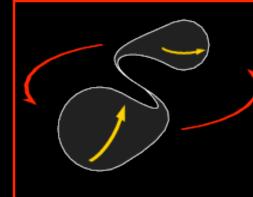
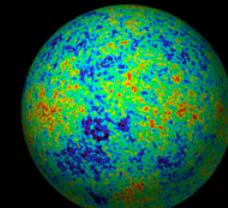

Searches for Gravitational Waves from the Inspiral of Binary Neutron Stars and Black Holes

Duncan Brown Syracuse University For the LIGO Scientific Collaboration and Virgo Collaboration


> APS Meeting St. Louis, April 13, 2008 LIGO-G080178-04-Z

Astrophysical Maves

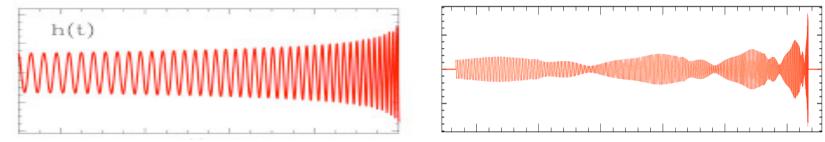

Continuous sources: Spinning neutron stars

Compact Binary Coalescence (CBC): "long bursts" of gravitational waves as stars inspiral, merge and ring down

"Short bursts:" Supernovae, transient sources, ???

Gravitational wave backgrounds: relic radiation from the big bang

Goals of the CBC Search

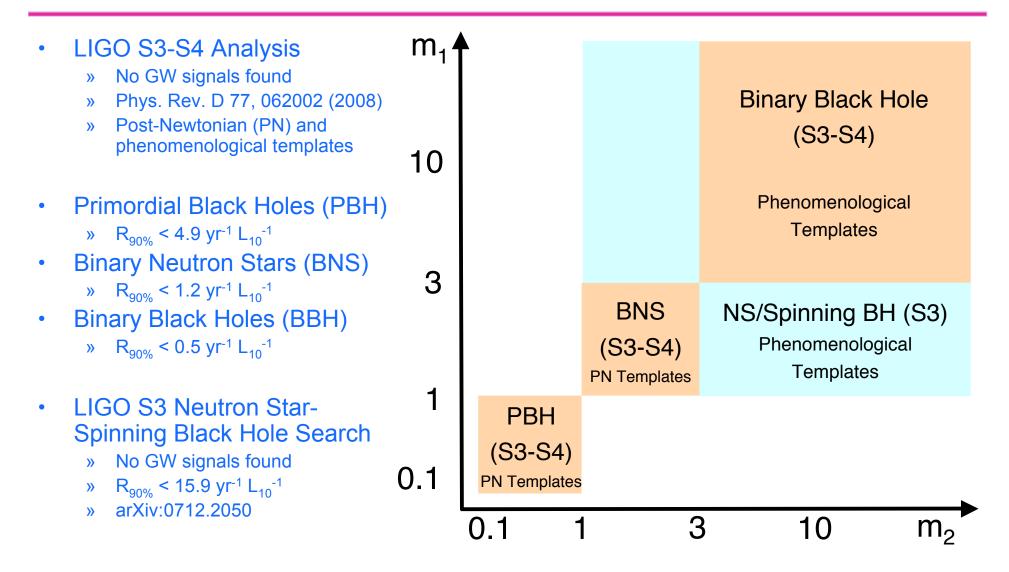

- Direct detection of two dramatic predictions of Einstein's Theory of General Relativity
 - » Gravitational Waves
 - » Black Holes
- LIGO gives us Astronomy and Physics
 - » Test models of gamma-ray burst progenitors
 - » Probe the neutron star equation of state
 - » Compact binary populations and formation rates
 - » Explore the strong field gravity of colliding black holes
 - » Speed of gravitational waves, graviton mass, etc.
- Observation of gravitational waves will open a new window on the universe



