GRB Searches with X-PIPELINE

Michał Was ¹ Patrick Sutton ²

¹École Normale Supérieure

²Cardiff

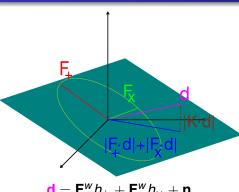
August 3, 2007

Outline

- Coherent detection statistics and veto
- X-Pipeline and triggered searches
- Test analysis of 9 GRBs

Detectors space

N detectors, N dimensional space

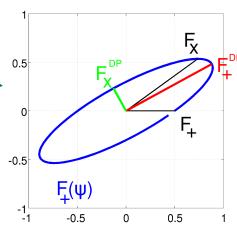

$$\begin{bmatrix} d_1 \\ \vdots \\ d_N \end{bmatrix} = \begin{bmatrix} F_1^+/\sigma_1 \\ \vdots \\ F_N^+/\sigma_N \end{bmatrix} h_+ + \begin{bmatrix} F_1^\times/\sigma_1 \\ \vdots \\ F_N^\times/\sigma_N \end{bmatrix} h_\times + \begin{bmatrix} n_1 \\ \vdots \\ n_N \end{bmatrix}$$

- given time—frequency pixel
- time shifted according to GRB sky postion
- GW affect only 2 out of N dimensions

$$\mathbf{d} = \mathbf{F}_{+}^{w} h_{+} + \mathbf{F}_{\times}^{w} h_{\times} + \mathbf{n}$$

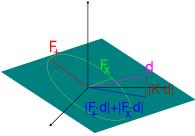
 d – vector of whitened data at a given time/frequency, time shifted according to GRB sky postion

Dominant Polarization frame a convenient network basis



$$\mathbf{d} = \mathbf{F}_{+}^{w} h_{+} + \mathbf{F}_{\times}^{w} h_{\times} + \mathbf{n}$$

- $\mathbf{F}_{+}(\psi)$ sensitivity to linear polarization
- DP frame :


 - $\begin{array}{l} \bullet \;\; \mathbf{F}_{+}^{DP} \cdot \mathbf{F}_{\times}^{DP} = 0 \\ \bullet \;\; |\mathbf{F}_{-}^{DP}|/|\mathbf{F}_{\times}^{DP}| \; \text{is maximal} \end{array}$

Two dimensional plane spanned on \mathbf{F}_{+} , \mathbf{F}_{\times} (H1L1V1 network)

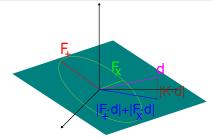
Likelihoods for gaussian noise

$$L = \frac{P(\mathbf{d}|\text{signal in noise})}{P(\mathbf{d}|\text{noise})} = \cdots \propto \exp(\frac{1}{2}SL)$$

Dominant Polarization frame, $\hat{\mathbf{F}}_{+}^{w} \cdot \hat{\mathbf{F}}_{\times}^{w} = 0$:

$$\mbox{Standard Likelihood} = \mbox{SL} = \left| \hat{\mathbf{f}}_{+}^{\textit{w}} \mathbf{d} \right|^2 + \left| \hat{\mathbf{f}}_{\times}^{\textit{w}} \mathbf{d} \right|^2$$

magnitude of projection on \mathbf{F}_+ , \mathbf{F}_\times plane ie part of \mathbf{d} that can be due to a GW


Hard Constraint =
$$HC = |\hat{\mathbf{F}}_{+}^{w}\mathbf{d}|^{2}$$

 $\hat{\mathbf{F}}_{+}$ – Network most sensitive polarization (ellipse major axis)

incoherent/null energy — non gaussian noise

Total Energy =
$$E_{tot} = |\mathbf{d}|^2$$

total magnitude of **d**

Null Energy =
$$E_{null} = |\hat{\mathbf{K}} \cdot \mathbf{d}| = E_{tot} - SL$$

part of d that cannot be due to a GW, noise only

Incoherent Energy =
$$E_{inc} = \sum_{\alpha=1}^{N} |K_{\alpha} d_{\alpha}|^2$$

autocorrelation term of E_{null}

Incoherent vs null energy test:

