

1

ADVANCED LIGO SUSPENSIONS LSC-Virgo Meeting, Hannover 22nd - 25th October 2007

Suspensions/Isolation Working Group Parallel Sessions

Welding <u>Experiences</u>: Output modecleaner and

Recycling Mirror designs

Calum I. Torrie on behalf of ALIGO US Suspension teams

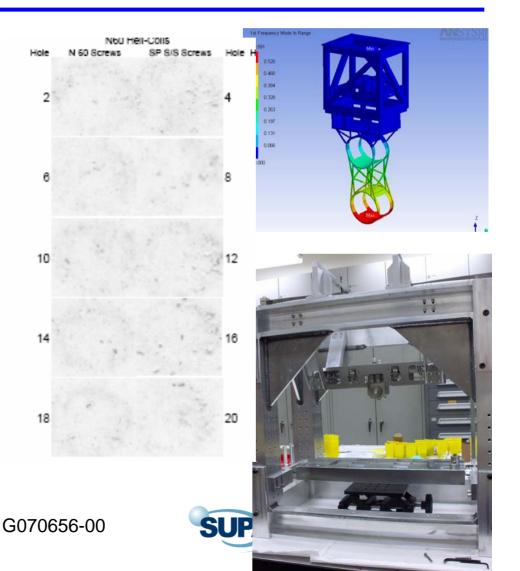
http://lhocds.ligo-wa.caltech.edu:8000/advligo/UHVWelding & LIGO-T070190

Welding in LIGO

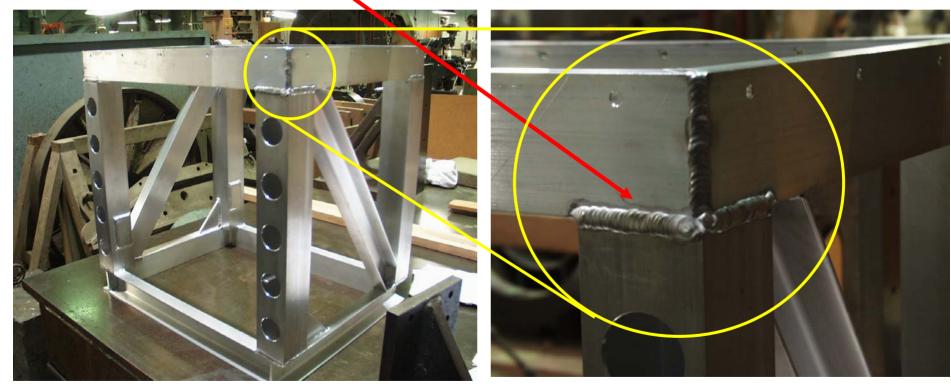
• Examples

advancedligo

- LIGO I has history of welding stainless and Alum
 - e.g. LOS structure
- HAM-SAS
 - aluminum (5083) welding practice & experience: LIGO-T060109
- ALIGO ÜK (RAL)
- Why?
 - To meet LIGO Vacuum requirements
 - e.g. trapped contaminants could leak out!
 - Stiffness Not strength!



- Yes in principle could use bolted structures to achieve stiffness, but
 - History of problems!
 - Access
 - Ease of assembly
 - Bolts
 - Galling + Debris
 - Ref LIGO-T040111
 by L. Jones & C.
 Torrie



