Locating and Observing Optical Counterparts to Unmodeled Pulses in Gravitational Waves

Targeted transient searches with GW data

Jonah Kanner University of Maryland

LIGO-G080019-00-Z

- Columbia
 - Szabolcs Marka, Jennifer Piscionere
- UMD
 - Peter Shawhan, Jonah Kanner, Molly Reed
- Harvard-Smithsonian Center for Astrophysics
 - Tracy Huard
- Carnegie Institute of Washington
 David Murphy
- <u>http://geco.phys.columbia.edu/~jap2117/</u>

Talk Outline

- Proposed Search Overview
- Motivation
- Pilot study
- Opportunity in S6/VSR2
- Challenges for S6/VSR2
- Conclusions

What is LOOC UP?

 1) Analyze GW data in near real-time to find low-threshold "event candidates" (H-L-V)

- 2) Estimate the source location of "candidates"
 - Time of flight and/or "coherent" approach
- 3) Image the source location with an optical, radio, and/or x-ray telescope
 - A GW producing astrophysical event could produce an EM transient, thus confirming the event and gaining extra astronomical information

Search Skeleton

LOOC UP

PSU

Motivation

- Increased GW sensitivity
 - Low-threshold search
- Even at high SNR, would like to confirm first GW detection in independent channel
- Rapid astronomical response to transients
 - "Natural" approach for EM-GW network
- Prepare for Advanced LIGO era
- Important step toward integrating GW astronomy into greater astronomical community
 - Education/Research opportunity at forefront of GW and EM astronomy

Orphan Afterglow Model

Sample Source Models

- Nuclear fireball of Li and Paczynski
 - Simplified theoretical model
 - NS matter ejected during merger decays
 - Tau ~ 1 day, R ~ 13 at 20 Mpc
- Optical afterglow of short GRB's
 - Empirical
 - Beaming means we may not see gammas
 - Tau ~ 1 hour, bright at 20 Mpc
- Supernovas
 - Tau ~1 week, R~14 at 20 Mpc

Pilot Study

LOOC UP

PSU

Pilot Study: Summer '07

LOOC UP

PSU

Pilot Study: Summer '07

- 3 Runs on 3 different telescopes:
 - MDM 2.4 m June 4-6
 - Swope Telescope July 22 Aug 1
 - MDM 1.3 m Sept. 4-9
- Timing only source reconstruction
- H-L-V and H-L networks
- I and R-Harris filters

Pilot Study

LIGO S5 DNS Pos-avg. range ~15 Mpc

Catalog:

- Globular clusters & galaxies
- 20 Mpc cut-off
- Modified version of CBC catalog
- 2766 Objects

Pilot Study

For each candidate event, we seek galaxies within the error box of the estimated source location.

These galaxies are then imaged for transients.

LOOC UP

PSU

Sample Observing Schedule

Each target is observed several times to trace time domain light curves of imaged objects.

Pilot Study Accomplishments

- Automated software to:
 - download trigger lists
 - estimate position
 - cross-reference with catalog
 - post observing targets to
- Observed 90 targets
- Lag times of 1 to several hours
- Demonstrated the feasibility of such a search

Next Steps

LOOC UP

PSU

Proposal: LOOC UP in S6/VSR2

- During Enhanced LIGO/Virgo+ era
 - About 1 target galaxy per square degree
 - Could meet demands of source models imaging to modest depth (R \sim 15)
 - Basic technique has been demonstrated in pilot studies
 - With a dedicated or semi-dedicated network of robotic telescopes, we could perform a GW search with FAR of a few per day instead of a few per year
- The S6 run is an opportunity to develop real-time analysis
- Opportunity to perform a rapid response, targeted transient search for SHGRB afterglows, etc.
- LC/HR/HP certainly good science

Open Issues: Observational Resources

- We need to identify the observational resources to use for this search.
 - Small robotic telescopes
 - ~2 m telescopes
 - Radio telescopes such as LOFAR
 - Public Alerts, such as VoEvent
 - ToO (Chandra, etc.)
- Survey style telescopes, such as ROTSE and RAPTOR may be ideal
 Modest time commitment??
- Sociological worries exist...
 - Data privacy
 - Non-traditional requests for time

1/29/2008

PSU

Open Issues: Image Processing

Need a data analysis pipeline, including image reduction, transient recognition, and categorization.

