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LIGO What are gravitational waves ?

Gravitational wave = propagating disturbance of the space-time

* Predicted by Einstein’s General Relativity

* Properties: - transverse plane waves

- travel at the speed of light
- 2 polarization states

* Modify distances between free falling masses
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* Quadrupolar radiation: generated by asymmetric motions of matter
* Very weak amplitudes: requires compact, massive, relativistic objects

Favored astrophysical objects: Neutron Stars, Black Holes, Supernovae, ...
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LIGO Sources of gravitational waves: LSC
Coalescences of compact binaries

— Binary systems of 2 compact objects: Neutron stars, Black holes
End of the life of the system = coalescence of the 2 stars

— During the inspiral phase, the waveform is known:

(but depends on masses, and spins...) Inspiral | Merger | Ringdown
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Starting at low frequency, the signal can reach several hundred Hertz at the end
of coalescence = enters in the band width of detectors such as LIGO/Virgo
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LIGO Other sources of gravitational waves: LSC

— Supernovae (gravitational collapse of massive stars):

If asymmetrical collapse: produce GW
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- Impulsive source: short signal duration (< 10 ms)

-1500
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t [msec] t[msec]

- Waveform and amplitude not very well known

— Pulsars (spinning rotating neutron star)

Low amplitude but periodic T
source

= Signal can be integrated
over long durations

Example of SN
waveforms

20 25 30 35
t [msec]

[£werger and Muller]

— Stochastic background of gravitational waves (Big Bang gravitational echo)
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LIGO Why detecting gravitational waves ?

* Perform the first direct detection of gravitational waves

» Study the gravitational interaction
» Check gravitational wave properties (velocity, polarization)

» GW radiated by Black Holes = test in strong fields the General Relativity
* A new window to observe the Universe

» Coincidences with other messengers: photons, neutrinos

» Observation of regions of the Universe opaque to electromagnetic waves
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LIGO How to detect a gravitational wave ?

« Variation of the distance between free-falling masses e ot

— Can be measured with a Michelson interferometer e
- suspended mirrors = free-falling masses

- gravitational wave = phase difference between the 2 reflected beams

_4n
AD= 3 hL

Suspended mirror Suspended mirror <>
N
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2
h=AL/L
AL = length difference between the 2 arms

L = arm length
Photodiodes
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LI&SO Hanford Observatory (LHO)
H1:4 km arms

H2 2 km arms

- Hundreds of people working on the
experiment and looking at the data
= The LSC collaboration

(58 different institutions)

LIGO Livingston Observatory (LLO)
. L1:4kmarms

Adapted from “The Bgi _ 1 "urface Ocean Color and Sea Ice” at V|S|bleearth nasa.gov
c

NASA Goddard Space Flight er Image by Reto%toﬁhll (land surface, shallow water, clouds). Enhanceménts by Robert Simmon
(ocean color, compositing, 3D globes animation). Dalb and technical support: MODIS Land Group;-MODIS Science Data Support Team;
MODIS Atmosphere Group; MODIS Ocean Group Addltlonal data: USGS EROS Data Center (topography); USGS Terrestrlal Remote
Sensing Flagstaff Field Center (Antarctica); Defense Meteorological Satellite Program (city lights).




LIGO The LIGO observatories LSC

LIGO Hanford:

4km / 2km share the same tubes

LIGO Livingston —



LIGO The LIGO interferometers LSO

Sensitivity of an interferometer limited by shot noise:

Smaller measurable displacement: { > A1 |2ho

4

&

L: arm length *\
P: injected power g
ﬁ
§ g >Fabry-Per0t
/ .
Mode cleaner § é cavity
[——— -
| P I
|
|
|
: |
Various : l4-5 W [200-250 W [2-15 kW
-— . I \\ // ! L T \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\i
optics [ < >
A =1064 nm [ 4,000 m
Recycling
mirror Photodiodes
A/(« Differential Mode »)

.
* Fabry-Perot cavity: ~125 round trips = effective optical path = 500 km

* Recycling cavity: power x 50
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LIGO Design sensitivity LSC
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LIGO LIGO science runs &
sensitivity improvements

Best Strain Sensitivities for the LIGO Interferometers
Comparisons among S1 - S5 Runs LIGO-G060009-03-Z
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LIGO Current sensitivities of the large LSC

interferometers
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LSC

LIGO The S5 science run

» Started on Nov 2005 — Ended on Oct 2007

» Completion of one year of triple coincidence data between the 3 LIGO interferometers