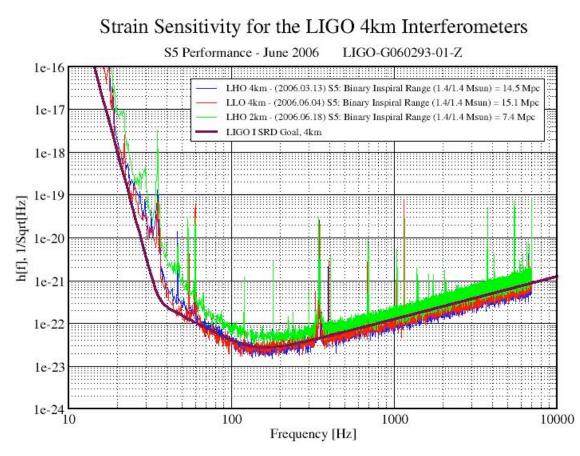
Gravitational Waves from Compact Binaries

- LIGO is sensitive to gravitational waves from binary systems containing neutron stars and black holes
- Gravitational waveform depends on masses and spins

 Gravitational Waves from Compact Binary Coalesce have three phases:

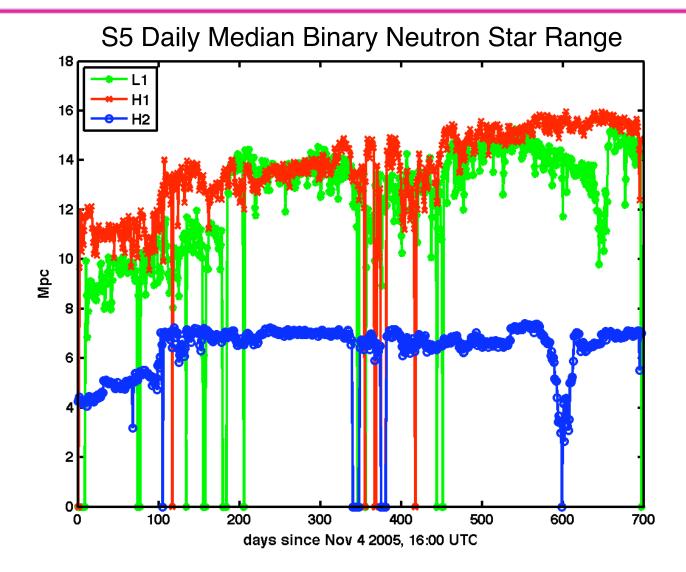

Astrophysical Rate Predictions

- Rate prediction from population synthesis
 - » Constrained by observing binary neutron star systems in our galaxy
 - » 1 Milky Way Galaxy = $1.7 L_{10}$
- Binary Neutron Star (BNS) rates are estimated to be 5 x 10⁻⁵ yr⁻¹ L₁₀⁻¹:
 » 0.015/yr (Initial LIGO), 0.15/yr (Enhanced LIGO), 20/yr (Advanced LIGO)
- BNS rates could be plausibly as high as 5 x 10⁻⁴ yr⁻¹ L₁₀⁻¹:
 » 0.15/yr (Initial LIGO), 1.5/yr (Enhanced LIGO), 200/yr (Advanced LIGO)
- Binary Black Hole (BBH) rates are estimated to be 4 x 10⁻⁷ yr⁻¹ L₁₀⁻¹:
 » 0.01/yr (Initial LIGO), 0.11/yr (Enhanced LIGO), 16/yr (Advanced LIGO)
- BBH rates could be plausibly as high as 6 x 10⁻⁵ yr⁻¹ L₁₀⁻¹:
 - » 1.7/yr (Initial LIGO), 18/yr (Enhanced LIGO), 2700/yr (Advanced LIGO)