- GW coherently cancelled in $E_{null} \longrightarrow E_{inc}/E_{null}$ is large
- no cancellation for glitches $\longrightarrow E_{inc}/E_{null} \simeq 1$
- \hookrightarrow reject events with $E_{inc}/E_{null} < 1.5$

glitch standard likelihood

Goal: fold detection statistic and glitch veto gaussian noise + long tail

$$P(\mathbf{d}| ext{noise} + ext{glitches}) \propto \prod_{lpha} \exp(rac{1}{2}|d_{lpha}|^2) + R_{lpha}$$

 R_{α} characterize non-gaussianity of detectors

$$L = \frac{P(\mathbf{d}|\text{signal in noise})}{P(\mathbf{d}|\text{noise + glitches})} = \cdots \propto \exp(\frac{1}{2}\text{SL})\frac{1}{\prod_{\alpha} 1 + R_{\alpha} \exp(\frac{1}{2}|d_{\alpha}|^2)}$$
 simplify : $R_{\alpha} = R \ll 1$

$$gSL = \log L = \frac{1}{2}SL - \log(1 + R\sum \exp(\frac{1}{2}|d_{\alpha}|^2))$$

Interpretation : $gSL \simeq SL - max_{\alpha} |d_{\alpha}|^2$ largest strain may be due to a glitch

X-Pipeline

- X-Pipeline base algorithm
 - condition data
 - time shift to GRB position
 - make TF maps of detection statistic
 - cluster TF maps (black pixel probability 1%)
 - cluster across analysis times (FFT integration times)
- running GRB searches with X-Pipeline is easy
 - create directory and find which detectors were on

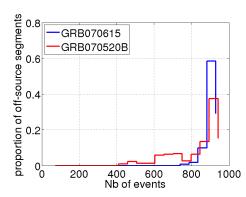
 /multiGRB.py -p grb.ini -g grblist.txt
 grblist.txt simple ascii file with GRB name, time and sky position
 - estimate injection scales to use, based on detectors' spectra
 ./grbInjScale.sh
 - submit jobs

```
condor_submit_dag grb_*.dag
```

- create report web pages with results/upper limits for each GRB
 - ./grbResults.sh

CLOSED BOX analysis procedure

- ullet on-source data ± 60 s around GRB trigger
- network selection detectors that where on during the whole on source period $(\pm 60s)$
- background estimation
 - ullet off-source data: coincident data within ± 12 hours of GRB trigger
 - off-source data cut into 2 minutes segments
 - loudest event in each segments
 - $\bullet \ \ \text{median/90 percentile loudest event} \rightarrow \text{estimate loudest on-source event} \\$
- upper limits
 - GWB injections into on-source data
 - upper limits against estimated loudest on-source event
- Parameters
 - analysis times:
 1/256, 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 seconds
 - frequency band: 64-1792 Hz
 - gSL free parameter R set to 0.5, veto ratio set to 1.5
 - simulations CSG/SG at 100, 150, 250, 500, 1000 Hz

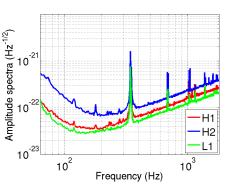

Analysis of 9 GRBs

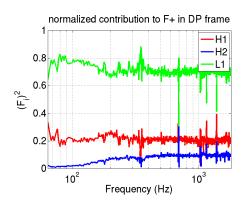
 9 GRBs in May/June 2007 with various network configurations (LIGO - Virgo - GEO)

		`						
0520	0520B	0521	0529	0531	0610	0615	0616	0621
H_1H_2VG	H₁LVG	H_1H_2	H_1H_2LV	LVG	H₁LG	H_1H_2L	H_1H_2VG	H ₁ LVG

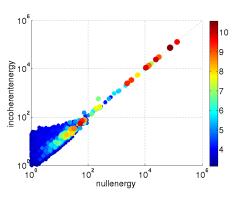
analysis with both HC and gSL to compare performance

- a "typical" GRB 070615
- a GRB with "glitchy" detectors 070620B
- less clusters, larger clusters (clusters cover 1% of TF map)

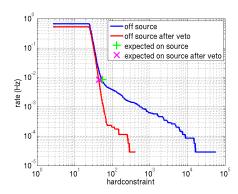



GRB070615 — "typical" GRB

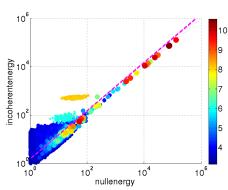
Network


IFO	H_1	H ₂	L	
$F_+^2 + F_\times^2$	0.356	0.356	0.753	

• null stream : $H_1 - H_2$



GRB070615 — background



color shows In(hardconstraint)

