

Increasing future gravitational-wave detectors sensitivity by means of amplitude filter cavities and quantum entanglement

Ligo

F.Ya.Khalili

October 26, 2007 LIGO-G070804-00-Z

CMW + Entanglement

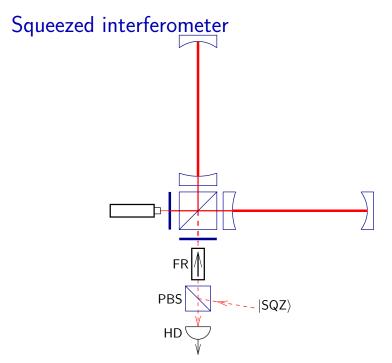
3 CMW + Entanglement + Broadened interferometer

Conclusion

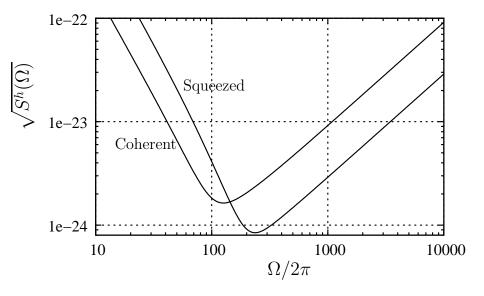
CMW + Entanglement

3 CMW + Entanglement + Broadened interferometer

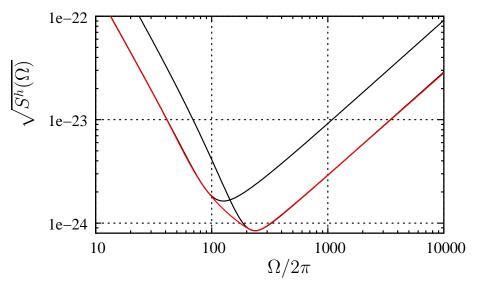
Conclusion

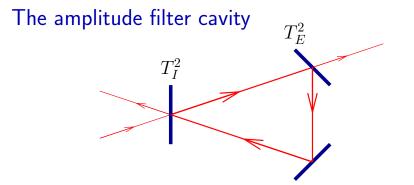


Conventional vs. squeezed



Conventional + squeezed (dream)

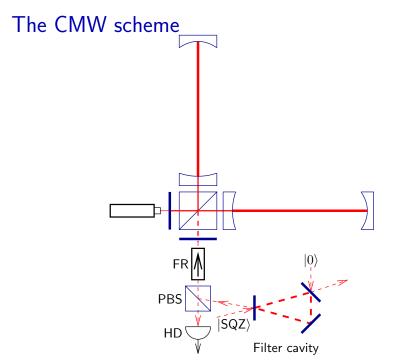




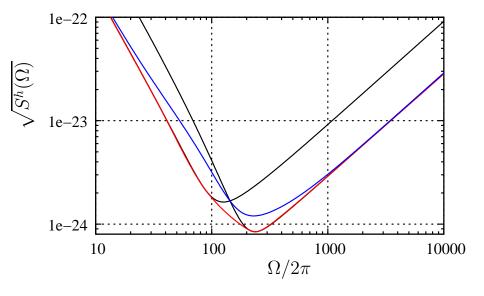
$$T_I^2 = T_E^2 + A^2$$

The cavity is transparent at $\Omega < \gamma_f = \frac{cT_I^2}{2L_f}$ and (almost) completely reflective at $\Omega > \gamma_f$.

T.Corbitt, N.Mavalvala, and S.Whitcomb, PRD 70, 022002 (2004)



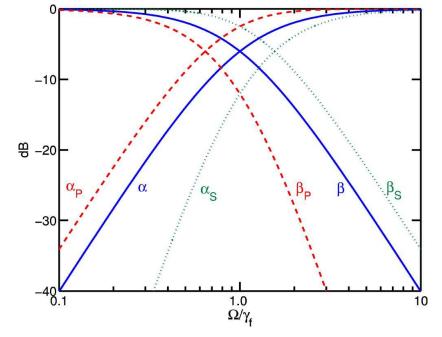
Conventional vs. squeezed vs. CMW



Conventional vs. squeezed vs. CMW

The origin of the sensitivity degradation at $\Omega \sim \gamma_f:$

"grey" area around γ_f where incoherent mix of $|0\rangle$ and $|SQZ\rangle$ is pumped into the the dark port.