Open Issues: Source reconstruction

- Algorithm
 - Coherent or Incoherent??
 - Estimate the uncertainty
- Data transfer
- Need prompt vetoes and data quality

Concluding Remarks

- GW-first searches promise to eventually offer nearly all-sky coverage for exciting astrophysical events
- Performing low-threshold optical follow-ups during S6/VSR2:
 - Pushes the limits of interferometer sensitivity
 - Develops important Adv. LIGO technologies
 - Encourages EM/GW astronomy cooperation
 - Rapidly responds to potential EM transients

Thank you!

LOOC UP

PSU

Extra Slides

Search Skeleton (cont.)

- First Image About 1 Hour after IFO event
 - Catch light curve on way up for considered models
- Follow-up images of same target hours/days later
 - Compare for reference Look for objects with changing flux
 - Trace light curve as a function of time
- Sensitive "enough"
 - R ~ 15 for Enhanced LIGO era (~2009)
 - R ~ 20 for Advanced LIGO era (~2013)

Trigger Generation

PSU

- IFOs produce sampled time series strain signal
- Data is conditioned and Fourier Transformed to produce time-frequency plane
- "Trigger" is a time-freq pixel with excess power

LOOC UP

Reduction and Analysis Steps

Construct set of dark images for a night.

- Construct the flats
- Construct a bad pixel map
- Dark-subtract, flat-field, bad-pixel mask, and skysubtract images from each night
- Refine the astrometry in the images

Extract the positions of sources detected in the image. Compare the photometry of repeat observations of a source in order to identify sources that exhibit significant variability.

"Phrase Book" for first time observers

If a physicist wants to say:	He should tell the astronomer:
Flux	Magnitude
Luminosity	Magnitude
Mass	Blue Light Luminosity
Distance	Redshift
Please, No Decaf!!!	What's decaf?
Let's turn off the computers, have a sandwich, and take a nap.	"Emergency Lightning Shutdown Procedure!!"
The picture's kinda fuzzy	"The seeing is 3.2"
Why are these pictures so dark?	"I think I forgot to open the dome again."

- Oliver Twist Scenario: Request for Time
 - Used for S5 pilot studies
 - Great for trying things out, but may not be practical for an extended science run

LOOC UP

PSU

- The Bat Phone Scenario: Target of Opportunity
 - Accepted practice in astronomical community
 - Arrange in advance to call in a small number of observations when needed
 - Potentially get "low-cost" follow-ups with a highperformance instrument
 - Probably a sensible option for Adv. LIGO era

LOOC UP

PSU

The Private Eye Scenario: Dedicated
Instrument

- Robotic telescopes, perhaps a network
- In an S6 era scenario, checking down many events could lead to an earlier first detection
- Modest technology requirements
- Could perform other studies in "down time"

LOOC UP

- The Most Wanted Scenario: Public Notices
 - E-mail notices or internet postings available to general astronomical community
 - Many telescopes => full sky coverage
 - Low cost, may be willing to speculate
 - Forums for both amateurs and professionals
 - Sky and Telescope, SNEWS, etc.

LOOC UP

PSU

"Incoherent" Method

Timing Only Solution

- Single IFO pair gives a ring on the sky

- 3 IFOs => 2 pairs => 2 sky rings which intersect at 2 points

The Galaxy Catalog

- For our pilot:
 - Modified CBC galaxy catalog
 - Added globular clusters
 - Cut on M/d
 - Cut at 20 Mpc
 - Favored galaxies with higher M/d
 - 2766 objects
- Generally:
 - Great method to beat limitations of source precision
 - May need refining for Adv LIGO ~50 gal / (deg²)
 - Gal ranking? Refined positions? Wide field of view?

Position Reconstruction: Incoherent or Coherent?