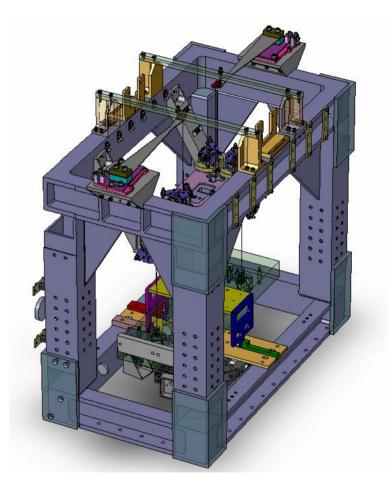
Ľígo

advancedligo

LASTI: Quad Controls prototype

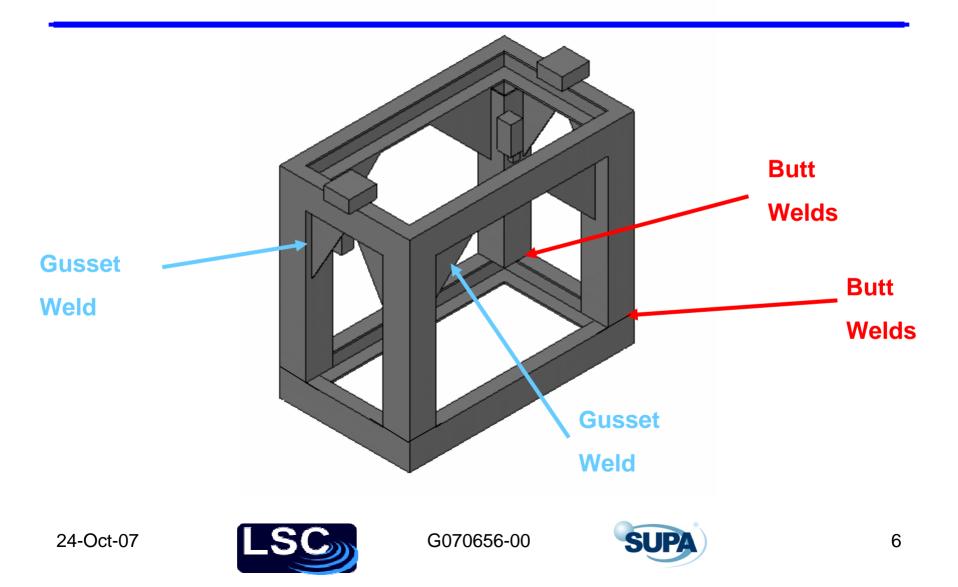
LASTI: Quad Controls prototype – samples, discussions with welder + visual inspection

G070656-00


Ľígo

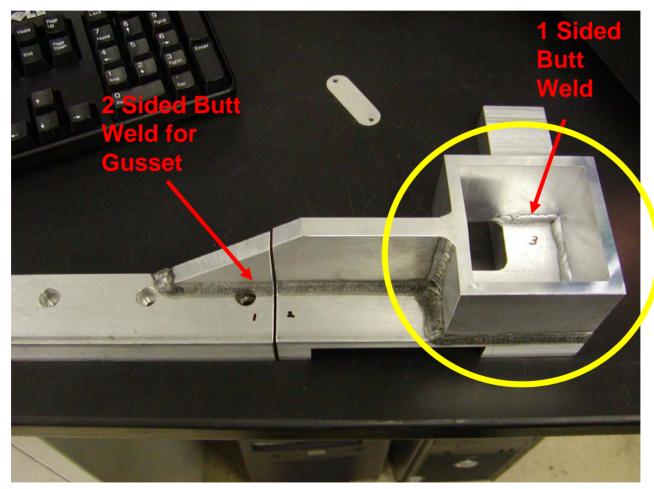
24-Oct-07

- Why Alum?
 - Design history, had existing design from Quad structure
 - Mass Budget
 - Easy to mount nonsuspended components during "metal" assembly
 - However wanted to better understand welds!



