LIGO-G070760-00-Z

Numerical optimization of AdvLIGO for simultaneous multiple source types detection

I.S. Kondrashov², <u>S.L. Danilishin¹</u>, F.Ya. Khalili², D.A. Simakov²

¹MPI für Gravitationsphysik (AEI), ²Moscow State University

LSC-VIRGO Meeting, QND workshop Hannover, October 26, 2006

2

Advanced LIGO interferometers conventional optimization

Simultaneous optimization for different sources

- Optimization for HF pulsars
- Optimization for GW bursts

Optical configuration:

Certain set of 3 numbers $(\gamma, \delta, \varphi)$

Characteristic parameters of SRI: Quantum noise of SRI \implies 3 parameters Bandwidth $\gamma \iff (\rho_{\text{SRM}}, \phi_{\text{SRM}});$ Detuning $\delta \iff (\rho_{\text{SRM}}, \phi_{\text{SRM}})$ Homodyne quadrature angle φ A. Buonnanno, Y. Chen, Phys. Rev. D 67, 062002 (2003)

Detection range for NS-NS binaries

Evident candidate \implies NS-NS binaries detection range:

$$r_{\rm NS-NS} = \left(\frac{2}{15} \frac{G^{5/3}}{\pi^{4/3} c^3} \frac{\mathcal{M}^{5/3}}{\bar{\rho}_0^2} \int_{f_{\rm min}}^{f_{\rm max}} \frac{df}{f^{7/3} S_h(f)}\right)^{1/2}$$

Conventional way \longrightarrow optimal configuration for NS-NS binaries Quantum part of $S_h(f)$ depends on $(\gamma, \delta, \varphi)$ $S_h(f) = S_h^q(f, \gamma, \delta, \varphi) + S_h^{cl}(f)$

Detection range for NS-NS binaries

Evident candidate \implies NS-NS binaries detection range:

$$r_{\rm NS-NS} = \left(\frac{2}{15} \frac{G^{5/3}}{\pi^{4/3} c^3} \frac{\mathcal{M}^{5/3}}{\bar{\rho}_0^2} \int_{f_{\rm min}}^{f_{\rm max}} \frac{df}{f^{7/3} S_h(f)}\right)^{1/2}$$

Conventional way \implies optimal configuration for NS-NS binaries **Optimizing** $r_{\text{NS-NS}}$ in $(\gamma, \, \delta, \, \varphi) \implies$ optimal configuration $\min[r_{\text{NS-NS}}(\gamma, \, \delta, \, \varphi)] \longrightarrow (\gamma_{\text{opt}}, \, \delta_{\text{opt}}, \, \varphi_{\text{opt}})_{\text{NS-NS}}$

$$\begin{split} \gamma_{\rm opt}^{NS} &\simeq 960~{\rm sec}^{-1}, ~ \delta_{\rm opt}^{NS} \simeq 2090~{\rm sec}^{-1}, \\ \varphi_{\rm opt}^{NS} &\simeq -1.02~{\rm rad} \end{split}$$

Disadvantages of conventional way

- Lock-in to specific GW sources type;
- High classical noises at medium frequencies weak dependence on optical parameters;

$$|h_{\rm NS}(f)|^2 \sim \frac{1}{f^{7/3}} \Longrightarrow \text{no}$$
optimization at high frequencies.

$$\begin{split} \gamma_{\rm opt}^{NS} &\simeq 960~{\rm sec}^{-1}, ~ \delta_{\rm opt}^{NS} \simeq 2090~{\rm sec}^{-1}, \\ \varphi_{\rm opt}^{NS} &\simeq -1.02~{\rm rad} \end{split}$$

$$\begin{split} \gamma_{\rm opt}^{NS} &\simeq 960~{\rm sec}^{-1}, ~ \delta_{\rm opt}^{NS} \simeq 2090~{\rm sec}^{-1}, \\ \varphi_{\rm opt}^{NS} &\simeq -1.02~{\rm rad} \end{split}$$

Dependance of DR for NS-NS binaries on optical configuration is rather weak!

Why don't we sacrifice a little bit in sensitivity to NS-NS and improve sensitivity to other sources?

- I High frequency pulsars with $f_{\rm rot} \gtrsim 300$ Hz
- Bursts of GWs from, say, supernovae explosions

Criteria for optimization

Relative gain for specific source:

$$G_{\text{source}} = \frac{\text{SNR}_{\text{source}}(\Gamma, \beta, \varphi)}{\text{SNR}_{\text{source}}(\Gamma_{\text{opt}}^{\text{NS}}, \beta_{\text{opt}}^{\text{NS}}, \varphi_{\text{opt}}^{\text{NS}})}$$

What sources can be included into consideration?