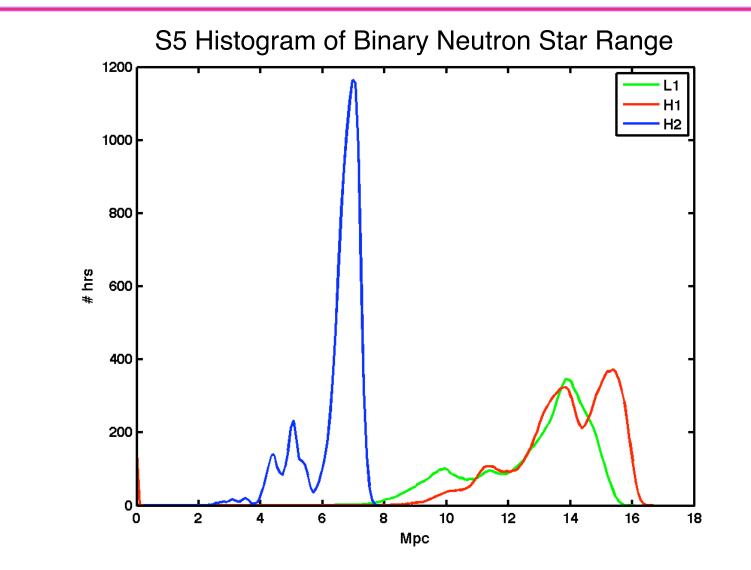

Previous Results from LIGO Searches


```
((O))VIRGD
```

Sensitivity of the LIGO Detectors


- Fifth Science Run (S5) Nov 5, 2005 - October 1, 2007
- Recorded one year of coincident data from the three LIGO detectors at design sensitivity
- Seismic wall at ~ 40Hz: S5 is sensitive to binaries with

 $M_{\rm total} \lesssim 100 M_{\odot}$


S5 Binary Neutron Star Range

S5 Binary Neutron Star Range

Overview of Searches in S5 Data

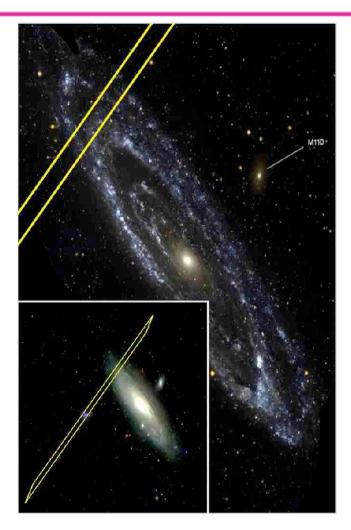
Triggered searches

- » Search for gravitational waves coincident with external trigger
- » Currently use short-hard gamma ray burst events to trigger inspiral search

Untriggered searches

- » Blind searches for gravitational waves from compact binaries
- » Search for binaries with total mass 2 $\rm M_{sun}$ to 100 $\rm M_{sun}$
- LIGO and Virgo started data sharing in May 2007
 - » Searches before this use LIGO data only
 - » Searches afterwards both LIGO and Virgo data (joint analysis pipeline)

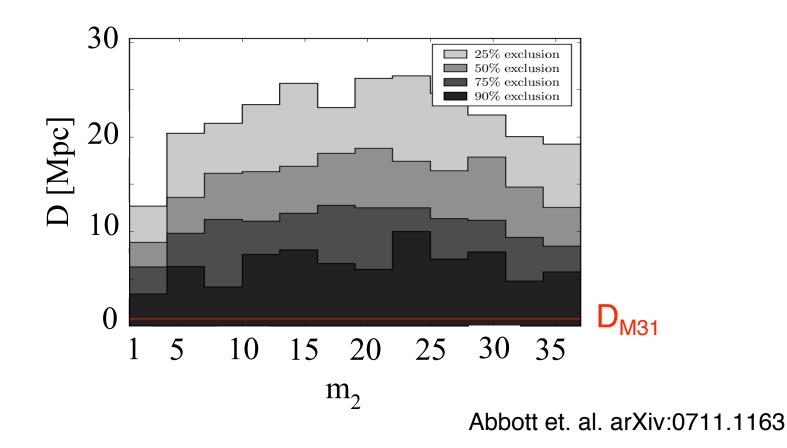
S5 Triggered Searches


- SH-GRBs are thought to have binary inspiral progenitors
- Triggered searches allow us to dig deeper into the detector noise
- Developed a triggered search pipeline to look for gravitational waves associated with a GRB trigger
 - » Has been exercised on GRB070201
- 213 Gamma Ray Bursts During S5
- 32 Short Hard Gamma Ray Bursts of which 26 have at least two LIGO detectors operating