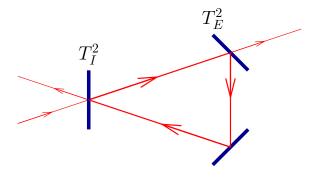
T.Corbitt, N.Mavalvala, and S.Whitcomb, PRD 70, 022002 (2004)

CMW + Entanglement

3 CMW + Entanglement + Broadened interferometer

Conclusion

The amplitude filter cavity



$$T_I^2 = T_E^2 + A^2$$

$$L_F \sim 30 \,\mathrm{m}, \ \gamma_f \sim 10^4 \,\mathrm{s}^{-1} \Rightarrow$$

 $T_I^2 \sim 10^{-4} \gg A^2 \sim 10^{-5}.$

The filter cavity optical noises

Squeeze factors of phase and amplitude quadratures at the filter cavity input mirror:

$$S_{\varphi,\mathsf{I}}(\Omega) = \frac{\Omega^2 e^{-2r} + \gamma_f^2}{\Omega^2 + \gamma_f^2}, \quad S_{A,\mathsf{I}}(\Omega) = \frac{\Omega^2 e^{2r} + \gamma_f^2}{\Omega^2 + \gamma_f^2}.$$

The product

$$S_{\varphi,\mathsf{I}}(\Omega)S_{A,\mathsf{I}}(\Omega) = 1 + \frac{4\Omega^2 \gamma_f^2 \sinh^2 r}{(\Omega^2 + \gamma_f^2)^2} > 1$$

 \Rightarrow we have a mixed quantum state at $\Omega \sim \gamma_f$.

The filter cavity optical noises

On the other hand, there is a cross-correlation *i.e. Quantum Entanglement* between two filter cavity ports:

$$S_{\varphi,\mathsf{IE}}(\Omega) = -\frac{i\Omega\gamma_f(1-e^{-2r})}{\Omega^2 + \gamma_f^2} \neq 0,$$

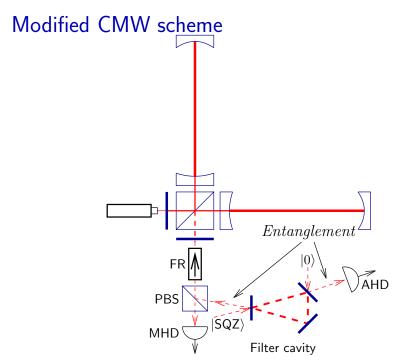
$$S_{A,\mathsf{IE}}(\Omega) = \frac{i\Omega\gamma_f(e^{2r}-1)}{\Omega^2 + \gamma_f^2} \neq 0,$$

which means that the information leaks into the idle port.

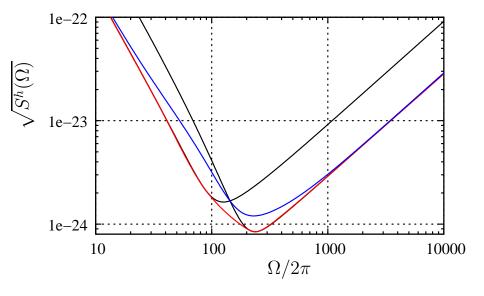
The filter cavity optical noises

The idea:

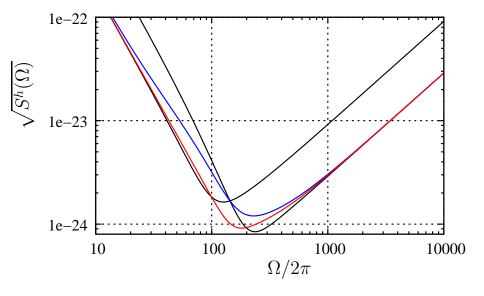
catch this escaping information by an additional homodyne detector and thus purify the light entering the interferometer.