G070656-00

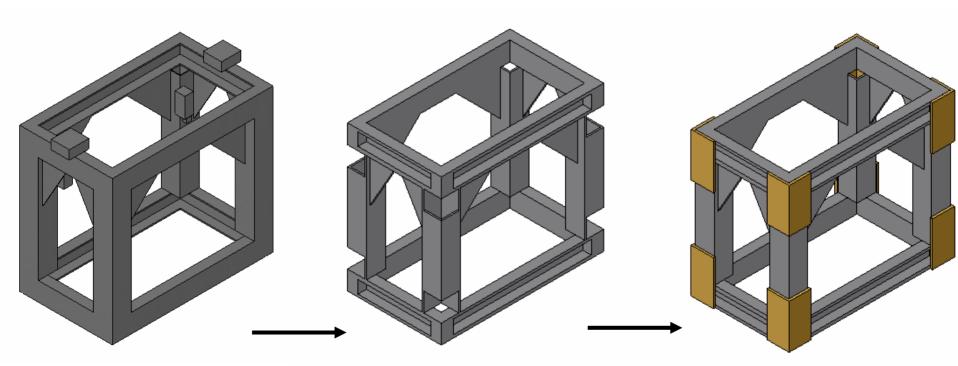
Ľígo


advancedling OMC – Original concept

Lígo

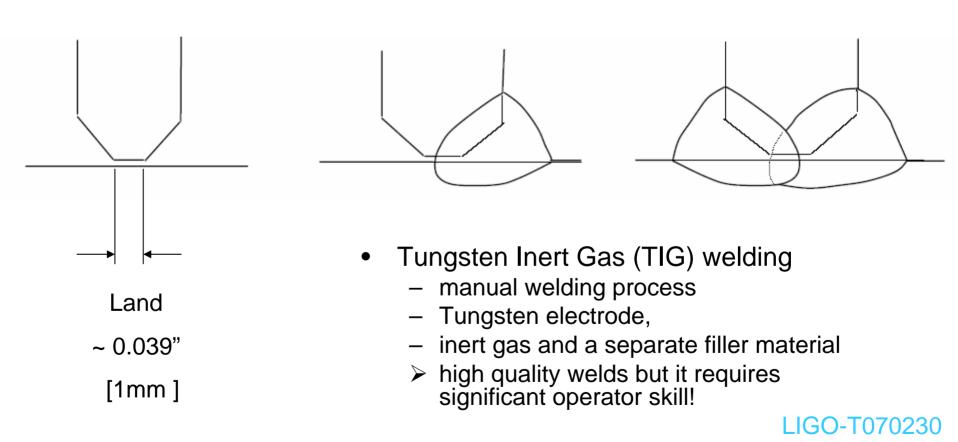
advancedligo Caltech 1st Alum weld sample for OMC suspension