Nov& Jan31 Apr25 Jul1gd Oct10 Jan2 Mar27 Jun 19 Sep 11

1

S5 duty cycles:

08 * 52.8 % in triple coincidence
* 57.0 % in H1L1 coincidence
* Total for H1: 77.7 %

* Total for H2: 78.2 %

e Total for L1: 65.7 %

B Triple
- Double
B single

Mone

Nov8 Jan31 Apr25 Jul18 Oct10 Jan2 Mar27 Jun19 Sep 11
run time (w)

* HIH2L1V1: 11.3 %

— at nominal sensitivity
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LIGO Horizon during S5 LSC

The sensitivity can be translated into distances surveyed.

Maximal horizon = distance at which an optimally oriented and located binary
system can be seen with signal-to-noise ratio p=8 (for a 1.4/1.4 solar mass system)

Averaged horizon = distance at which a binary system with averaged positions
and orientations over all sky can be detected

Nov 8 Jan 31 Apr25 Jul 18 Oct10 Jan2 Mar 27 Jun 19 Sep 11 Affected by microseism, wind, instruments, ...
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= H1 reached up to 16 Mpc at the end of the run
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LIGO Search for Compact Binary
Coalescences

» Known waveform: = use match filtering technique

Data /- Template

2t) = 4T§(f s)n (T)”) 2t g

\ Noise power spectral density

Chirp

» Calculated templates for inspiral phase (“chirp”) oof

0.1

Waveform parameters: 0 l
distance, orientation, position, af-
m,, m,, t,, & (+ spin, ending cycles ...) 2

-0.3 :—
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LSC

LIGO Compact Binary Coalescences:

Overview of the search pipeline

3 interferometers = 3 data set > | Hi H2 L1
For each ifo: generate a template bank o Gt G

Match fil

shold

Inspiral
Matched Filter
Only

Inspiral
Matched Filter
Cnly

Inspiral
Matched Filter
Only

Signal To Noise Ratio

_>| Coi;lcidence ,IAt,AM,ﬁn '
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= need to distinguish gravitational :
i triggers
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LIGO Compact Binary Coalescences: LSC

Statistical significance of the candidates

— background estimated from time-slides triggers

A zero-lag trigger (true coincidence)

1

:

IFO 1 t

i

IFO 2 t
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LIGO Compact Binary Coalescences: LSC

Statistical significance of the candidates

— background estimated from time-slides triggers

A time-slide trigger (accidental coincidence)

'

IFO 1 t
AT
IIIIII %
IFO 2 § t
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LIGO Compact Binary Coalescences: LSC

Statistical significance of the candidates

— background estimated from time-slides triggers

Ex: S4 Binary Neutron Star search [arXiv:0704.3368]

Total analyzed time = 576 hrs Histogram of coincident
(Feb 22 — March 24, 2005) . triggers versus statistic

Region where
outlier candidates
would appear

Else ? ' 1
A _ \ J
J:_" ""f"’f"'l'"'-"-"'. """""""""""

Good candidates are
detection checklist

If candidates consistent with background:

= detection is not likely

e o 0 10
. - hined SR statisti 2
Background distribution SLAISHC P s
(time-slides)
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LIGO

What are gravitational waves ?

The LIGO experiment

Search for Compact Binary Coalescences
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« Towards gravitational-wave astronomy
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LIGO Overview of the detection checklist

Goal: Estimate confidence in our gravitational wave candidates

Legend: - tests which are identical for both CBC and Burst groups (impulsive signal searches)

- tests that involves methods specific to the search

- Statistical significance of the candidate

« Status of the interferometers

» Check for environmental or instrumental causes

« Candidate appearance

» Check the consistency of the candidate estimated parameters

» Check for data integrity

» Check for detection robustness (ex: versus calibration uncertainties)
» Application of coherent network analysis pipelines

* Check for coincidence with searches external to our GW searches: other E/M or
particle detectors...
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LIGO Two examples

» An inspiral gravitational-wave signal (hardware injection)

IFO Enzlm"l;i)me SNR CHISQ Chirp Mass Eta Mass 1 Mass 2 E(g[l;gt
L1 xxxxxxxxx.888 | 11.39 25.43 4.77 0.2026 8.92 3.51 69.48
HI xxxxxxxxx.879 | 12.94 44.24 4.62 0.1284 13.43 2.39 62.44
H2 Xxxxxxxxx.884 | 7.49 34.32 4.81 0.2074 8.74 3.63 48.92

