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Idea of displacement-noise-free measurement

Idea

Kawamura and Chen with colleagues proclaimed the idea to exclude
displacement noise in GW detectors using distributed nature of GWa.
They consider several variants.

aS. Kawamura, Y. Chen, PRL, 93, 211103 (2004),
Y. Chen, S. Kawamura, PRL, 96, 231102 (2006),
Y. Chen, A. Pai, K. Somiya, S. Kawamura, S. Sato, K. Kokeyama, R. Ward, K. Goda
and E. Mikhailov, PRL, 97, 151103 (2007),
S. Sato, K. Kokeyama, R. Ward, S. Kawamura, Y. Chen, A. Pai, K. Somiya, PRL, 98,
141101 (2007)
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2D Mach-Zehnder scheme

Kawamura, Chen et al analysed several variants, for example:
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Manipulating by outputs one can exclude information on displacement

of each 6 mirrors and keep information on GW signal.
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Shortage

In low-frequency region (L ≪ λGW ) the displacement-noise-free response
signal decreases as (fGWL/c)3.
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Fabry-Perot cavity formed by two moved mirrors

Analyzed scheme

We analyse a detuned Fabry-Perot cavity, two mirrors may move as free
masses, its transmittances T and reflectivities R are the same.
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Experimenter can manipulate by linear combination of the reflection-output
Ar

out(x , t) and transmission-output At
out(x , t) signals.
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Detailed scheme of Fabry-Perot cavity
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Assumptions: rigid installation on platform

Laser L, mirrors M1, M2, beamsplitters and homodyne detectors are
assumed to be rigidly installed on not moving platforms P1 and P2.
We use local Lorentz (LL) gauge.
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Double-pumped Fabry-Perot cavity: manipulation with 4

outputs
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The pump wave through mirror a has detuning δ1, polarization in the plane
of incidence and denote it with Ain; the pump wave through mirror b has
different detuning δ2, polarization orthogonal to the plane of incidence and
is denoted with Bin. Corresponding vacuum pumps through mirrors b and
a are denoted with Avac and Bvac.
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Small output amplitudes (double-pumped FP cavity)

a
r
out = R1ain + T1avac −

RT 2Ae2iδ1τ2ik0

[

(Xb + Xgw)e iΩτ − σ1Xa

]

(

1 − R2e2iδ1τ
)(

1 − R2e2i(δ1+Ω)τ
) ,

a
t
out = T1ain + R1avac +

R2T 2Ae3iδ1τ 2ik0

[

(Xb + Xgw)e2iΩτ − Xae
iΩτ

]

(

1 − R2e2iδ1τ
)(

1 − R2e2i(δ1+Ω)τ
) .

. . . and the similar formulas for amplitudes b
r
out, b

t
out

Important that coefficients σ1, σ2 6= 1:

σ1 ≃ 1 + 2iδτ
γ − i(δ1 + Ω)

γ

In opposite case the displacement-noise cancellation is impossible.
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Cancellation of displacement noise

Proper linear combination of the reflection-output and transmission-output
signals.
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Step 1: cancelllation of information about Xa

From the first pair of signals a
r,t
out:

s1 = Re
i(δ1+Ω)τ

a
r
out + σ1a

t
out

= s
fl
1 +

R2e iδ1τ
(

1 − e2iδ1τ
)

(

1 − R2e2iδ1τ
) A 2ik0(Xb + Xgw)e2iΩτ . (1)
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Cancellation of displacement noise (cont.)

Step 2: cancellation of information about (−Xa + Xgw)
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From the second pair of signals b
r,t
out:

s2 = Re
i(δ2+Ω)τ

b
r
out + b

t
out

= s
fl
2 −

R2e iδ2τ
(
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iΩτ . (2)
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Cancellation of displacement noise (cont.)

Step 3: cancellation of information about Xb from the pair of s1,2

We assume that mean amplitudes of waves in cavity are equal to each
other:

A
(

1 − R2e2iδ1τ
) =

B
(

1 − R2e2iδ2τ
)

Then we can cancel the information about Xb from combinations s1,2:

s = s1 +
e iδ1τ

(

1 − e2iδ1τ
)

e iδ2τ
(

1 − e2iδ2τ
) s2e

iΩτ

= s
fl +

R2e iδ1τ
(

1 − e2iδ1τ
)

(

1 − R2e2iδ1τ
) A 2ik0Xgwe

2iΩτ . (3)

DFI response signal s does not contain any information about

displacement noise of the test masses.
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Particular cases

Equal detunings δ1 = δ2 and equal pumps A = B

In the narrow-band approximation

s|δ2=δ1
≈ ain + bin + avac + bvac −

iδ1

γ − iδ1
A 2ik0Lh. (4)

γ is the cavity half-bandwidth.

Opposite detunings δ1 = −δ2 and equal pumps amplitudes A = B

In the narrow-band approximation

s|δ2=−δ1
≈ ain − bin + avac − bvac −

iδ1

γ − iδ1

A 2ik0Lh (5)
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Discussion

Key role

Key roles in isolation of the GW signal from displacement noise is played by
the equivalence principle in terms of the LL gauge or by the distributed
nature of GWs in terms of the TT gauge.

Impossible to apply DNFI to register non-gravitational force

Let the external non-gravitational force F(t) acts on mirror b along the
x-axis. We denote the corresponding displacement of the mirror as XF s:

a
r
out ∼(Xb + XF )e iΩτ − σXa, a

t
out ∼ (Xb + XF )e2iΩτ − Xae

iΩτ ,

b
r
out ∼− X

iΩτ
a + σ(Xb + XF ), b

t
out ∼ −Xae

2iΩτ + (Xb + XF )e iΩτ .

Force-induced displacement XF cannot be separated from Xb in all the
output signals.
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Comparison

Sensitivity

Sensitivity of scheme with double pumped FP cavity is no better or worse
than a simple one-round-trip detector.

Comparision with conventional FP cavity

In LIGO the signal is greater due to resonance gain.
So to reach SQL sensitivity in our double pumped FP cavity we need light
amplitude approximately finesse times larger than in scheme with
conventional FP cavity (not noise-free).

Comparison with displacement-noise-free Mach-Zehnder topology

Sensitivity of displacement-noise free topology with the Mach-Zander
interferometer is worse by factor

(

ΩL/c
)3

than with our double pumped
FP cavity.
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Laser noise cancelation

Dispacement-noise-free with Mach-Zahnder topology

Recal that Kawamura, Chen and colleagues proposed to subtract laser
noise in displacement-noise free topology with the Mach-Zander
interrferometer. In particlar, it allows to cancel noise produced by possible
laser displacements.

Dispacement-noise-free with double-pumped FP cavity

The Laser noise cancelation is also possible in our scheme:
It is subject of separate analysis.
The major problem — there are the additional beamsplitters and mirrors
producing displacement noise.
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The vulnerable assumptions

No displacement noise from beamsplitters and additional mirrors
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In LIGO there is resonance gain of signal,
in displacement-noise-free configuration — no resonance gain.
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The vulnerable assumptions (cont.)

Platforms can not move
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Under consideration:
mirrors are rigidly attached to movable platforms.
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