Inside Caltech 1st Alum weld sample

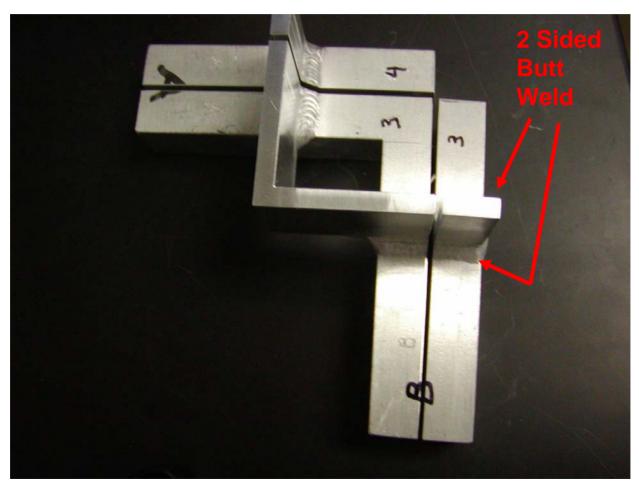

24-Oct-07

OMC Structure #1

Structure design and analysis: LIGO-T070205

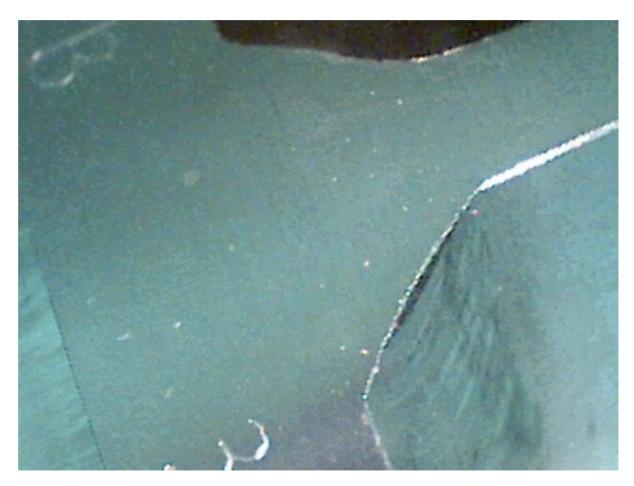


Welds & Welding



advancedligo Caltech 2nd Alum weld sample for OMC suspension

G070656-00

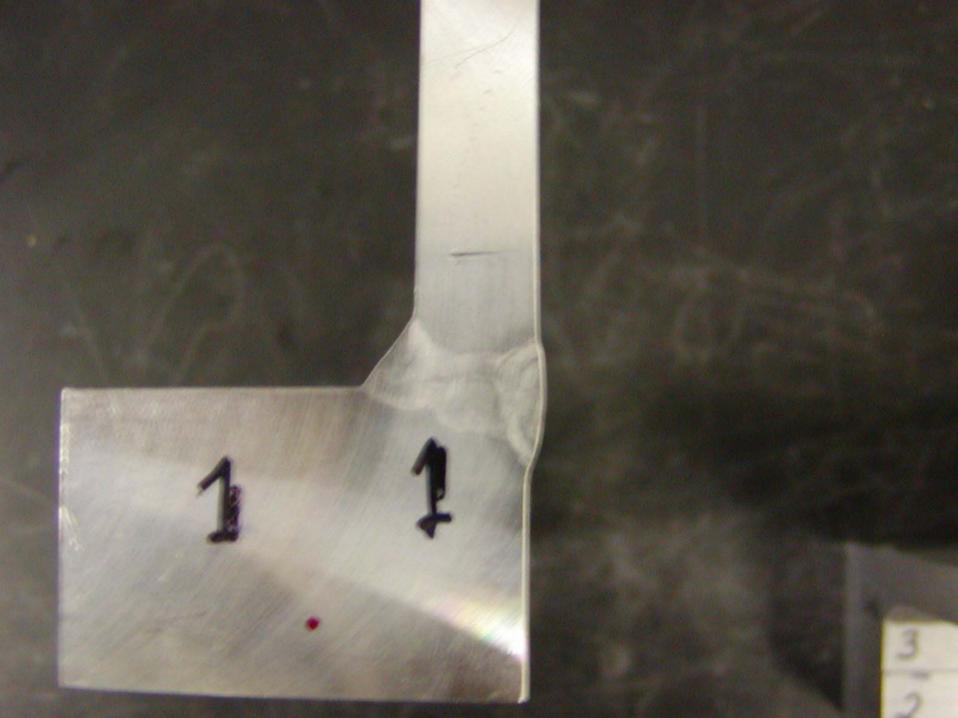


Lígo

advancedligo

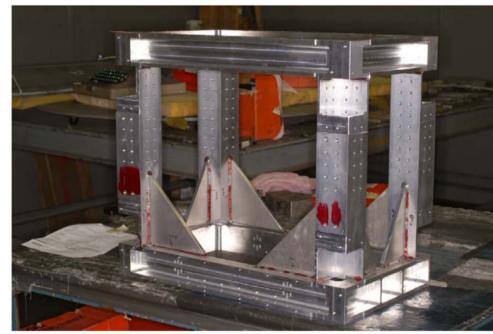
Inside Caltech 2nd sample at B3

- Sample cut polished, photographed and viewed under 10x magnification
- Visual inspection
 - Good!
- Further tests
 - refer to later slides

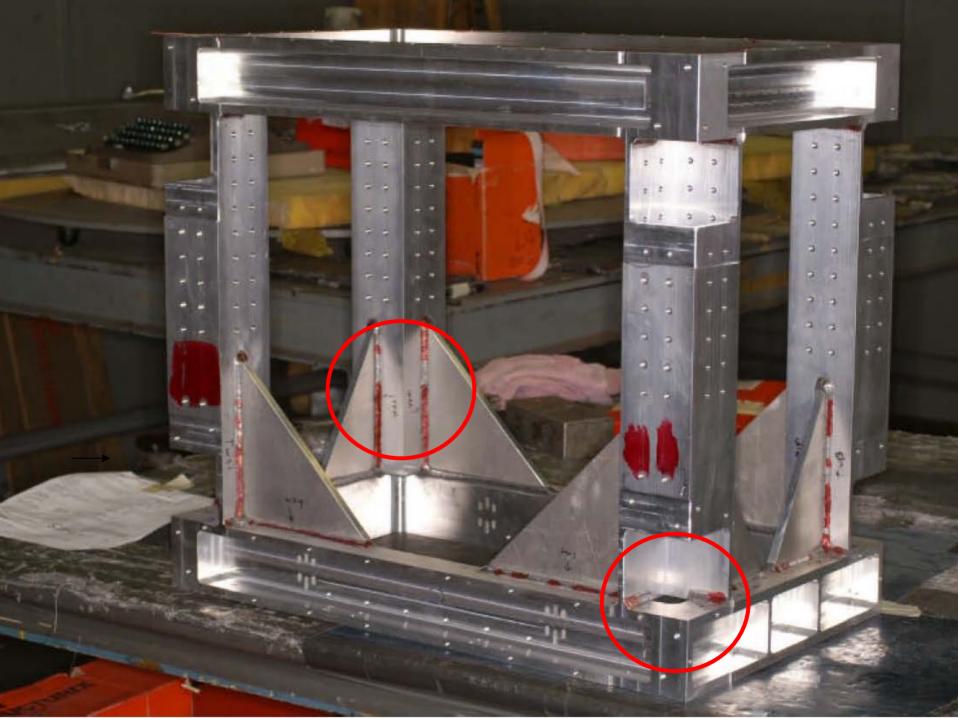


G070656-00

LIGO



X Rays


- X Ray tests of butt welds carried out with local contractors
 - Base & leg
 - Gusset
- Each weldment radiographed using two different exposures to ensure optimal inspectability

KASHAR TECHNICAL SERVICES, INC.