(Talk by N. Fotopoulos Session E8)

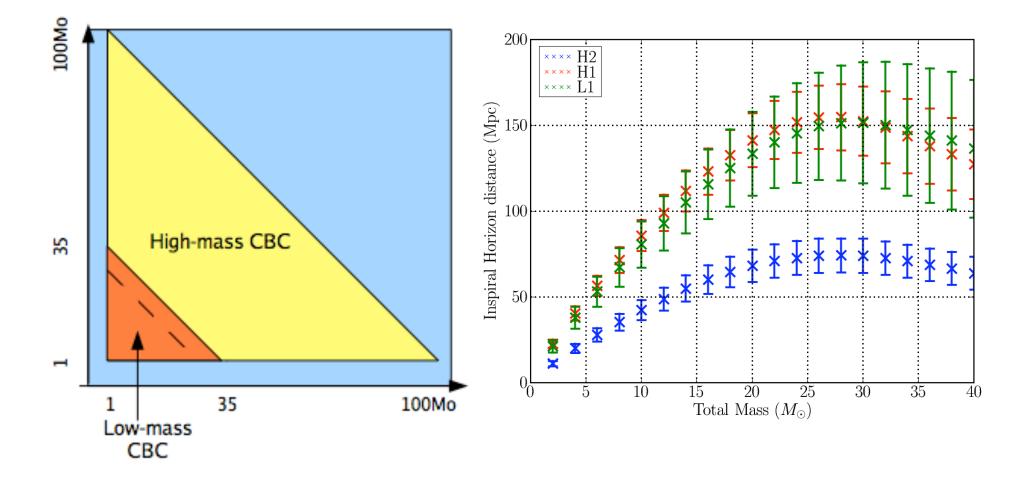
Search for GWs associated VIRG with Gamma Ray Burst 070201

- Gamma Ray Burst 070201
- Short Hard GRB located by five electromagnetic satellites
- Location error box overlaps the spiral arms of Andromeda (D ~ 770 kpc)
- LIGO Hanford detectors were operating at the time of the GRB



GRB070201 Triggered Search Result

• Inspiral in Andromeda with masses 1.0 $M_{sun}~< m_1 < 3.0~M_{sun}$ and 1.0 $M_{sun} < m_2 < 40~M_{sun}$ excluded at > 99% confidence



Untriggered Searches

• In S5 divide sources up into "low" and "high" mass CBC

S5 Untriggered Searches

- Blind detection search for gravitational waves from CBC
- Low mass inspiral search 2 $M_{sun} < M < 35 M_{sun}$
 - » Use post-Newtonian templates
 - » Includes BNS, BBH and BH-NS region as single search
- High mass inspiral search 35 M_{sun} < M < 100 M_{sun}
 - » Uses Effective One Body templates which model inspiral into merger
- Search for black hole quasi-normal ringdown
 - » Sensitive to ringdowns up to ~ 500 $\rm M_{sun}$

S5 First Year Search Status

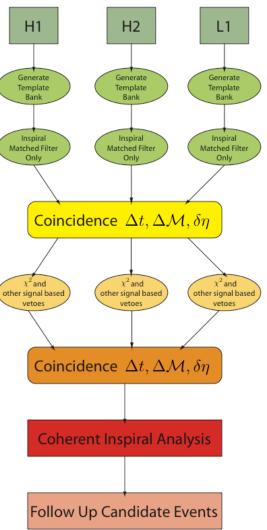
- Search of first calendar year of S5 data for low mass compact binaries is complete
- Analyzed 0.5 yr of data from the three LIGO detectors
- Found our "self-blinded" hardware signal injection
- Final search result currently under collaboration review

