

Converter Design

Design Review, October 31, 2007 Josh Myers, Richard McCarthy, Paul Schwinberg, Daniel Sigg,

Initial LIGO Limitations

Collocation of analog and digital

- Signals converge at converter nodes
- Limited timing support
 - Clock input only, no synchronization input, Rely on cycle count
- Poor noise performance
 - Sophisticated whitening & dewhitening filters, switchable
- Inadequate throughput
 - VME bus latency limitations, 4 boards max.
- Convoluted data paths
 - Network topology grew over time, Reflective memory limitations
- □ High costs
 - Dependent on a single manufacturer

Requirements

□ Timing

LIGO

- Absolute timing precision relative to UTC: 1µs
- Guaranteed (no counting of cycles forever)
- Latency between converter and processor: < 5µs</p>

Noise

- Converter range: ±10V SE or ±20V DE
- ➤ Converter noise: 100–300nV/√Hz (SE, best effort)
- No electrical connection between converters and processors (fiber)

Others

- No restriction on converter location
- Detection of transmission errors
- Support for diagnostics

State of Technology

$\square \Sigma \Delta - Modulators$

- Typically paired with FIR filters, long delays
- □ SAR (Successive Approximation Register)
 - > Analog Devices AD7634: 18 bit, 570 kHz, SNR 101 dB
- Advanced Segment
 - TI PCM1794A, 24 bit, 200 kHz, SNR 132 dB (A-weighted / f_{Nvguist}~12kHz)
- □ Sweet spot around ½ MHz sampling rate

$$Noise = \frac{FS_{pp}}{2\sqrt{2}} \times \frac{1}{SNR} \times \frac{1}{\sqrt{f_{Nyquist}}}$$

Converter Chart

Comparison

Device	Noise	Range	Ratio	I/O	Price				
Pentek 6102 ADC	15 μV/√Hz	10 Vpp	107 dB/Hz	8/8	8000				
ICS-110B (ΣΔ)	300 nV/√Hz	4 Vpp	133 dB/Hz	32/0	10000				
Pentek 6102 DAC	5 μV/√Hz	10 Vpp	117 dB/Hz	8/8	8000				
FDI DAC	500 nV/√Hz	20 Vpp	143 dB/Hz	0/8	8000				
Commercial:									
PCI66-16AI64SSA	10 μV/√Hz	40 Vpp	123 dB/Hz	32/0	3000				
(16kHz/131kHz)	3.5 μV/√Hz	-o vpp	132 dB/Hz	52/0	3300				
PCI66-16AO16	~1 µV/√Hz	20 Vpp	137 dB/Hz	0/16	3500				
In-House:									
D060535 (ADC)	320nV/√Hz	40 Vpp	153 dB/Hz	16/0	2000				
D060293 (DAC)	~200nV/√Hz	40 Vpp	157 dB/Hz	0/16	2000				

LIGO

ADC Performance

DAC Performance

No Anti-Aliasing Boards No Anti-Image Boards Strongly Reduced Whitening Reduced Dewhitening

LIGO

Compress the analog signal to fit the digital SNR

AS port whitening Coil driver dewhitening Pentek ADC \rightarrow D060535: Win 45 dB! FDI DAC \rightarrow D060293: Win 10-20 dB

LIGO

Integrated Timing

Converter Clock

- VCXO locked to timing receiver
- FPGA clock & converter clock are the same

Synchronization

- > 1 PPS signal from timing receiver
- FPGA counters are synchronized by 1 PPS

Data Transfer

- Full time stamp on both send and receive
- Sender deterministic
- Receiver time stamp checked against allowed time interval

Timing is guaranteed in hardware!

