acceptable false alarm rate.

. For each candidate detection look in more
detail at the monitoring channels to see if
anything might have been missed by the
VetoOS. (R. Gouaty, arXiv:0805.2412)

3. Put champagne in fridge.




Comparison of Approaches

Bayesian approach has explicit priors - forces
assumptions into the open

Frequentist approach has implicit priors - can be
unphysical (Searle, Sutton, Tinto & Woan, arXiv:0712.0196 [gr-qc])

Bayesian approach is mathematically rigorous

Frequentist approach has funny rules about
playgrounds and boxes.What do you do if you find a
bug after the box is opened - throw away all the data!?
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A theorist calculates that 10% of nearby stars are G-type
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The dead astronomer paradox

A theorist calculates that 10% of nearby stars are G-type

An astronomer sets out to tests this claim, and observes
that 5 stars out of a sample of 102 are G-type

The astronomer dies later that night

Two of the astronomer’s students decide to analyze
the data and publish a memorial paper

One finds a P-value of 4.3% and rejects the hypothesis at
95% confidence.The other finds a P-value of 10% and is
unable to rule out the hypothesis. Both calculations were
found to be free of mathematical errors.




The dead astronomer paradox

The P-value of 4.3% assumes that the dead astronomer planned
to observe until 5 G-stars were found, so the total number of
stars is the data, d.

The P-value of 10% assumes that the dead astronomer planned
to observe a total of 102 stars, so the number of G-type stars is
the data, d.




The dead astronomer paradox

The P-value of 4.3% assumes that the dead astronomer planned
to observe until 5 G-stars were found, so the total number of
stars is the data, d.

The P-value of 10% assumes that the dead astronomer planned
to observe a total of 102 stars, so the number of G-type stars is
the data, d.

A Bayesian analysis returns a PDF for the fraction, f, of G-type
stars that is independent of the dead astronomer’s intentions:

m(fld, M) = p(fld, M) f"(1 = /)" "

(un-normalized posterior)




The dead astronomer paradox

Uniform prior on f

0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

0 !
0 : 0.1

f

Model selection:
model | f=0.1+£0.02

model 2 f =0.054+0.02

(51 = 3.8 Data inconclusive




Bayesian Model Selection: Computing the Evidence

p(s|M) = / aX p(N| M) p(s|X, M)

Expensive to compute for large dimension models

Brute force grid or Monte Carlo integration
(e.g. NS f-mode ringdown search, Clark, Heng, Pitkin & Woan, arXiv:0711.4039 [gr-qc])

Reverse Jump Markov Chain Monte Carlo
Parallel Tempering + Thermodynamic integration
Vegas integration algorithm

Nested Sampling




Model Selection Example:
WD-WD binary in simulated LISA

o= A, £,0,6,0, 0,00, M0 X — {S4,5%,5%, 54,55, 5%, 5%, 5%}

A-channel SSD (SNR =7)

Is there a
signal present!?
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Reverse Jump Markov Chain Monte Carlo (Green, 1995)

. Make the model one of the parameters
p()\M’ M‘s) and allow transitions between models as
well as between parameters

Propose a transition by drawing a random vector 11, )—\' o f()—\’ _,)
then use a deterministic dimension matching function: M’ = M, U

where dim(Xps/) = dim(X

Probability

Transition 7 — min (17 W(S\XM/, M"q(d") J)

(| Aar, M)q (i)

Bayes factor given by ratio of time spent in each model




Reverse Jump Markov Chain Monte Carlo

- — e I
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lterations




Reverse Jump Markov Chain Monte Carlo




Reverse Jump Markov Chain Monte Carlo

100000 . .

Same signal,
different noise realizations




Parallel Tempering (swendsen swang 1986

Ordinary MCMC techniques side-step the need to compute the evidence.
PT uses multiple, coupled chains to improve mixing, and also allows the
evidence to be computed.

m(Als, B) = p(\)p(s|A)”

Inter-chain H — min (1 7T(>‘i+1|375i)77(>\i Saﬁiﬂ))

transition probability ’ W(Xi|57 5¢)W(Xi+1 S, Bix1)

B =1 chain yields the usual pdf, while the hotter chains improve the mixing




Parallel Tempering

Right Ascension

100000 200000 200000 400000 500000
lterations
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Parallel Tempering +
Thermodynamic Integration (Goggans & chi,2004)

Define partition function

Z(8) = p(s, ) = / ax 7 (X3, )

— % In Z(8) = (Inp(s|\)) s

. Inp(s) = / 48 {Inp(s|




Thermodynamic Integration

SNRO
noise

SNR2
nois

<In p(slx)>

<In p(slx)>




Thermodynamic Integration

100000

" RIMCMC ——— |
Thermo |




VegaS AlgOI”Ithm (Lepage 1978)

fo5s00-(1),

Sampling function g approximates f, but is
easier to sample from (e.g. use Fisher
Matrix approximation to the posterior)




Nested Sam Pl | NG (skilling, 2004)

p( _’) dX Define prior mass X (£) enclosed by
LX)>L level sets of the likelihood £ = p(s|))

Has a well defined inverse L£(X)

Evidence:

- .- Endosing likelihood L

= 2
= v
2
[l 5 '
Bl ' .
.‘. . II.

|
Parameter space of 8 KB X, Xl KD: 1
Enclosed prin::r mass X




Nested Sampling

Start by drawing N points from the prior. By construction has Xo= 1.

“Tightening the noose”

[terate i -1 [terate i

W Delete point with lowest likelihood and draw a new point with
the constraint that its likelihood exceeds that of the one deleted.
We now have X, < X._, and £, > L,

Repeat W until a certain convergence condition is met and
integrate Z using trapezoid rule.




Nested Sampling

RJMCMC —+—
Thermo

100000 E




Nested Sampling: LIGO Inspiral

Veitch & Vecchio, arXiv:0801.4313 [gr-qc]

Signal Model: Single Interferometer OPN inspiral, 4 parameters X — {A, M, t., e}

Noise model: Stationary Gaussian Noise, used no free parameters

Gaussian Noise + |

N o
S S

(o
o

Bayes factor ( decibels )
Bayes factor (decibels)

N
]

3 4 5
signal to noise ratio signal to noise ratio

Tested on simulated gaussian noise and noise with simulated glitches




Can LIGO use this?

- Already are to some extent when looking at consistency of MCMC
parameter estimation chains - might as well do it properly

- Would be nice to have a likelihood function that includes all the data

p(s,alA)

\ auxiliary channels
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Can LIGO use this?

- Already are to some extent when looking at consistency of MCMC
parameter estimation chains - might as well do it properly

- Would be nice to have a likelihood function that includes all the data

p(s,alA)

\ auxiliary channels

> 1
e.g. p(s,ald) = o

oG /207 p(S‘X)




Can LIGO use this?

Usual form of likelihood assumes Gaussian noise

p(s]X) =Ce X /2 %= (s—h|s—h)

Performance will be more robust if the noise model allows for
larger tails, and if the noise parameters are part of the fit

p(s\X) — Ce X /2 + ' e~ X /20

\ Small additional component
with larger variance

Allen, Creighton, Flanagan & Romano (PRD 67, 122002,2003)




Next Steps

® Get all approaches to agree
® Apply to simulated LIGO inspirals

® VWork with Vecchio, Christensen etc to
implement in LIGO software for candidate

follow-ups