5117 S.CORNING AVENUE

LOS ANGELES, CA 90056

gt	General	Testing	6	Inspection
----	---------	---------	---	------------

REPORT - WE

SHEET 2

130 SPAcing

DES. SPARINI

-085 SPACE SALCING SPAcing

125 SPACING

SPACING SPACING

SPACING

SPACING SPACINE SPACING SPACING SPACINE 5 Pacing SPACING

SPACING

125

SPAcino

Spacing

10-3-07

.100 SPACING

SPECING & Pacing SPARING SPAN-5 . 125, SPALIN SPACING 125 SPACING SPARING 190 SPACing SPACE spacing 110, SPACING SPACHE SPACING SPACING 150 SPACING

Remarks

UR

		-									2/200			_
		CUSTOMER: .	KA	SHAR T	ECHNIC	CAL			. D	ATE:	10-02	2-07		
		PART NO .:	WELDED	FRAME	WELDE	ED SEC	TIONE	D PCS.	SI	N:				
P.O. No.:	KTS JOB 2594	Description	ACC	REJ	RP	LP	GH	CR	NF		FMMD	10	1.00	1.0
tion Data:	10/3/2007 1:51:1	S/N- 1								TIMED	CIMINED!	1P	UC	13
tion bate.	10/3/2007 1.51.	W1		×	×		X	-	×					+
	E7000	W2		X	×		×		-				-	+-
ation No.:	57280	W3		×	×		×		×				-	+
		W4		X	×		X							+
Tag No.:	57281	W5		X	×								-	+-
		W6		×	×				×					+-
ROCESSIN	IG	W7		×	×				X					+
		W8		×	×				×	-				+
		W9		××	X					-				+
ECES		W10		×	×		×		×				-	+
		W11		X	×				-					+
ONED PIECE	S	W12		×	×				×					+
		W13		×	×								-	+-
Date		W14		X	×				-	-				+
Comple		W15		×	×				X	-			-	+
10/3/20	007 Å. N	W16		×	×				×					+-
		W17		X	×		-	-	×	-				+
		W18		X	×	-			×				-	+
		W19		X	X			-	-	-				+-
		W20		X	×		×		X	-				+
		W21		X.	-		X				-			+
219A		W22		×	×		×			-				+-
		W23		X	×				X					+
		W24		X	×		X		-				-	t
		W2.5		×			X			-	-			+-
		W26		X	×									+-
		W27		X	×		×							+
		W28		X	×		×.			-				+-
		W2.9		×	X		X		X					+
		W30		×	×					-				-
		W31		×	X		×							+-
		W32		×	X			-		-			-	+
		W33	×		V		-			-			-	+
		W34		×	X								-	1
		W35		×	×		X						1	1-
		W36		×	×		×							+
		W37		X	×			-	X				1	1
		W38		×			X						1	T
		W30	1	V	X		X	1			-	_	-	+

Fax No.:

Submitted To:

CERTIFICATE OF PI

Certifica

Certific

QTY RECEIVED: 6 PART NO .: WELDED FRAME/WELDED SECTIONED PI MATERIAL: 6061 T6 ALUMINUM DESCRIPTION: 1 PC WELDED FRAME, 5 PC WELDED SECTION

	Qty	Qty	Qty	Date	
Process	Inspected	Accepted	Rejected	Completed	Inspe
Radiography	6	1	5	10/3/2007	A.

WX24 Attice Meza, Level II

X-RAY INSPECT ALL WELDS PER ASTM E1742-06* MIL-STD-2 CLASS A

1

Inspectors are certified IAW SNT-TC-IA / NAS 410/Level II (as required). Parts

have been processed IAW applicable specifications as indicated. Our Liability per part is limited to a maximum of 5 times the processing charge per part

TOTAL ACCEPTED:

TOTAL REJECTED:

140 XX 5 LEGEND: RP=Round Porosity LP=Line Porosity GH=Gas Hole CR=Crack NF=Non-Fusion FMLD=Foreign Material Less Dens FMMD=Foreign Material More Dense IP=Incomplete Penetration UC=Undercut SUR=Surface Respectful NOTES:

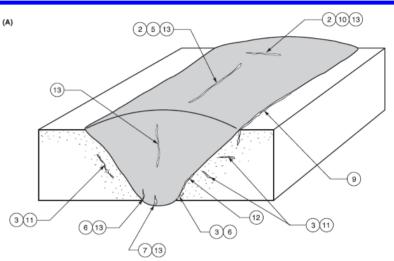
æ

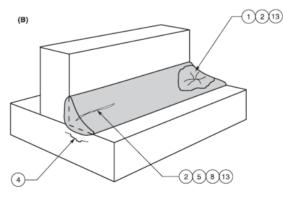
LEVEL _ II

DATE.

DATE

Nadcap - Accredited NDT / ETCH

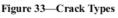

Denise Wh **Quality Ad**


INSPECTOR

SOURCE INSPECTION BY

advanced Welding terms in the X-ray **Inspection Report**

- Porosity
 - Formed by gas entrapment during solidification
 - LIGO seeks low porosity!
- Crack
 - Fracture type discontinuity


LEGEND:

- CRATER CRACK
- FACE CRACK
 - HEAT-AFFECTED-ZONE CRACK

ĽÍGO

- LAMELLAR TEAR
- LONGITUDINAL CRACK
- ROOT CRACK
- ROOT SURFACE CRACK
- THROAT CRACK
- TOE CRACK TRANSVERSE CRACK
- UNDERBEAD CRACK
- WELD INTERFACE CRACK
- WELD METAL CRACK 13

KASHAR TECHNICAL SERVICES, INC.

