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A Bayesian approach to the detection of un-
modelled bursts of gravitational radiation has 
been predicted to outperform existing 
methods.  Monte-Carlo simulations confirm 
this and demonstrate that the improvement is 
significant. 

In [arXiv:0712.0196] we (with G Woan) 
presented a Bayesian analysis of the problem 
of detecting a gravitational wave burst of 
unknown waveform with a network of 
ground-based interferometric gravitational 
wave detectors, and demonstrated that 
several previously proposed coherent burst 
methods were equivalent to unphysical 
choices of Bayesian signal prior. This implied 
that previously proposed methods were 
optimal for unrealistic simulations, and that 
they should therefore be less efficient than a 
Bayesian method whose signal priors better 
reflected our state of knowledge. 

If the problem of network burst detection 
is formulated as a choice between the 
hypotheses {H0: x = e, H1: x = Fh + e}, the 
Bayesian analysis follows immediately from 
specification of prior plausibility distributions 
for noise p(e) and signal p(h).  In the absence 
of an explicit signal distribution, various 
arguments lead to different statistics: the 
excess power statistic checks if H0 is 
“falsified”, the Gursel-Tinto statistics looks for 
falsifying power only in span F where 
gravitational waves could be responsible for it 
and the soft and hard constraint differently 
weight the power arising from the two 
polarizations.  Unfortunately these arguments 
are implicitly equivalent to proposing that 
signals are infinite or infinitesimal; the 
Bayesian method should perform better 
because it (quite literally) doesn’t waste 
(signal) energy overcoming physically 
inaccurate assumptions about the universe. 

To validate and quantify the expected 
improvement in detection efficiency, we 
conducted a Monte-Carlo simulation to 
produce ROC curves for the standard Gursel-
Tinto, soft constraint, hard constraint and 
Bayesian statistics.  The Bayesian statistic uses 
Gaussian noise and signal population models 
that it is the optimal statistic for (in the sense 
that it maximises the detected fraction for a 
given false alarm fraction). 

 
Figure 1: (below) Injected waveform 

 
However, we instead used a particular 20-20 
solar mass inspiral Lazarus waveform source 
from random directions and fixed 100 MPc 
distance, injected into simulated identical 
detectors with H1, L,  V, G’s orientations. The 
average SNR in the network was 5.  The 
Bayesian method has no special relationship 
with this more structured source population; 
the outcome is not predetermined. 

For approximately 5,000 injections, we 
computed the Gursel-Tinto, soft constraint, 
hard constraint and five Bayesian odds ratios 
for five logarithmically distributed 
characteristic signal amplitudes σ.  Combining 
the five Bayesian statistics marginalizes away 
the dependence on the nuisance signal 
amplitude with a scale invariant prior, 
producing a new Bayesian statistic that 
doesn’t propose a particular signal size. 

We can see in Figure 2 that the non-
Bayesian statistics all perform quite similarly.  
The Bayesian statistics that propose that the 
signal has a particular amplitude perform 
better or worse than the non-Bayesian 
methods, depending on how close their 
proposed amplitude is to the true value.  
However, the marginalized Bayesian statistic 
performs almost as well as the best particular 
amplitude Bayesian statistic, and 
approximately twice as well as any of the non-
Bayesian statistics (in the low false alarm 
regime).  This means that we don’t have to 
know the exact signal size to produce an 
efficient Bayesian test. 

Limited trials suggest the Bayesian 
method also produces superior parameter 
estimation; in Figure 3 the Bayesian analysis 
correctly localises an injection to 1/10000th of 
the sky with 95% confidence, while the non-
Bayesian statistics identify the wrong 
direction. 

In conclusion, we have demonstrated 
that a Bayesian analysis significantly 
outperforms several previously proposed 
statistics, using a traditional Frequentist 
assessment of efficiency. 

 
Figure 2: (above) ROC for various statistics 
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Figure 3: (below) Signal plausibility as a 
function of direction for Bayesian, Tikhonov, 
GT and soft statistics.  White is plausible, 
black implausible; circle is the injection, 
square is the estimated direction 

LIGO-G070830-00-Z 


