Status of Initial LIGO

Gregory Harry LIGO Laboratory Massachusetts Institute of Technology

August 11, 2007 Institute for Gravitation and the Cosmos Inaugural Meeting – Penn State University

LIGO-G070590-00-R

- Description of LIGO Detectors
- Status of LIGO's S5 Science Run
 - Sensitivity
 - Duty Cycle
- Data Analysis
 - Results from finished searches
 - Ongoing investigations
- Conclusions

LIGO Observatories

LIGO Hanford Observatory near Richland Washington 4 km interferometer 2 km interferometer

LIGO Livingston Observatory ~40 miles east of Baton Rouge 4 km interferometer

- 4 km-long arms
- Subsystems designed for low noise
- Feedback allows for sensitivity -- h ~ 10⁻²¹

- Test mass hangs like pendulum
- Approximates freely falling bodies

Improvement in Sensitivity

6

S5 Noise Budget

LIGO Fifth LIGO Science Run

- Dates
 - » Start: Nov '05
 - » Stop: ~Oct '07
 - Duty cycle
 - » H1: 76%
 - » L1:64%
 - » H2: 78%
 - » **3-coinc**.: 51%
 - » HL-coinc.: 59%
- Virgo joined in May 2007

	Modeled	Unmodeled
Transient	Compact Binary Coalescences - Neutron Stars - Black Holes	Bursts - Supernova - GRBs - etc
Continuous	Periodic - Eccentric Pulsars - Accreting Systems - LMXBs	Stochastic Background - Big Bang - Incoherent Sum

- Compact Binary Coalescences (S3/S4):
 - » Neutron star binary (1-3 M_{\odot}): rate \leq 1.2/y/L₁₀ (90% CL, Milky Way ~ 1.6 L₁₀)
 - » Black hole binary (3-40/80 M_{\odot}): rate ≤ 0.5/y/L₁₀ (90% CL)
 - » Primordial black hole binary (0.35-1 M_{\odot}): rate ≤ 4.9/y/L₁₀ (90% CL)
 - » arXiv:0704.3368v2, submitted to PRD
- Periodic (S3/S4):
 - » Limits on 78 pulsars
 - » Upper limits on h as low as 3.2×10⁻²⁵ (95% CL) and as low as 1×10⁻⁶ on the eccentricity
 - » Physical Review Letters 94 (2005) 181103
- Stochastic background (S4):
 - » Energy limit as fraction of closure density: $Ω_{GW} ≤ 6.5 \times 10^{-5}$ (90% CL) for a frequency independent GW spectrum between 51 Hz and 150 Hz
 - » The Astrophysical Journal 659 (2007) 918.
- Burst (S4):
 - » Sensitivity: $h_{rss} \sim 10^{-21} 10^{-20}/\sqrt{Hz}$, rate ≤ 0.15/day (90% CL) corresponds to ~ 8×10⁻⁸ M_☉ at a distance of 10 kpc (150Hz/Q=9 sine gaussian)
 - » SGR1806-20 hyperflare on 12/27/04: $h_{rss} ≤ 4.5 \times 10^{-22} / \sqrt{Hz}$ and <4.3×10⁻⁸ M_☉
 - » ArXiv:0704.093, submitted to Classical and Quantum Gravity

Burst Investigations

- All-sky, all-times search for bursts on early S5 (Nov 2005-Apr 2006)
 - Extend S2-S4 methods

LIGO

- Analyzed 54 days of triple coincidence data
- LIGO-Virgo joint analysis still being planned
- Fully coherent network searches with S5
- Bursts from Cosmic Strings using S4 and S5 data
- LIGO-GEO all-sky burst search
 - Search performed in 600-2000 Hz bandwidth

Upper Limits on Rate and Strain for Example Burst Expected Astrophysical Reach

- Supernova
 - 11 M_☉ 0.4 kpc
 - 25 M_☉ 16 kpc
- Black Hole Merger (3% mass into gravitational waves)
 - 10 M_{\odot} pair 3 Mpc
 - 50 M_{\odot} pair 100 Mpc

Astrophysically Triggered Searches

- Search for short-duration gravitational-wave bursts (GWBs) coincident with GRBs using S2, S3 and S4 data from LIGO
 - No detections

- Planned for S5 with more sophisticated coherent network methods
- SGR1806-20 hyperflare QPO search
 - No detection
 - Limits: comparable to the emitted energy in the electromagnetic spectrum

RHESSI X-Ray Light Curve of SGR1806-20 Hyperflare

- Search for gravitational-waves coincident with GRB070201
 - No plausible gravitational waves from compact binary inspiral or short transients were identified that could be related to GRB070201 and inconsistent with the noise
 - It is unlikely that a compact binary progenitor in M31 was responsible for GRB070201

S5 Periodic Investigations

- Known pulsars (radio & x-ray) (e.g., Crab pulsar)
 - Position & frequency evolution known (including derivatives, timing noise, glitches, orbit).
- Unknown neutron stars

LIGO

- Nothing known, search over sky position, frequency & its derivatives.
- Accreting neutron stars & LMXBs (e.g., Sco-X1)
 - Position known; some need search over freq. & orbit.
- Targeted sky position: galactic center, globular clusters, isolated non-pulsing neutron stars (e.g., Cas A)
 - Search over frequency & derivatives.

Upper Limits on Gravitational Waves from Targeted Pulsars

Einstein@home

LSC

Like SETI@home, but for LIGO/GEO matched-filtered search for GWs from rotating compact stars.

LIGO

- Support for Windows, Mac OSX, and Linux clients
- LIGO clusters have thousands of CPUs.
- Einstein@home has
 many times more
 computing power at
 low cost.

Einstein@home Screensaver

Compact Body Coalescence Search

Compact Body Inspirals

- Neutron Stars
- Black Holes

- LIGO Virgo Inspiral Analysis
 - Being planned, using data since Spring 2007
- Black Hole Ringdowns
 - $6 M_{\odot} < M < 500 M_{\odot}$
 - 0 < L < 0.996
 - S4 analysis complete
 - S5 in progress
- Spinning Compact Body Inspirals
 - Spin-Orbit Coupling
 - S5 in progress

Binary Neutron Star Inspiral Horizon Distance during S5

LIGO Stochastic Background Search

- Radiometer
 - Point sources with broadband, flat spectrum
 - S4 complete, no detection
 - S5 in progress
- LIGO Virgo search
 - In progress for S5 since Spring 2007
- LIGO Allegro Bar Detector
 - S4 data Ω_{GW} < 1.02 @ 915 Hz
 - Phys Rev D 76 (2007) 022001
- LIGO Hanford 4 km and 2 km
 - Proposal for analysis of S5 data
 - Need tricks to remove common noise

Results of S4 radiometer search

Conclusions

- LIGO has reached (and slightly exceeded) its design specification for sensitivity
- S5 science run in progress and nearing completion
- No detections of gravitational waves so far
 - Most sensitive S5 data has not been analyzed completely yet
- Setting astrophysically interesting upper limits on many sources of gravitational waves
- See Pradeep Sarin's talk for LIGO's future plans