ADC Board (D060535)

- □ 16 channels input
- Analog front-end
 - Fully differential, 40 Vpp
 - ➢ 5th order Cheby, 200kHz, 0.5dB ripple
- □ 524288 Hz sampling rate
- Analog Devices AD7634
- Onboard voltage regulators & reference
- LVDS interface to FPGA

DAC Board (D060293)

- □ 16 channels output
- Analog front-end
 - Fully differential, 40 Vpp
 - ➢ 5th order Cheby, 53kHz, 0.1dB ripple
- □ 524288 Hz sampling rate (64 kHz bandwidth)
- Texas Instruments PCM1794A
- Onboard voltage regulators & reference
- LVDS interface from FPGA

Low-Drop Low-Noise Voltage Regulators

Low Drop Power Regulators

LIGO

Crate & Backplane

- Eurocrate IEEE
 1101.1/1101.10
- □ 6U x 280mm x 6HP
- 2 converters per controller
- Connectors
 - VME type for converters
 - VME64X type for controllers
 - All connections are point-to-point (no bus)
- □ 1 unit = 2 controllers + 4 converters
- □ ±16.5V, ±6.5V & ±24V analog supplies
- $\square \quad 12V \text{ digital supply} \rightarrow 5V \& 3.3V \text{ digital}$

Power & Cooling	Timing fan-out	Converter & Binary IO	Controller	Converter & Binary IO	Converter & Binary IO	Controller	Converter & Binary IO	Converter & Binary IO	Controller	Converter & Binary IO	Converter & Binary IO	Controller	Converter & Binary IO
1	2	3	4	5	6	7	8	9	10	11	12	13	14

1 unit

G070701-00-D

LIGO

Controller Board

□ Xilinx Spartan 3A DSP: XC3SD1800A (2x)

- > 37000 logic cells, 84 DSP slices, 1.5 MBit RAM
- Converter control: clocks and serial interfaces (LVDS)
- Filter Engines
- Time-multiplexed serial links to uplink FPGA
- Xilinx Virtex 4FX: XC4VFX20
 - 2 x gigabit ethernet SFP transceivers & EMACs
 - Timing transceiver & logic
 - AES/EBU interfaces for mixed analog-digital testing
 - Digital IO lines
- Digital power supplies
 - ➤ 12V input to 5V, 3.3V, 2.5V, 1.8V, 1.5V, 1.2V & whatever
 - Multi-phase synchronous

Backplane Links

Backplane

- Filter engine FPGA: 1 to 4
- Uplink FPGA: A and B

Downstream link Upstream link

Downstream clock and status

Upstream half link

Filter Engine (1)

□ Multiple second-order sections:

$$H(z) = g \prod_{k=1}^{N_s} \frac{c_{0k}(1+b_{1k}z^{-1}+b_{1k}z^{-2})}{1-a_{1k}z^{-1}-a_{2k}z^{-2}}$$

□ Formula for a single SOS:

$$y_i = c_0(x_i + b_1 x_{i-1} + b_2 x_{i-2}) + a_1 y_{i-1} + a_2 y_{i-2}$$

4 multiplications with coefficients, old input and old output values
4 accumulations

 \succ c₀ is a shift operation

G070701-00-D

Filter Engine (2)

LIGO

ADC & DAC Performance

□ Josh Myers G070604-B

Development Status

□ ADC board

- Prototype and testing done
- Ready for production with small revisions
- DAC board
 - Prototype in hand
 - Testing in progress
- Controller board
 - Schematics done
 - Filter engine has been simulated and tested
 - Simulations for uplink code are underway
- □ Crate
 - Backplane defined
 - Thermal loading under investigation
 - Power supplies available as prototype

Development Plans

□ Finished testing of DAC board

- > End of 2007, \$7000 if another revision is required
- Build and test controller board
 - Manufacturing by Dec 2007, testing by March 2008
 - Simulation models by Jan 2008
 - \$14000 (two revisions)
- □ Crate
 - Build backplane by Jan 2008, \$4000
 - Assemble prototype crate by Feb 2008, \$5000
- □ Integration
 - Testing with computer back-end by mid 2008, \$2000
 - Small production run for testing at LASTI, 40m, etc., \$56000
- Test stand for verification and automatic testing
 - Requires outside help, \$13000

Conclusions

- □ Highest performance ADC and DAC boards
- □ Fully integrated timing and synchronization
- Computer doesn't see oversampling
 - Works at 16384Hz and 2048Hz
 - Compute load at these frequencies shouldn't be a problem
- Design owned by us
 - No dependency on single board manufacturer
 - Person power for in-house development & testing required
- □ Clear path for future extensions and upgrades
- Good reasons for adopting this system as the new baseline