Introd	uct	ion	

Results

Conclusions

Parameter estimation of spinning binary black-hole inspirals using MCMC

Marc van der Sluys

Vivien Raymond¹, Ilya Mandel¹, Christian Röver^{2,3}, Alexander Stroeer⁴, Nelson Christensen⁵, Vicky Kalogera¹, Alberto Vecchio^{1,6}, John Veitch⁶, Renate Meyer² ¹Northwestern University, ²University of Auckland, ³AEI Hannover, ⁴Goddard SFC, ⁵Carleton College, ⁶University of Birmingham

APS, St.Louis, April 12, 2008

LIGO-G080185-00-Z

Introduction 000	MCMC 000	Results	Conclusions
Outline			

1 Introduction

- Goals
- Waveform and noise

2 МСМС

- Likelihood calculation
- Markov chains
- MCMC setup

3 Results

- Results for intermediate spin
- Dependence on number of detectors
- Dependence on spin

イロト イポト イヨト イヨト

Introduction	MCMC	Results	Conclusions
000			

Goals of this project

Intermediate goals

- Show that Markov-Chain Monte Carlo (MCMC) with a large number of parameters (> 10) on LIGO data can be done
- Test MCMC code on software and hardware injections

Final goals

- Do parameter estimation on LIGO/Virgo detection of inspiral
- Use as a follow-up for template-based search to:
 - Confirm spinning inspiral nature of signal
 - Determine physical parameters (masses, spin, position, ...)

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

- Provide final stage in automated CBC pipeline
- Learn about compact binaries and their evolution

700008000 (s)

• □ ▶ • □ ▶ • □ ▶

GPStime -

Introduction ○○●	1		MCMC 000		Re oc	esults	Conclusions
		-	_	_		-	

Signal injection into detector noise

- Using 1–2 4-km detectors H1, L1
- Gaussian, stationary • noise
- Do 1.5PN software injections
- Retrieve physical parameters with 1.5PN template

Here, $\Sigma SNR = 17$

Introduction	MCMC	Results	Conclusions
	000		

Compute posterior distribution

- Find posterior density of the model parameters
- Bayesian approach
- The likelihood for each detector *i* is:

$$L_i(d|\vec{\lambda}) \propto \exp\left(-2\int_0^\infty rac{\left| ilde{d}(f) - ilde{m}(\vec{\lambda}, f)
ight|^2}{S_n(f)} df
ight) \propto \exp\left(rac{\mathrm{SNR}^2}{2}
ight)$$

• Coherent network of detectors:

• PDF $(\vec{\lambda}) \propto \operatorname{prior}(\vec{\lambda}) \times \prod_i L_i(\boldsymbol{d}|\vec{\lambda})$

Use Markov-Chain Monte Carlo to sample the posterior

Introduction	MCMC	Results	Conclusions
	000		

Generating a Markov chain

Basic MCMC scheme

at any point *j* in the chain with state $\vec{\lambda}_j$, prior $p_j \equiv p(\vec{\lambda}_j)$ and likelihood $L_j \equiv L(d|\vec{\lambda}_j)$:

• propose random jump to new state $\vec{\lambda}_{j+1}$ with p_{j+1} and L_{j+1}

• if
$$\left(\frac{p_{j+1}}{p_j}\frac{L_{j+1}}{L_j} > \texttt{ran_uniform}[0,1]\right)$$
 then

• **accept** new state $\vec{\lambda}_{j+1}$

else

• reject new state; $\vec{\lambda}_{j+1} = \vec{\lambda}_j$

• save state $\vec{\lambda}_{j+1}$

NORTHWESTERN UNIVERSITY

Introduction	MCMC	Results	Conclusions
000	○○●	0000	
MCMC runs			

MCMC parameters

masses: $M_c \& \eta$, distance: log d_L , time, phase and precession phase at coalescence: $t_c, \varphi_c \& \alpha_c$, position: R.A. & sin Dec, spin magnitude: a_{spin} , angle between \vec{S} and \vec{L} : cos θ_{SL} , orientation of \vec{J}_0 : sin $\theta_{J_0} \& \varphi_{J_0}$

MCMC set-up

- 5 serial chains per run, starting from the true parameter values
- Chain length: 5×10^6 states, burn-in: 5×10^5 states
- Run time: 10 days on a 2.8 GHz CPU
- Signals injected in simulated noise for H1L1 @ SNR \approx 17.0

- Fiducial binary: $M_{1,2} = 10 + 1.4 M_{\odot}$, $d_{\rm L} = 16 21 \,{\rm Mpc}$
- Spin: $a_{spin} = 0.0, 0.1, 0.5, 0.8, \theta_{SL} = 20^{\circ}, 55^{\circ}$

Parameters:

- H1 & L1
- *M* = 10, 1.4 *M*_☉
- $d_L = 18.7 \, \text{Mpc}$
- $a_{\rm spin} = 0.5$, $\theta_{\rm SL} = 20^{\circ}$
- $\Sigma SNR \approx 17.0$
- Black dashed line: true value
- Red dashed line: median

ъ

Δ's: 90%
 probability
 NORTHWESTERN
 UNIVERSITY

Introduction	MCMC	Results	Conclusions
		0000	

Dependence on spin

Parameters:

- H1 & L1
- $M = 10, 1.4 M_{\odot}$
- $d_l \approx 16 21 \,\mathrm{Mpc}$
- $a_{\rm spin} = 0.0, 0.1,$ 0.5
- $\theta_{\rm SL} = 20^{\circ}$
- $\Sigma SNR \approx 17.0$
- Dashed lines show true values
- PDFs scaled to surface area

3

Introduction	MCMC	Results	Conclusions
		0000	

Position in the sky

000	000	0000	
A 1 1			

Conclusions

MCMC code:

We have developed an MCMC code that can recover the 12 parameters of a binary inspiral, including the spin

Accuracies:

- Detection with only 2 detectors can produce astronomically relevant information when spin is present, with typical accuracies for low/higher spin:
 - individual masses: $\sim 32\%/39\%$
 - dimensionless spin: 0.17 0.18
 - distance: $\sim 55\%/45\%$
 - sky position: $\sim 25^{\circ}/7^{\circ}$
 - binary orientation: $\sim 55^{\circ}/15^{\circ}$
 - time of coalescence: 11ms / 6ms
- Combination of the above can lead to association with an electromagnetic detection (*e.g.* gamma-ray burst)

STERN