* A false-alarm trigger (found with time slide)

IFO E“?m]:)me SNR CHISQ Chirp Mass Eta Mass 1 Mass 2 liﬁl;i;t
L1 xoooooox896 | 20.89 278.34 13.22 0.1979 25.44 9.50 11.65
H1 xooooo898 | 5.61 69.38 10.38 0.1348 28.99 5.54 136.03
H2 Xxxxxxxxx.899 | 6.24 24.79 15.23 0.25 17.5 17.5 94.44

Both instances of candidates will be used to illustrate the tests of the
detection checklist in the following slides...
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LIGO Status of the interferometers (1/2)

Ex: Status of the L1 detector at the time of the background trigger

= Check figure of merits (state vector, inspiral averaged horizon, ...)

Figures of merit

posted in the elog |

State vector:

Signal

Flag indicating ifo in
science mode (4 min
before unlock)

Averaged horizon:
(for a 1.4/1.4 solar
mass system)

= Candidate happens
while L1 inspiral range is
dropping

o | State Vector (1-MC, 2=Arms, 3=Ready, 4 State veCtor ﬂ L1SNSM EF .
— = «c Averaged Horizon (Mpc)
: H2SNEM El
— ol e 12 : ; ;
: 10M. : { : PR . 4 e 3
f & : f ] ™ A il 1;3#:: F
21— e G A - P RS S = B_—: . P .; B
o : : : )
e L1 — L R S & C— aE I ; I OO
H1 : F Tl IR .
o 1B | | | oF : B O LRI W S
n [P P Pl ! ob . . (" [ - R ‘ L A
12 -10 -8 B -2 -12 -10 B 5 ~ -2 0

Time (h)

Inspiral range (Mpc)

15T

effective range (Mpc)

. é_._T.i.me_._ofé.t.h_e._tri_g.g;er .................... __________________________________________ ]

o T - \ _____ __________________________ ________________________________________ _

[

minutes



LIGO Status of the interferometers (2/2) LSC

— Check list of data quality flags: “bad horizon”

= Check comments posted by “scimon” and operator in the elog:

“We had a slowly worsening noise spectrum over a period of
about thirty minutes today [...] The only hint of trouble was

in the WES: there was a lot of coherence between DARM
and WFS1 pitch”

= The candidate is found during a very noisy time at Livingston, which
indicates a misbehavior of the detector

— No obvious instrumental cause was found at the time of the candidate
(more investigations needed)
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Frequancy [Hz|

LIGO Environmental and instrumental causes (1/2)

Ex: At time of the inspiral hardware injection

— Check band-limited RMS trends of seismometers

— Check time-frequency maps of auxiliary channels

Seismic transient at the Hanford Mid X station (close to H2 end mirror)
HO:PEM-MX_SEISY (seismometer)

How relevant is a transient found in an
auxiliary channel, given its amplitude ?

« Compare significance at candidate’s time to
background distribution (estimated by
spectrograms at random times)

N1 5 -4 2 2 4 b g

. i
Time [saconds| « Compare amplitude ratio

: i 5 ,5 2 s Differential Mode channel / Auxiliary channel
L with measured transfer function (if available)
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Amplitude in H2 Differential Mode

LIGO Environmental and instrumental causes (2/2)

Ex: At time of the inspiral hardware injection

10

—_
[=]
T
1

—_
[=]
)
1

—_
[=]
=
1

—_
<
=]

— Check band-limited RMS trends of seismometers

— Check time-frequency maps of auxiliary channels

Seismic transient at the Hanford Mid X station (close to H2 end mirror)

Scattered plot of significance for channel: HO:PEM-MX SEISY

+
....................... LR e el w.eare background |y
E : : « « « foreground

backgroéund

mmm candidate

1 1 1
10 10° 10°

Amplitude in seismometer

1
10*

At the time of the seismic transient, the

= significance in the differential mode channel

is consistent with the background

-+ = There is no evidence of a seismic

coupling to the Differential Mode channel

| = We can not determine if the candidate

is due to this coincident seismic
transient.
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Frisguninecyt [HZ)

LIGO Candidate appearance (1/4)

= Check time series, and time-frequency spectrograms of the candidate
Ex: Inspiral hardware injection

— Chirp visible in H1 and L1
GW channel: H1

. - GW channel: H2 _ GW channel: L1
256 6 g2

-
28 e L;!:

B4
g ) A5 5 o ns
Timea [seconds) Tima [seconds)
o 5 10 15 20 25 ] 5 10 15
Narmalized lile anaegy Narmalized tile aneergy

MNommalized tie anargy

Ex: Background trigger (time slide)

— multiple transients at Livingston
e GW channel: H1 s12 GW channel: H2

g1z GW channel: L1

(XE

128

B4
0% ] -
Time [zeconds|

]
Tima [saconds)

Tima [secends)

(L]
L C—

i ig 0 o
Normalized lile anargy
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LIGO Candidate appearance (2/4) LSC

= Check SNR and CHISQ time series after match filtering the data
Ex: Inspiral hardware injection, L1 trigger

SNR time series ¥ time series
2 ; VIZ:ry charac%teristic
N ST ........................ . E‘;‘saha|?:<:rz:g:)oluar;gthe ..... 1 .........................
Thresho{ ........................ , 2 | ................. ‘éf
N T I Y e o 1
LU \_f OO TR L
o I
) time (s) .

20s

check the consistency between triggered
template and signal present in the data
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LIGO Candidate appearance (3/4) LSC

= Check SNR and CHISQ time series after match filtering the data
Ex: Inspiral hardware injection, L1 trigger
ZOOM

SNR time series x? time series

10

3 fdrop at thfe time of
N — | f : . the trigger

1 """"""""""""" CBh .................... *T.'\ .........................
|E| ; [l \

: H
w :

.....................................................

8.10 0,'05 : 0,60 : 0.r05 0.10 -8.1(1 -().1(].": [).é}(] [J.:}S
time (s) time (s)

0.2s

— The SNR and y? time series appear to be consistent with a detection
(this is an injection)

0.10

A

G080039-00-Z 32



LIGO Candidate appearance (4/4) LSC

= Check SNR and CHISQ time series after match filtering the data
Ex: Background trigger in L1

SNR time series x> time series

25 . - . . 10

| Mu!tiple triggjers above x ngh values of x? much earlier
AS-NRthrglsh‘ol‘d“u .................. n ..‘3....‘....‘. 4 than the candldate ....... -

20}

B "'|'f" .................................................................................
= B |‘
= 3 ! ' AL z ;
ol ‘ fl +||JJ||1|r|‘ﬂ‘}|lu\. ...................... N I‘ TH“’U‘“ ‘ || |HMU : Hl :
| —— il I N il I
: | | T0Y SO IR RO ST P S | DR 1 | .-.} ...........................................
ma }‘l:'ljll U/ '.l”‘t‘ I ’I 1t Il’ |||'~|' ”'~ " "' |'| [ fl
I H ‘M ll |{1Jﬂ]"f|'||'|"i'ﬁ'."l"lr'ﬂn'ﬁ‘ﬁ"? 20:.LI.|I|...‘||..“..|J..I|..‘Ll. ..|'E..‘.'.'..|....'U'i.-..e I " L"' ?‘w "J;’
I|| ‘lﬁ |] || “ || rl |I| ||| ||||'.|’||I;|| || || |“| || |III| 1 |.[ ' [ |ij 1 v |i| I
9% 5 ll 1.0 9% 0. (15(1 0 1.0
J tlme (s) - time (s)

20s
— Both time series show a very noisy period.

— Thus this candidate cannot be defended
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Frequency [Hz]

LIGO H1/H2 correlation

Check for signal correlation between collocated interferometers

Ex: Inspiral hardware injection

1024

GW channel H1 - e GW channel H2

512

256 256
128 128
64
32+ i 3 a2
05 0 0.5 g 0 e

Time [seconds] Time |seconds)
S 2
0 5 10 15 20 25 30 a 2

Normalized tile energy

4 B 8 10 12

Mormalzed the energy Mormalzed the enengy

The “chirp” pattern is removed in the coherent combination “H1 data - H2 data”

= This indicates a correlated signal between the H1 and H2 interferometers
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« Towards gravitational-wave astronomy
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LSC

LIGO Compact Binary Coalescences:
Current results

* S3/S4 runs: | arXiv:0704.3368 |
No GW signals identified
Binary neutron star signals could be detected out to ~17 Mpc (optimal case)

Binary black hole signals out to tens of Mpc
= Place limits on binary coalescence rate for certain population models
Binary Black Holes