- **()** High frequency pulsars with $f_{\rm rot} \gtrsim 300$ Hz
- Bursts of GWs from, say, supernovae explosions

Criteria for optimization

Relative gain for specific source:

$$G_{\rm source} = \frac{{\rm SNR}_{\rm source}(\Gamma,\,\beta,\,\varphi)}{{\rm SNR}_{\rm source}(\Gamma_{\rm opt}^{\rm NS},\,\beta_{\rm opt}^{\rm NS},\,\varphi_{\rm opt}^{\rm NS})}$$

SNR for HF pulsars

$$\mathrm{SNR}_{\mathrm{puls}} \propto \left[\frac{1}{S_h(f_{puls},\,\Gamma,\,\beta,\,\varphi)}\right]^{1/2}$$

- **(**) High frequency pulsars with $f_{\rm rot} \gtrsim 300 \; {\rm Hz}$
- Bursts of GWs from, say, supernovae explosions

Criteria for optimization

Relative gain for specific source:

$$G_{\rm source} = \frac{{\rm SNR}_{\rm source}(\Gamma,\,\beta,\,\varphi)}{{\rm SNR}_{\rm source}(\Gamma_{\rm opt}^{\rm NS},\,\beta_{\rm opt}^{\rm NS},\,\varphi_{\rm opt}^{\rm NS})}$$

SNR for GW bursts

$$\text{SNR}_{\text{burst}} \propto \left[\int_{f_{min}}^{f_{max}} \frac{df}{S_h(f,\,\Gamma,\,\beta,\,\varphi)} \right]^{1/2}$$

Our optimization procedure:

- Calculate and optimize over all possible configurations $\Longrightarrow G_{
 m NS}(\gamma,\,eta,\phi)$
- Optimize $G_{\rm NS}(\gamma, \beta, \varphi)$ over all $\varphi \Longrightarrow G_{\rm NS}(\gamma, \beta)$
- Fix price to pay (% of loss in NS sensitivity) and maximize G_{puls} and G_{burst} taking this price into account

BENCH Software, http://ilog.ligo-wa.caltech.edu:7285/advligo/Bench/

Optimization for HF pulsars

Measure of sacrifice in NS sensitivity: $\lambda = 1 - G_{\rm NS}(\Gamma_{\rm puls}, \beta_{\rm puls}, \varphi_{\rm puls})$

Relative loss in sensitivity for GW bursts $G_{burst}(\Gamma, \beta)$

Optimization for GW bursts

Measure of sacrifice in NS sensitivity: $\lambda = 1 - G_{\rm NS}(\Gamma_{\rm burst}, \beta_{\rm burst}, \varphi_{\rm burst})$

For given λ one can choose optimal configuration of SRI

Rel. NS			
loss λ ,	0.01	0.02	0.03
γ , sec ⁻¹	2294	3160	4076
δ , sec ⁻¹	2775	3063	3229
φ , rad	-0.59	-0.44	-0.34
$G_{ m burst}$	1.3	1.36	1.39
$G_{ m puls}(f_1)$	2.35	2.64	2.77
$G_{ m puls}(f_2)$	2.46	2.81	2.99
$G_{ m puls}(f_3)$	2.6	3.06	3.31

I.S. Kondrashov et al (MSU, Moscow) Numerical optimization of AdvLIGO for simultaneous m

Optimization for NS-NS binaries seems to be non-optimal for HF sources of GWs

- Optimization of AdvLIGO SRI sensitivity aiming at several different sources is demonstrated
- Significant improvement in sensitivity for HF pulsars and GW bursts along with small loss in sensitivity to NS is shown

- Optimization for NS-NS binaries seems to be non-optimal for HF sources of GWs
- Optimization of AdvLIGO SRI sensitivity aiming at several different sources is demonstrated
- Significant improvement in sensitivity for HF pulsars and GW bursts along with small loss in sensitivity to NS is shown

- Optimization for NS-NS binaries seems to be non-optimal for HF sources of GWs
- Optimization of AdvLIGO SRI sensitivity aiming at several different sources is demonstrated
- Significant improvement in sensitivity for HF pulsars and GW bursts along with small loss in sensitivity to NS is shown

THANK YOU

FOR YOUR ATTENTION!!!

I.S. Kondrashov et al (MSU, Moscow) Numerical optimization of AdvLIGO for simultaneous m