5117 S.CORNING AVENUE

LOS ANGELES, CA 90056

gt	General	Testing	6	Inspection
----	---------	---------	---	------------

REPORT - WE

SHEET 2

130 SPAcing

DES. SPARINI

-085 SPACE SALCING SPAcing

125 SPACING

SPACING SPACING

SPACING

SPACING SPACINE SPACING SPACING SPACINE 5 Pacing SPACING

SPACING

125

SPAcino

Spacing

10-3-07

.100 SPACING

SPECING & Pacing SPARING SPAN-5 . 125, SPALIN SPACING 125 SPACING SPARING 190 SPACing SPACE spacing 110, SPACING SPACHE SPACING SPACING 150 SPACING

Remarks

UR

		-									2/200			_
		CUSTOMER: .	KA	SHAR T	ECHNIC	CAL			. D	ATE:	10-02	2-07		
		PART NO .:	WELDED	FRAME	WELDE	ED SEC	TIONE	D PCS.	SI	N:				
P.O. No.:	KTS JOB 2594	Description	ACC	REJ	RP	LP	GH	CR	NF		FMMD	10	1.00	1.0
tion Data:	10/3/2007 1:51:1	S/N- 1								TIMED	CIMINED!	1P	UC	13
tion bate.	10/3/2007 1.51.	W1		×	×		X	-	×					+
	E7000	W2		X	×		×		-				-	+-
ation No.:	57280	W3		×	×		×		×				-	+
		W4		X	×		X							+
Tag No.:	57281	W5		X	×								-	+-
		W6		×	×				×	-				+-
ROCESSIN	IG	W7		×	×				X					+
		W8		×	×				×	-				+
		W9		××	X					-				+
ECES		W10		×	×		×		×				-	+
		W11		X	×				-					+
ONED PIECE	S	W12		×	×				×					+
		W13		×	×								-	+-
Date		W14		X	×				-	-				+
Comple		W15		×	×				X	-			-	+
10/3/20	007 Å. N	W16		×	×		-		×					+-
		W17		X	×		-	-	×	-				+
		W18		X	×	-			×				-	+
		W19		X	X			-	-	-				+-
		W20		X	×		×		X	-				+
		W21		X.	-		X				-			+
219A		W22		×	×		×			-				+-
		W23		X	×				X					+
		W24		X	×		X		-				-	t
		W2.5		×			X			-	-			+-
		W26		X	×									+-
		W27		X	×		×							+
		W28		X	×		X			-				+-
		W2.9		×	X		X		X					+
		W30		×	×					-				-
		W31		×	X		×		-					+-
		W32		×	X			-		-			-	+
		W33	×		V		-			-			-	+
		W34		×	X								-	1
		W35		×	×		X						1	1-
		W36		×	×		×							1
		W37		X	×			-	X				1	1
		W38		×			X						1	T
		W30	1	V	X		X	1			-	_	-	+

Fax No.:

Submitted To:

CERTIFICATE OF PI

Certifica

Certific

QTY RECEIVED: 6 PART NO .: WELDED FRAME/WELDED SECTIONED PI MATERIAL: 6061 T6 ALUMINUM DESCRIPTION: 1 PC WELDED FRAME, 5 PC WELDED SECTION

	Qty	Qty	Qty	Date	
Process	Inspected	Accepted	Rejected	Completed	Inspe
Radiography	6	1	5	10/3/2007	A.

WX24 Attice Meza, Level II

X-RAY INSPECT ALL WELDS PER ASTM E1742-06* MIL-STD-2 CLASS A

1

Inspectors are certified IAW SNT-TC-IA / NAS 410/Level II (as required). Parts

have been processed IAW applicable specifications as indicated. Our Liability per part is limited to a maximum of 5 times the processing charge per part

TOTAL ACCEPTED:

TOTAL REJECTED:

140 XX 5 LEGEND: RP=Round Porosity LP=Line Porosity GH=Gas Hole CR=Crack NF=Non-Fusion FMLD=Foreign Material Less Dens FMMD=Foreign Material More Dense IP=Incomplete Penetration UC=Undercut SUR=Surface Respectful NOTES:

æ

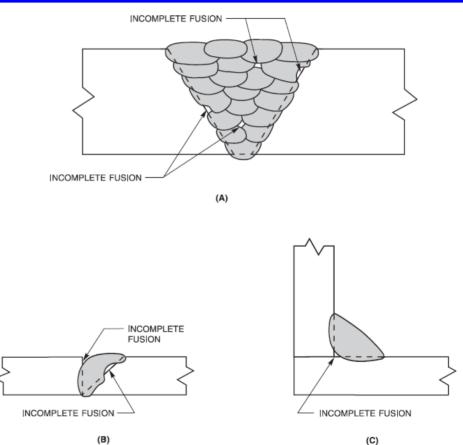
LEVEL _ II

DATE.