Conventional vs. squeezed vs. CMW



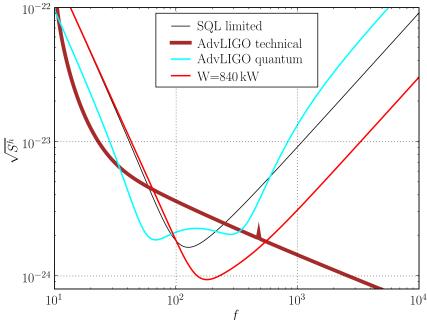
Conventional vs. squeezed vs. CMW



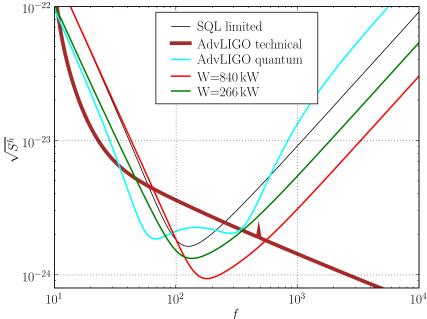
Simplifications & parameters values Simplifications

Homodyne angle $\phi = 0$ (minimum of the shot noise) Detuning $\delta = 0$ (no rigidity; just for simplicity) Filter cavity parameters $A^2 = 10^{-5}$ Losses per bounce Cavity length $L_f = 30 \,\mathrm{m}$ General parameters Quantum efficiency $\eta = 0.99$ $e^{-2r} = 0.1$ Squeeze factor

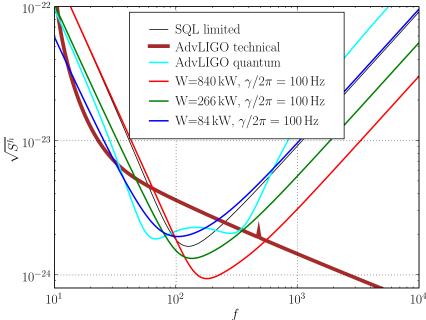
Conventional interferometer



Conventional interferometer



Conventional interferometer



CMW + Entanglement

3 CMW + Entanglement + Broadened interferometer

Conclusion

Spectral density asymptotics

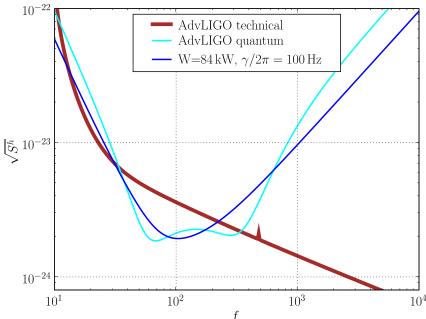
$$S^{h}(\Omega) \propto \begin{cases} \frac{W}{\Omega^{4}\gamma}, & \text{if } \Omega \to 0, \\ \frac{\Omega^{2}}{4W\gamma} e^{-2r}, & \text{if } \Omega \to \infty. \end{cases}$$

Spectral density asymptotics

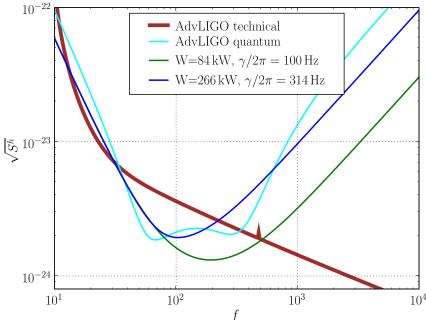
$$S^{h}(\Omega) \propto \begin{cases} \frac{W}{\Omega^{4}\gamma}, & \text{if } \Omega \to 0, \\ \frac{\Omega^{2}}{4W\gamma} e^{-2r}, & \text{if } \Omega \to \infty. \end{cases}$$

Therefore, increasing W and γ and keeping $W/\gamma = \text{const}$, it is possible to improve the high-frequency sensitivity without degradation of the low-frequency one.