Binary Primordial Black Holes Binary Neutron Stars

10°
10'
Te
.
N 0
'5 10
D -
107 I:unmargina]imd e et Dlmmarginalized I '[unmarginalizui B R -
.marginalized | ] .margina]izﬁd .marginalized
-2 i : -! : E : i 1
07508 1 12 14 16 18 22 25 3 35 4 45 5 55 610 20 30 40 50 60 70 80
Total Mass (M) Total Mass (M) Total Mass (Mg)

Rate/L,, vs. binary total mass
L,,=10"Ly5 (1 Milky Way = 1.7 L,,)

Dark region excluded at 90% confidence

Theory prediction (1.4/1.4 M.):

R~105-1.7104yr'L,,"
36



LIGO Compact Binary Coalescences:
S5 prospectives

Maximal horizon = distance at
which an optimally oriented and
located binary system can be seen
with signal-to-noise ratio p=8

Expected rate for
Binary Neutron Star:

~1/100 yrs

= A detection is not granted
in S5

: e -
Feseus-Picas
Supeicister

(but wait for a few more slides...

N

Our ability to detect gravitational
waves will be tested with blind
injections

Image: R. Powell

-------- ¥ S5 BBH horizon



LIGO

What are gravitational waves ?

The LIGO experiment

Search for Compact Binary Coalescences
« Detection checklist for candidate-events

« Towards gravitational-wave astronomy
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LIGO LSC-Virgo joint analysis LSC

« Cooperative agreement for data exchange and joint data analysis for last
5 months of S5

« Sharing of data started in May 2007:
= more than 4 months of coincidence between LIGO S5 and Virgo VSR1 runs

» Benefits of a world wide network:
- Reduction of the false alarm rate by coincidence analysis
- A better coverage of the sky

- Improve the accuracy on parameter extraction
= required for gravitational wave astronomy

- Can help increasing the duty cycle
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LIGO Advanced detectors (1/2) LSC

- Enhanced LIGO: Main upgrades:
Started after S5: a series of fast upgrades - Increase laser power to 35 W

Goal: a factor of ~2 sensitivity improvement - DC readout scheme, photodetector in
vacuum, suspended output mode cleaner

S6 run planned to begin in 2009, duration ~1.5 years
 Advanced LIGO:

A series of major improvements (starting ~2010)
» Seismic noise
Active isolation system
Mirrors suspended as 4th stage of quadruple
pendulums
* Thermal noise
Suspension =» fused silica fibers
Mirror =» more massive; better coatings
* Optical noise
Laser power = increase to ~200 W
Optimize itf response =» signal recycling

Advanced _
LIGO

Equivalant strain noise, hifiHz '™

— Susp. thermal
Internal thermal

— Quantum noise  H

= Total noise

Freguency (Hz)

Factor of ~10 better than current LIGO = factor of ~1000 in volume !
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LIGO Advanced detectors (2/2)

Neutron Star Binaries:
Maximal horizon > 300 Mpc
Most likely rate ~ 40/year !

The science from the first 3 hours of Advanced LIGO should be
comparable to 1 year of initial LIGO
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LIGO Summary LSC

* The LIGO detectors have reached their target sensitivities

A long science run has been completed (1 year of data in triple

coincidence)

- Analysis pipelines have been developed and tested

* A systematic checklist is developed to identify detections
» A world wide collaboration has started

 Gravitational-wave astronomy is starting !
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LIGO

Spares
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LIGO An evidence that gravitational
waves exist...

* Binary system 1913+16: discovered in 1974 by Hulse and Taylor
- 2 neutron stars of 1.4 solar masses

- one of this star is a radio pulsar

" —

Gravitational waves

— Measurement of the orbital period decrease

In agreement with an energy loss due to
gravitational wave radiation

General Remﬂwgfpredcﬁon/////

= An indirect evidence for gravitational wave
radiation !