DATE

Nadcap - Accredited NDT / ETCH

Denise Wh **Quality Ad**


INSPECTOR


SOURCE INSPECTION BY

LIGO

advanced Welding terms in the X-ray Inspection Report

- Non-Fusion (NF)
 - a weld discontinuity in which fusion did not occur between weld metal and fusion faces or adjoining weld beads

OMC Test Results

- On the OMC structure, only <u>3 welds</u> were found to be acceptable per MIL-STD-2219 Class A
- <u>Most</u> of the OMC weldments would <u>not</u> meet <u>Class B</u> because of very large <u>porosity</u> and / or excessive closely spaced porosity.
- <u>20 of the 56 OMC weldments</u> would <u>not</u> meet the requirements for <u>Class C</u> because of their <u>lack of fusion</u>.

X Rays

• Met to discuss X Rays

– "How many of the 20 welds that show no fusion are buried inside and how many are through to the surface?"

≻Inconclusive!

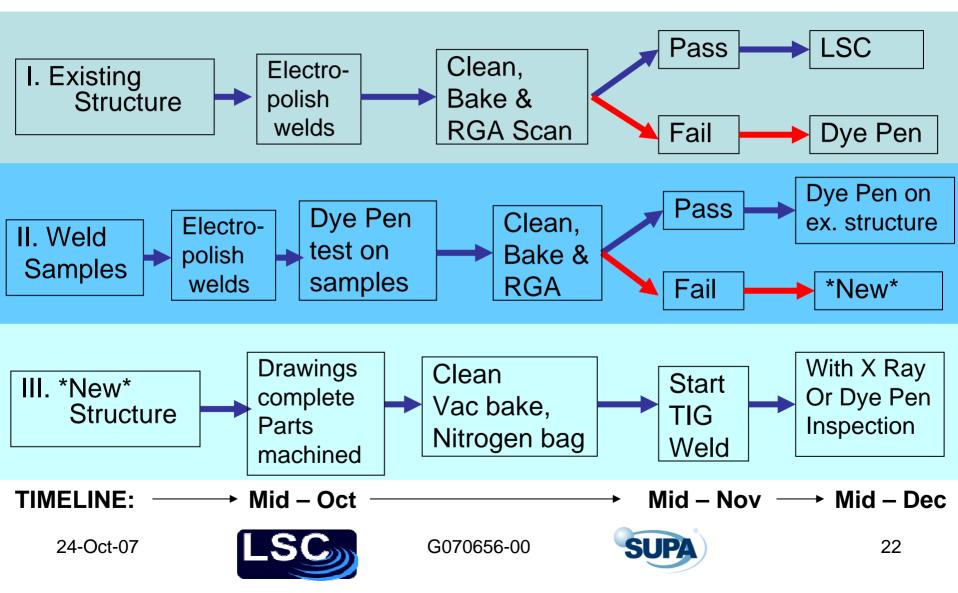
Maybe this is good news!

>So came up with a 3 point plan!

Bob

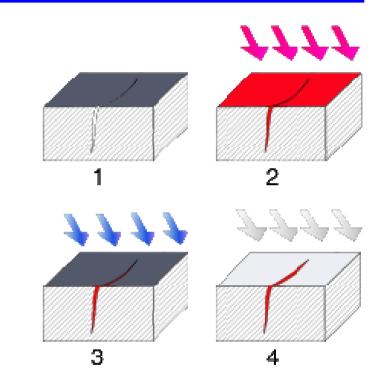
Add image from

Still waiting for results on samples!



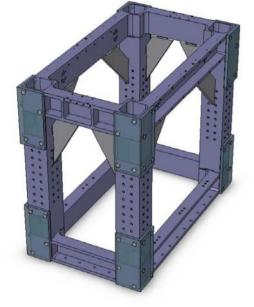
Additional samples?