Talk by D. Keppel, Session B10

S5 First Year Projected Sensitivity

Mass range	Comp. masses (M _{sun})	Inspiral Horizon Distance (Mpc)	Mean N _G (L ₁₀) (MWEG = 1.7L ₁₀)	(N _G x T) ⁻¹ (L ₁₀ ⁻¹ yr ⁻¹)
NS / NS	1.4 / 1.4	~ 30 Mpc	~ 200	~ 10 ⁻²
NS / BH	1.4 / 5	~ 50 Mpc	~ 1000	~ 10 ⁻² -10 ⁻³
BH / BH	5/5	~ 80 Mpc	~ 4000	~ 10 ⁻³

Preliminary


Talks by D. Keppel, S. Caudill, J. Slutsky, Session B10

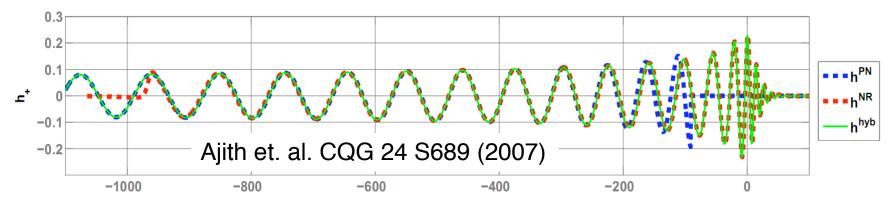
We are getting ready for a detection...

 CBC search pipeline is maturing H1 » Will take us through S5 and Enhanced LIGO Generate Template Bank Inspiral Experience with S5 data has greatly Matched Filter Only enhanced our "detection checklist" **Ex: Inspiral hardware injection** \rightarrow Chirp visible in H1 and L1 GW channel: H1 GW channel: H2 GW channel: L1 χ^2 and other signal based vetoes Time feer 5 10 Normalized tile energy Ex: H2L1 false alarm loud glitch at Hanford weak transient at Livingston GW channel: H1 GW channel: H2 GW channel: L1 H1 was not operating. 0 Time [eaconde] 10 15 Vormalized tile energy U IS nalized tile energ

A World Wide Network of Detectors

- Virgo joined the S5 run in May 2007
 - » LSC and Virgo collaboration members are working together to analyze the joint LIGO-Virgo data set
- GEO and Hanford 2km detector are in "astrowatch" mode

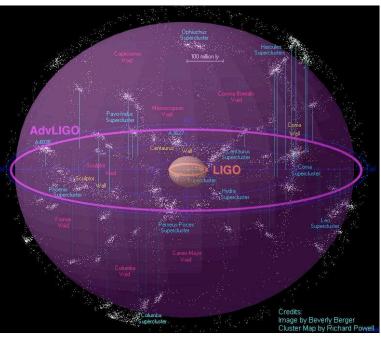
Ongoing CBC Searches


- Search for low mass signals in the second year of S5 data is well underway
- High mass search using EOB templates is ongoing
 - » Takes longer than the low mass search as search in this region is less mature
- Major Goal of CBC Group: Working towards reducing search latency for Enhanced and Advanced LIGO
 - » Automating as much of the analysis as possible
 - » Want to be able to react quickly to our data
 - » Looking towards gravitational wave astronomy
- Black hole ringdown search underway on S4 and S5 data

New Developments in CBC Searches

- Enhancing searches with information learned from numerical simulations
 - » e.g. hybrid PN-NR waveforms, EOB+Ringdown templates

- Establishing joint inspiral-merger-ringdown analyses
- Better incorporating the effect of spin in template searches
- Improving parameter estimation pipelines
- Looking towards coincidence with other electromagnetic triggers



Conclusions

- Analysis of S5 LIGO and Virgo data is moving rapidly
- Sensitivity of Enhanced and Advanced LIGO makes this an exciting time
- LSC and Virgo are working towards gravitational wave astronomy with compact binaries