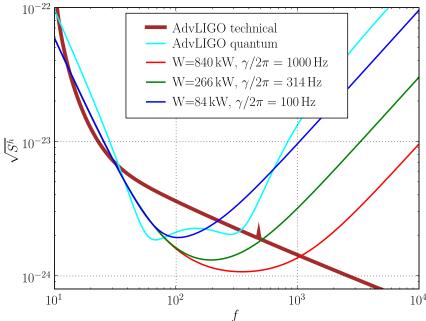
Broadened interferometer



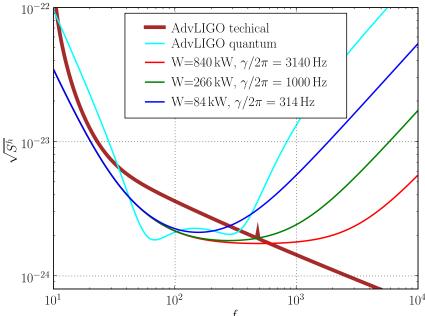
Broadened interferometer



Broadened interferometer

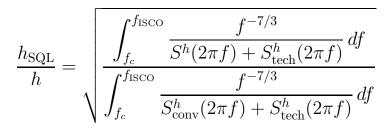


Even more broadened interferometer



Estimates of $h_{\rm SQL}/h$

NSNS:



High-frequency:

$$\frac{h_{\rm SQL}}{h} = \sqrt{\frac{S^h_{\rm conv}(2\pi f) + S^h_{\rm tech}(2\pi f)}{S^h(2\pi f) + S^h_{\rm tech}(2\pi f)}} \bigg|_{2\pi f \gg \gamma}$$

Estimates of $h_{\rm SQL}/h$

	W	$\gamma/2\pi$	NSNS	$\gtrsim 1\mathrm{kHz}$
SQL-limited	$840\mathrm{kW}$	$100\mathrm{Hz}$	1	1
AdvLIGO	$840\mathrm{kW}$		1.18	0.50
CMW Conv.	$84\mathrm{kW}$	$100\mathrm{Hz}$	1.17	0.95
	$266\mathrm{kW}$	$100\mathrm{Hz}$	1.15	1.7
	$840\mathrm{kW}$	$100\mathrm{Hz}$	1.10	3.0
CMW Broad.	$84\mathrm{kW}$	$100\mathrm{Hz}$	1.17	0.95
	$266\mathrm{kW}$	$314\mathrm{Hz}$	1.28	3.0
	$840\mathrm{kW}$	$1000\mathrm{Hz}$	1.33	9.5
	$84\mathrm{kW}$	$314\mathrm{Hz}$	1.24	1.7
	$266\mathrm{kW}$	$1000\mathrm{Hz}$	1.28	5.3
	$840\mathrm{kW}$	$3140\mathrm{Hz}$	1.30	16.0

CMW + Entanglement

3 CMW + Entanglement + Broadened interferometer

Conclusion

• Squeezed light in combination with the short amplitude filter cavity and the broadened interferometer configuration allows to obtain sensitivity better than the AdvLIGO one at low frequencies, and significantly better — at high frequencies, using mush smaller optical power.

- Squeezed light in combination with the short amplitude filter cavity and the broadened interferometer configuration allows to obtain sensitivity better than the AdvLIGO one at low frequencies, and significantly better — at high frequencies, using mush smaller optical power.
- The low-frequency quantum noise can be reduced down to the level below the technical noises.

• The photodetectors non-unity quantum efficiency $\eta < 1$ significantly cripples the squeezed state based schemes, limiting the squeeze factor by the value

$$e^{-2r_{\rm eff}} = e^{-2r} + \frac{1-\eta}{\eta}$$

If, for example, $\eta = 0.9$, then only 10 dB effective squeezing is possible.

• The photodetectors non-unity quantum efficiency $\eta < 1$ significantly cripples the squeezed state based schemes, limiting the squeeze factor by the value

$$e^{-2r_{\rm eff}} = e^{-2r} + \frac{1-\eta}{\eta}$$

If, for example, $\eta = 0.9$, then only 10 dB effective squeezing is possible. My question to experimentalists: what is the real quantum efficiency at 1.064μ ? (avalanche does not help!)