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LHO 4km - (2007.03.18) S5: Binary Inspiral Range (1.4/1.4 Msun) = 16.3 Mpc

LLO 4km - (2006.06.04) S5: Binary Inspiral Range (1.4/1.4 Msun) = 15.1 Mpc

LHO 2km - (2007.05.14) S5: Binary Inspiral Range (1.4/1.4 Msun) = 7.8 Mpc

LIGO I SRD Goal, 4km

Strain Sensitivity of the LIGO Interferometers
S5 Performance - May 2007       LIGO-G070366-00-E

The Problem

• Noise between 40 Hz and 150 Hz has slope near 5/2
• Level is high, but not impossibly high, to be suspension thermal noise
• Very similar level in all three interferometers 

Baseline 40–100 Hz, May 2007
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H1: UGF = 199 Hz 13.6 Mpc, Predicted: 16.4, Aug 12 2006 01:00:00 UTC
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The Problem
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Noise Model:                               φwire = 1 × 10
−3



Mechanical Loss
Music Wire clamped in Pin Vise

Structural loss ≈ half of assumed design value.φstr = 1.70 × 10
−4
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Mechanical Loss
Music Wire in Virgo Clamps

Structural loss << Assumed design value.
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φstr = 5.9× 10−5
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Mechanical Loss
Tensioned Music Wire in Virgo Clamps

Tensioned Wire has viscous 
loss arising at high frequency.



• Loss Measured in time by exciting the violin modes 
and observing the ringdown

» Measurements were sometimes in agreement with wire loss, but 
usually higher and not stable in time.

» Concerns raised that high amplitude of oscillation may cause excess 
loss (rubbing friction) 

• Loss measured in frequency by analyzing the power 
spectrum of long lock stretches.

» David Malling’s summary page: 
http://physics.syr.edu/research/relativity/ligo/susqs/

» Malling fit the set of violin modes that are nominally thermally excited
» Loss still varies in time, not stable 
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Loss in Violin Modes at Observatory

http://physics.syr.edu/research/relativity/ligo/susqs/
http://physics.syr.edu/research/relativity/ligo/susqs/
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Fit of Loss in Violin Modes
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Variation of Loss in Violin Modes
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MIT Experiment

Pathfinder Optic hung in spare frame 
with wire from the sites.  Each wire 
monitored by eight shadow sensors.
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Loss in Violin Modes of Pathfinder
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Loss from the Silica Standoff

Standoff increases the wire loss 
terms by a factor of several
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Q’s of Various Standoffs
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Loss in BK7 Standoff with Pathfinder
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eLIGO Sensitivity with Silica Standoff
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eLIGO Sensitivity with BK7 Prism Standoff
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eLIGO Sensitivity with No Standoff
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Modified Ribbons

• Ribbons formed from Music wire by flattening in Rolling mill
• Flattened everywhere except at standoffs where it is wire

• Orientation around optic is configured to wrap around optic

• Orientation in suspension is face forward
• Ribbon is gimpy in forward direction. Lower areal moment favorably increased the 

dissipation dilution, thus lowers thermal noise.

• ThermoElastic peak shifted to high frequency, 4–5 kHz

• Maybe no requirement to change Standoffs
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SIDE VIEW

TOP VIEW
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Loss in Free Steel Ribbon
Thermoelastic x2
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Loss in Free Steel Ribbon
Thermoelastic Fit
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Loss in Tensioned Steel Ribbon
Thermoelastic x2
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Tensioned Steel Ribbon with Standoff
Thermoelastic x2
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New Directions

• Sapphire Clamps.  
• Similar to Virgo clamps. Binding material is sapphire.

• Cylindrical grooves formed by laser ablation. 
• Accurate to 10-5 inches.

• Test Prism standoffs to improve loss.  
• Silica and/or sapphire prisms with well defined wire notch

• Test Full Modified Ribbon Suspension
• Define Thermoelastic better

• Better manufacturing of these ribbons

• Use with prism standoffs 26



The End
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