Cumulative shift of periastron time {s)

_35_\|\\II‘\\\\'II\I‘\\II'II\\‘\\

1975 1280 1985 1990 1825 2000
Year
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LIGO Spin effect

16.8 / 4.4 solar masses
|spin1]| = 0.89 / |spin2| = 0.04

.|r||||||||||
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LIGO Search for Compact Binary LSC
Coalescences

* Known waveform: = use match filtering technique
Data Template

(1) h'(f) gan g
S,(F)

\ Noise power spectral density

Z(t) = 4]2

« Calculated templates for inspiral phase (“chirp”) _ aon
Waveform parameters: 3 Chirp
distance, orientation, position, e
m,, m,, t,, ® (+ spin, ending cycles ...) ol

* Different template families used for different searches

02

Example: S3-S4 searches asf

- Binary Neutron Stars: “physical templates” (2"? order
restricted post-Newtonian, stationary-phase approximation)

- Binary Black Holes: “phenomenological templates” (BCV)
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LIGO

Compact Binary Inspirals:

Overview of the search pipeline

3 interferometers = 3 data set

For each ifo: generate a template bank

> | Hi

>

Generate
Template
Bank

Match fil

shold

Inspiral
Matched Filter

Signal To Noise Ratio

Only

n interf | ometer:

LSC

H2

Generate
Template
Bank

Inspiral
Matched Filter
Cnly

L1

Generate
Template
Bank

Inspiral
Matched Filter
Only

Require “c:"d‘in'f'cidélfice“lcé'étwéél

_>| Coi;lcidence ,IAt,AM,ﬁn '

j S
f; upresnola - : —— +—
Applyé,ertoes_ .............................. : Xx,g ....... b ._>5;.____§_.. ] __» r o bsd
- Instrumes f
0 0.05 0.1

Time (sesonds)

Normalized x2 time serie in H1, template: 18.85-15.87

¥ and
other signal based
vetoes

5 20
Mass 1 (M)

10

= need to distinguish gravitational
waves from residual false alarms...

G080039-00-Z

gakciorondistency =
r 200
% 30 35 :
T 150

50

-0.1 -0.05 0

Time (sesonds)

AM, on

x*and
other signal based
vetoes

iving coincident
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LIGO Compact Binary Inspirals: LSC
ldentifying a possible gravitational wave (1/2)

* First step: estimate the false alarm probability
— compare candidate to expected background

— background estimated by applying time-slides before coincidence

Ex: S4 Binary Neutron Star search [Preprlnt arXiv:0704. 3368]

et linjections Histogram of coincident
e e e . L N triggers versus SNR
© HI- H2-L1de1ec1edmw’i U neN . L]
g i mdy El O E | Background dlStl’lbUthn
5
=X g 1
z 5
candidates |
0.1 : l_
70 a0 a0 100 110 120
Combined SNR statistic (p )% ¢
K If candidates consistent with
background  ggective signal to noise ratio background = no detection

Else ?
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LIGO Periodic signals from Radio/X-ray LSC
pulsars (1/2)

» Targeted searches:

— for 97 known (radio and x-ray) systems: isolated pulsars, binary systems,
pulsars in globular clusters...

— place upper limits on gravitational wave amplitude and equatorial ellipticities

¢ limits as low as ~10~7 upper limits from first ~13 months of S5

[ Estimated joint sensitivity
~1—Joint design sensitivity for 1 year ofY{ata
- * Upper limits

+ Expected upper limits @
o] @ spin-down ULs Q)

Crab pulsar: LIGO limit on
GW emission is now below
upper limit inferred from
spindown rate

Gravitational wave amplitude ho

Frequency (Hz)
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LIGO The LIGO interferometers LSC

H1: 4km @ LHO vacuum End test mass
H2: 2km @ LHO : (ETM) suspended, seismically
L1:4km @ LLO : isolated test masses
mode
cleaner

Input test mass

various
laser :
optics
10 W 6-7 W: 4-5 W 12-15 kW

200 mw

Photodetectors (4) ( )
Gravitational Wave channel
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LIGO The LIGO interferometers LSO

Sensitivity of an interferometer limited by shot noise:

Smaller measurable displacement: { > A1 |2ho

4

&

L: arm length *\
P: injected power g
fx
§ g >Fabry-Per0t
/ .
Mode cleaner § é cavity
[————
| e I
|
|
|
: |
Various : | 4--5 W [ 200-250 W [2-15 kW
-— . I \\ // ! L T \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\i
optics [ < >
A =1064 nm e - - = 4,000 m
Recycling
mirror Photodiodes
mitational Wave channel »)

.
* Fabry-Perot cavity: ~125 round trips = effective optical path = 500 km

* Recycling cavity: power x 50
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LIGO Fundamental noises LSC

* Thermal noise: affecting mirrors and suspensions

- high-purity fused silica
- largest mirrors are 25 cm diameter,
10 cm thick, 10.7 kg

