

Enhanced and Advanced LIGO TCS

Aidan Brooks - Caltech

Hannover LSC-VIRGO Meeting, October 2007

LIGO-G070634-00-Z

Initial LIGO TCS

Initial LIGO

LIGO The Essence of the Problem, and of its Solution

Optical power absorbed by the ITM creates a thermal lens in the (marginally stable) recycling cavity, distorting the **RF sideband** fields there.

Initial LIGO

LIGO CO₂ Laser Projector Thermal Compensator

• Imaging target onto the TM limits the effect of diffraction spreading

Initial LIGO

Initial LIGO

TCS Noise Issues

Initial LIGO

Enhanced LIGO

RIN of TCS-Y CO₂ Laser

LIGO

TCS Noise Coupling Mechanisms

- Thermoelastic (TE)- fluctuations in locally deposited heat cause fluctuations in local thermal expansion
- Thermorefractive (TR)- fluctuations in locally deposited heat cause fluctuations in local refractive index
- Flexure (F)- fluctuations in locally deposited heat cause fluctuations in *global* shape of optic

$$\langle \triangle z \rangle = \frac{P}{2\pi f C \rho} \left(\frac{1}{\pi w^2} \left[(1+\eta)\alpha \left(1 - \frac{\pi}{2\mathcal{F}}(n-1) \right) - \frac{\pi}{2\mathcal{F}} \frac{dn}{dT} \right] + \frac{6\alpha}{h^2} C_{\text{num}}^{\text{cen}} \right) \text{RIN}$$

Initial LIGO

ノ川川

Enhanced LIGO TCS

Upgrading from Initial LIGO

Enhanced LIGO

Summary of upgrades

• Increase in TCS CO₂ laser power

- » 30W input into cavity vs 7W input
- » 35W Synrad lasers

Intensity stabilization of laser **

- » PD AOM Servo loop
- » Better electronics

More efficient annulus **

- » Previous: mask ≈ 30% efficient annulus
- » Now: axicon ≈ 99% efficient annulus
- Chillers
 - » Quieter and more remote locations
- "Optical lever wavefront sensor" ? **
 - » Thermo-elastic surface deformation measurement using OL

Summary of Upgrades Intensity Stabilization

Enhanced LIGO

Schematic of CO2 Intensity Stabilization Servo

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Enhanced LIGO

LIGO Laboratory

13

Intensity Noise Coupled into Displacement Noise

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Enhanced LIGO

Summary of Upgrades More efficient annulus

Enhanced LIGO

The Axicon: 99.99% Efficient Annulus Production

<u>Pros</u>

LIGO

- Nearly 100% efficient annulus production
- Easy to adjust major and minor radii of annulus <u>Cons</u>
- Very sensitive to mis-alignment

The Axicon: Alignment issues

Mis-aligned

Aligned (mostly)

Mount for the axicon

Enhanced LIGO

Summary of Upgrades Sensing with Optical Levers?

Enhanced LIGO

What about the Optical Levers?

• Used to measure PITCH and YAW of the optics

Enhanced LIGO

Optical Lever Wavefront Sensor

Advanced LIGO TCS

Sensing and Control

Advanced LIGO

Summary of AdvLIGO TCS

• Actuators - greater arsenal

- » Ring heaters
- » CO2 lasers
- » Compensation plates
- Sensors for each optic
 - » Hartmann Wavefront Sensor
- Issues with design
 - » Heating of ITMs by compensation plates
 - » Thermal defocussing of relay optics

LIGO Advanced LIGO TCS schematic

Thermal defocus of WFS input optics

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Advanced LIGO

Sensing and Control Servo

Sensing and Control Servo

Actuators Compensation Plate

Advanced LIGO

Compensation Plate (CP)

- Not acting on reflective optic
- Flexure noise is no longer an issue

Heating of ITM by CP

- CP gets hot
- Radiates onto ITM
- Induces positive thermal lens in ITM
- As much as 40% additional thermal lensing

ITM with barrel coating? Heating from CP

Induced ITM thermal profile

Sensors Hartmann Wavefront Sensor

Advanced LIGO

What is a Hartmann Wavefront Sensor?

What is a Hartmann Wavefront Sensor?

Advanced LIGO

HWS + Fabry-Perot cavity

Advanced LIGO

Advanced LIGO

Measured HWS profile. Cavity mode ON for 300s

Hartmann Sensor Beam Size Prediction

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Summary

- TCS worked well for Initial LIGO
- Demands on TCS increase for eLIGO
 - » Current upgrades address these demands
 - Axicon
 - Intensity stabilization
 - Increased power
- aLIGO TCS R&D is underway
 - » Primary design pretty mature
 - » Secondary design problems are being addressed
 - » HWS shown to be very effective

Supplementary Slides

Projector Heating Patterns

Annulus Mask

Central Heat Mask

•Intensity variations across the images due to small laser spot size

•Projection optics work well

TCS Injected Noise Spectrum

LIGO

Enhanced LIGO TCS Projector

Enhanced LIGO

LIGO

Heating Both ITMs in a Power-Recycled Michelson

120 mW

LIGO

150 mW

180 mW

Carrier

Initial LIGO

LIGO Laboratory

41

Flexure Noise- A Simple Model

A skinny LIGO mirror with 'annular' heating

far from center

LIGO Laboratory

42

Our Need for Power

- Initial LIGO runs at ~7W input power
- Enhanced LIGO will run at ~30W input power
 - » 4-5x more absorbed power
 - » Naively, ~4-5x more TCS power needed
 - » Practically, more power even than this may be needed since LIGO point design is meant to make TCS unnecessary at 6W
- Our current projectors are not adequate

Thermal defocus

Thermal defocus

Is image relay without contamination feasible?

- Single material design?
 - » <u>Zerodur</u>
 - » ULE glass
- Heat shield for uniform distribution of temperature changes
- Measurement/actuation of displacement between optical tables
 - » Brian Lantz Stanford