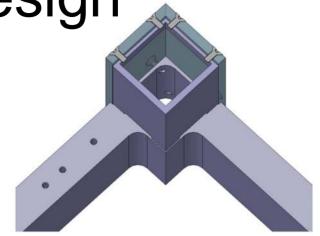
Plan - Chart

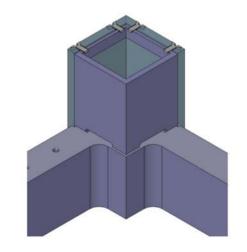


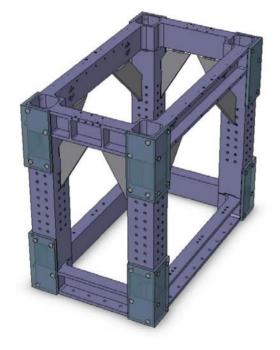
Proposed Dye Penetrant Test

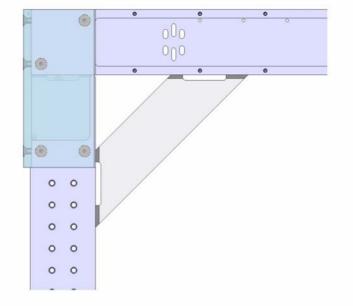
- Section of material with a surfacebreaking crack that visible to the naked eye
- Penetrant applied to the surface
- Excess penetrant removed
- Developer applied, rendering the crack visible
- LIGO Compatible test wrt ability to make structure clean afterwards?
 - Dye Pen
 - Water soluble
- Developer
 - Non-aqueous wet developer
 - Isopropyl Alcohol

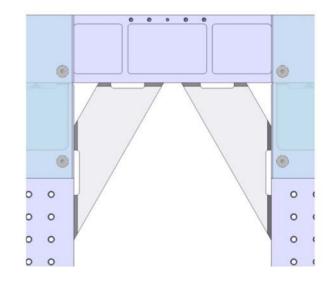








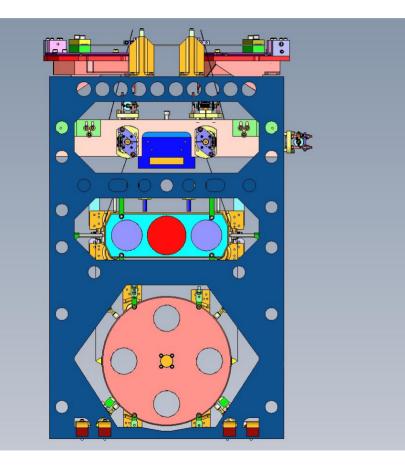

24-Oct-07

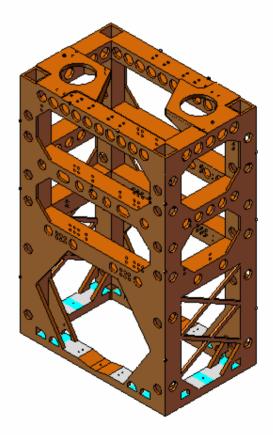

LIGO-D060296

advancedligo

New OMC Design

24-Oct-07

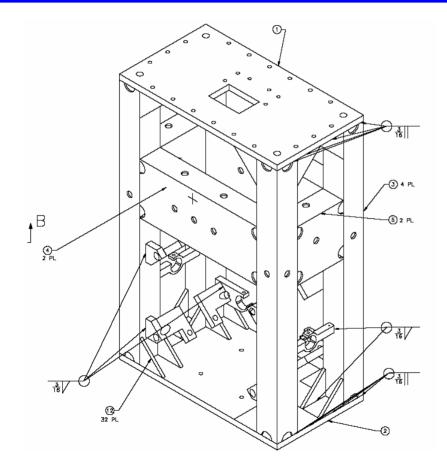


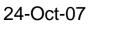


advancedligo

RM Suspension + Structure

LIGO-T070169 and LIGO-T070238

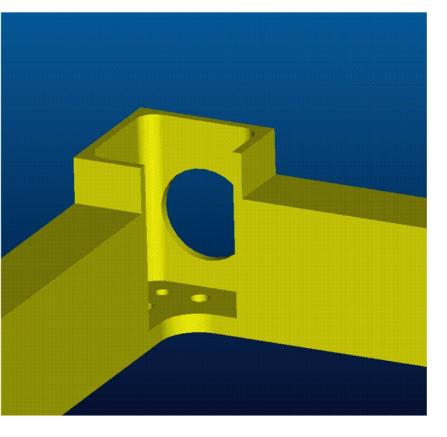




RM Tests & History

- 304 SSTL Weld Sample
- LIGO I LOS Structure

Conclusions / Outcome


- Idea is that all of this work will lead to ability to better classify welds for Advanced LIGO e.g. class C low porosity no cracks!
- To achieve this probably also consider additional weld samples e.g.
 - To match new OMC design
 - RAL design see picture & previous talk
 - RM design

advancedligo