Each trigger represented by ~1 number (peak time)	Each trigger represented by ~60,000 numbers (sampled time series)
Straightforward calculation	Uses "likelihood statistics", reliable method TBD
Trigger peak times => central sky position	Tests each point in a grid of ~10^4 sky positions
Uses detector locations, ignores antenna patterns	Folds in antenna patterns

A "Likelihood
statistic"
$$E_{null}(\hat{\Omega}) = \sum_{k=0}^{N-1} \sum_{\alpha=1}^{D} \sum_{\beta=1}^{D} \tilde{d}_{w\alpha}^{*}[k]Q_{\alpha\beta}[k, \hat{\Omega}]\tilde{d}_{w\beta}[k] \quad (27)$$
Sum over
frequencies
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots \tilde{d}_{wD}^{*}] \begin{bmatrix} Q_{11} & Q_{12} \dots & Q_{1D} \\ Q_{21} & Q_{22} & Q_{2D} \\ \vdots & \vdots \\ Q_{D1} & Q_{D2} \dots & Q_{DD} \end{bmatrix} \begin{bmatrix} \tilde{d}_{w1} \\ \tilde{d}_{w2} \\ \vdots \\ \tilde{d}_{wD} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots \tilde{d}_{wD}^{*}] \begin{bmatrix} Q_{11} & Q_{12} \dots & Q_{1D} \\ Q_{21} & Q_{22} & Q_{2D} \\ \vdots & \vdots \\ Q_{D1} & Q_{D2} \dots & Q_{DD} \end{bmatrix} \begin{bmatrix} \tilde{d}_{w1} \\ \tilde{d}_{w2} \\ \vdots \\ \tilde{d}_{wD} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots \tilde{d}_{wD}^{*}] \begin{bmatrix} Q_{11} & Q_{12} \dots & Q_{1D} \\ Q_{21} & Q_{22} & Q_{2D} \\ \vdots & \vdots \\ Q_{D1} & Q_{D2} \dots & Q_{DD} \end{bmatrix} \begin{bmatrix} \tilde{d}_{w1} \\ \tilde{d}_{w2} \\ \vdots \\ \tilde{d}_{wD} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots \tilde{d}_{wD}^{*}] \begin{bmatrix} Q_{11} & Q_{12} \dots & Q_{1D} \\ Q_{21} & Q_{22} & Q_{2D} \\ \vdots \\ \tilde{d}_{wD} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots & \tilde{d}_{wD}^{*}] \begin{bmatrix} Q_{11} & Q_{12} \dots & Q_{1D} \\ Q_{21} & Q_{22} & Q_{2D} \\ \vdots \\ \tilde{d}_{wD} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots & \tilde{d}_{wD}^{*}] \begin{bmatrix} \tilde{d}_{w1} \\ \tilde{d}_{w2} \\ \vdots \\ \tilde{d}_{wD} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots & \tilde{d}_{wD}^{*}] \begin{bmatrix} Q_{11} & Q_{12} \dots & Q_{1D} \\ Q_{21} & Q_{22} & Q_{2D} \\ \vdots \\ \tilde{d}_{wD} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots & \tilde{d}_{wD}^{*}] \begin{bmatrix} \tilde{d}_{w1} \\ \tilde{d}_{w2} \\ \vdots \\ \tilde{d}_{wD} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots & \tilde{d}_{wD}^{*}] \begin{bmatrix} \tilde{d}_{w1} \\ \tilde{d}_{w2} \\ \vdots \\ \tilde{d}_{wD} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots & \tilde{d}_{wD}^{*}] \begin{bmatrix} \tilde{d}_{w1} \\ \tilde{d}_{w2} \\ \vdots \\ \tilde{d}_{wD} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots & \tilde{d}_{wD}^{*}] \begin{bmatrix} \tilde{d}_{w1} \\ \tilde{d}_{w2} \\ \vdots \\ \tilde{d}_{wD} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots & \tilde{d}_{w1}^{*}] \begin{bmatrix} \tilde{d}_{w1} \\ \tilde{d}_{w2} \\ \vdots \\ \tilde{d}_{w2} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots & \tilde{d}_{w1}^{*}] \begin{bmatrix} \tilde{d}_{w1} \\ \tilde{d}_{w2} \\ \vdots \\ \tilde{d}_{w2} \end{bmatrix}.$$
Detector Data
$$= \sum_{k=0}^{N-1} [\tilde{d}_{w1}^{*} \dots & \tilde{d}_{w1}^{*}] \begin{bmatrix} \tilde{d}_{w1} \\ \tilde{d}_{w2} \\ \tilde{d}_{w2} \end{bmatrix}.$$
Detector