- surfaces polished to ~1 nm rms

- low scattering loss (<50 ppm)

e Acoustic noise / index fluctuations

Vacuum equipment

Seismic Noise

Modeled Vibration [solation Performance

Mass-Springs

L Be =3 \ * Seismic noise

- Hydraulic external pre-isolator

> - Stacks

10"
Freauenev (Hz)

= - Pendulum
1 meter thick 80039'00'2 53

concrete slab




LSC

LIGO

Livingston noise budget

Ty =

L1: UGF = 155 Hz, 14 5 Mpc F’redlﬂted 15 6, Fu’lay 1? EDD? 05:27:40 UTC
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LIGO

-1!-

Displacement [m/+vHz]

Hanford (4 km) noise budget

H1: UGF 207 Hz, 15.1 Mpc Predicted: 18.8,

Ma

LSC

17 EUD? 15 27:36 UTC

_____\.
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LIGO Sources and methods LSC

Long Short
duration duration

Matched
filter

Pulsars Compact Binary Inspirals

Template-less
methods

Bursts




LIGO Burst searches LSC

* Motivations: minimal assumptions, open to unexpected/unknown waveforms

 Methods:
- Excess Power:

Decompose data stream into
time-frequency pixels

Frequency

= Look for hot pixels or clusters of pixels

- Calculate cross-correlation between
interferometer data streams

aaaaaaaaaaaaaaaaaaaaaaaaaa

» S4 general all-sky burst search [ Preprint arXiv:0704.0943 |

Searched 15.53 days of triple-coincidence data (H1+H2+L1)
for short (<1 sec) signals with frequency content in range 64-1600 Hz

No event candidates observed
= Upper limit on rate of detectable events

« $5: analysis on going ...
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LIGO Periodic signals from Radio/X-ray LSC
pulsars

» Targeted searches:

— for 97 known (radio and x-ray) systems: isolated pulsars, binary systems,
pulsars in globular clusters...

— place upper limits on gravitational wave amplitude and equatorial ellipticities

¢ limits as low as ~10~7

Crab pulsar: LIGO limit of GW emission is now below upper limit inferred from
spindown rate

* All-sky, unbiased searches:

— Search for a sine wave, modulated by Earth’s motion,
and possibly spinning down: easy, but computationally expensive!

Einstein@Home

. E - Clh_ae From Space. ~175,000 users

http [IWWW. elnstemathome org/  ~75Tflops on average
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LIGO LSC-Virgo joint data analysis LSC

 Cooperative agreement for data exchange and joint data analysis for last
5 months of S5

« Sharing of data started in May 2007:
= more than 4 months of coincidence between LIGO S5 and Virgo VSR1 runs

« Benefits of a world wide network:
- Reduction of the false alarm rate by coincidence analysis
- A better coverage of the sky

- Improve the accuracy on parameter extraction
= required for gravitational wave astronomy

- Can help increasing the duty cycle
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LIGO Enhanced LIGO

Starting after S5 (~now): a series of fast upgrades
Goal: a factor of ~2 sensitivity improvement

Main upgrades:

- Increase laser power to 35 W
Requires new thermal compensatio

—
ol
f
-y
[

- DC readout scheme
Photodetector in vacuum, suspende
Output mode cleaner

N
[N
T

Strain (Hz"%)
3
I

—
ol
[
A
1

Ephanced LIGO =

-24 1 1 11 1 111 | 1 1 11 1111 | 11
10' 10 10 10
Frequency (Hz)

10

S6 run planned to begin in 2009, duration ~1.5 years
Virgo improvements and joint running planned on same time
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LIGO Advanced LIGO (1/2) LSC

A series of major improvements after the S6 run (starting ~2010):

» Seismic noise
Active isolation system
Mirrors suspended as fourth stage of quadruple pendulums

* Thermal noise
Suspension =» fused silica fibers =
Test mass =» more massive; better{iq:pe '

» Optical noise
Laser power = increase to ~200 W
Optimize interferometer response
=> signal recycling

Advanced _
LIGO

Equivalent stéw noise,

— Susp. thermal

Internal thermal
— Quantum naoise 3
= Total noise

Freguency (Hz)

Factor of ~10 better than current LIGO = factor of ~1000 in volume !
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LIGO Advanced LIGO (2/2)

Neutron Star Binaries:
Maximal horizon > 300 Mpc
Most likely rate ~ 40/year !

The science from the first 3 hours of Advanced LIGO should be
comparable to 1 year of initial LIGO
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