- tail cut by veto
- on source event estimated from median loudest off-source background

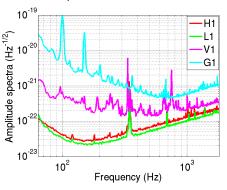
GRB070615 — CSG 150 Hz Q=9 injections

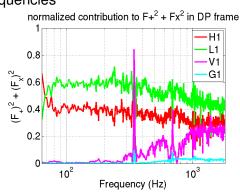
 $2\cdot 10^{-22}
ightarrow ext{total SNR in network} = 7$ HC with veto $(ext{total SNR})^2 = \sum_{\alpha} ext{SNR}_{\alpha}^2$ gSL

- veto E_{inc}/E_{null} < 1.5
- hrss = $1.3 \cdot 10^{-21}$
- hrss = $4.6 \cdot 10^{-22}$
- hrss 90% UL, against median :

 hrss 90% UL, against 90 percentile :

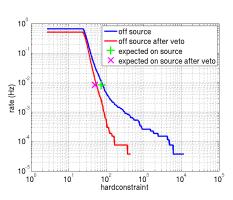
HC without veto $-5.6 \cdot 10^{-22}$ HC with veto $-2.6 \cdot 10^{-22}$ gSL $-2.6 \cdot 10^{-22}$

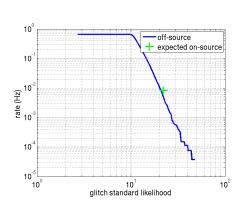

⇒ need to reject glitches for unlucky case


GRB070520B — "glitchy" GRB

Network

IFO	H_1	L	V	G
$F_+^2 + F_\times^2$	0.411	0.372	0.828	0.889


- Virgo and GEO are favored by GRB sky position
- null streams: 2 linear combination of Virgo and GEO
- poor null stream at low frequencies


GRB070520B — background

hardconstraint

- tail cut by veto
- wider separation between with/without veto

glitch SL

no tail

GRB070520B — CSG 150 Hz Q=9 injections

• hrss 90% UL, against median : HC without veto $-2.8 \cdot 10^{-22}$ HC with veto $-3.7 \cdot 10^{-22}$

 $-2.7 \cdot 10^{-22}$

hrss 90% UL, against 90
 percentile :
 4C without veto _____ 5.6 : 10°

```
      HC without veto
      —
      5.6 \cdot 10^{-22}

      HC with veto
      —
      3.7 \cdot 10^{-22}

      gSL
      —
      2.9 \cdot 10^{-22}
```

- null stream not sensitive enough $\rightarrow E_{inc}/E_{null}$ random value around 1 \rightarrow veto reject injections
- $2 \cdot 10^{-22} \rightarrow \text{total SNR in network} = 7$, same as for GRB070615

gSL

GRB070201 — open box results

- V3 calibration
- calibration/statistical errors are not accounted for
- cross-correlation GRB070201 draft July 2, P070081-02-Z

circular SG	T=25ms	T=100ms	HC with veto	gSL
frequency	90% UL	90% UL	90% UL	90% UL
	$\times 10^{-22}$	$\times 10^{-22}$	$\times 10^{-22}$	$\times 10^{-22}$
100 Hz	17.5	16.0	7.0	9.5
150 Hz	10.3	10.3	4.4	6.6
250 Hz	10.9	11.6	5.0	7.1
554 Hz	19.3	20.7	9.8	12.0
1000 Hz	33.8	37.1	18.7	21.6

⇒ factor 2 improvement

• $4 \cdot 10^{-22} \rightarrow \text{total SNR in network} = 7 \text{ at } 150 \text{Hz}$

Summary

- Preliminary study of 10 S5 GRBs with X-Pipeline.
- Study relative performance of different likelihoods for different networks
 - hard constraint + null vs. incoherent energy test
 - glitch standard likelihood
- Null versus inc. test works well if null stream sensitive enough
 - Use H1-H2 null stream (when available)
 - Do not use null stream from non-aligned detectors (HLV or HLG), except at high frequencies
- Glitch SL new statistic, robust against glitches
 - Not as sensitive as hard constraint for most GRBs.
 - Better for very glitchy GRB times (e.g. 070520B) when H1-H2 null stream not available
- Next steps
 - Find good estimates of likelihoods performance
 - Finalize choice of likelihoods to be used for each GRB/network configuration
 - Large-scale analysis of S5 GRBs