

Update on Suspensions for Enhanced and Advanced LIGO

Norna A Robertson
LIGO-Caltech and University of Glasgow

For the Advanced LIGO SUS team

LSC/Virgo meeting, MIT 25th July 2007

G070482-00-R

Advanced LIGO SUS Team

- LIGO Caltech: R Abbott, H Armandula, A Campos (SURF), D Coyne, C Echols, J Heefner, B Kirsner, K Mailand, V Mandic, N Robertson (also at Glasgow), G Scarborough, S Waldman
- LIGO MIT: P Fritschel, R Mittleman, B Shapiro, N Smith
- LIGO LHO: B Bland
- LIGO LLO: J Romie
- University of Glasgow: M Barton, L Cunningham, A Cumming, A Heptonstall, J Hough, R Jones, I Martin, S Rowan, K Strain, C Torrie
- Rutherford Appleton Laboratory (RAL): J Greenhalgh, T Hayler, J O'Dell, I Wilmut
- University of Birmingham: S Aston, R Cutler, D Lodhia
- University of Strathclyde: N Lockerbie

Five Major Suspension Designs

Advanced LIGO optical layout schematic

Most sensitive optics in BSC chambers: UK deliverables

Quadruple pendulum for Test Masses (ETM and ITM and reaction chains)

Triple pendulum for Beamsplitter (BS) and Folding Mirror (FM)

Other optics in HAM chambers: US deliverables

Triple Pendulum for Input Modecleaner Mirrors (IMC)

Triple pendulum for Power Recycling Mirror (PRM) and Signal Recycling Mirror (SRM)

Double Pendulum for Output Modecleaner (OMC)

Test Mass **Quadruple Pendulum Suspension**

Key Design features

- » Monolithic final stage: 40 kg fused silica mirror (34 cm diam x 20cm) on 4 fused silica ribbons (600mm x 1.1mm x 0.11 mm) for good thermal noise performance
- » 4 stages for longitudinal seismic isolation plus 3 stages of blades for vertical isolation
- » 6 degree of freedom damping (local control) at top mass for all low frequency modes (requires good mode coupling)
- » Parallel reaction chain for quiet global control actuation: electrostatic (ESD) at test mass, electromagnetic at upper stages (hierarchical)

Major noise requirements

Suspension thermal noise 10^-19 m /√ Hz @ 10 Hz

Residual seismic noise 10^-19 m /√ Hz @ 10 Hz

Test Mass advancedligo Quadruple Pendulum Suspension continued

Current status

- All-metal "controls" prototype assembled at Caltech and tested at LASTI. Assembly technique, mode frequencies, transfer functions, damping (active and eddy current) investigated. Compares well with revised Mathematica/MATLAB models
- Lessons learnt re pitch and vertical modes: angled wires affect vertical frequencies and flexure lengths. Finite lateral blade compliance affects pitch.
- Currently modal damping and cavity locking between quad and input modecleaner triple pendulum is being investigated (including use of electrostatic drive)
- "Noise" prototype with full monolithic stage built at RAL and now under construction at LASTI (allmetal to start with)
- Development of techniques for assembly of monolithic stage underway at Glasgow: CO₂ welding and pulling machine, profiler and proof/bounce tester, jigs for silicate bonding
- OSEM and electronics builds ongoing (Birmingham and Strathclyde)

Test Mass

advancedligoQuadruple Pendulum Suspension continued

Development work on monolithic assembly techniques at Glasgow

Preparing ribbon for pulling

Prism strength testing

Prototype quad at Rutherford Appleton Lab

Test Mass advancedligo Quadruple Pendulum Suspension continued

Future work

- Full program of tests on noise prototype at LASTI over next ~9 months
 - mechanical fit, installation and alignment
 - interaction with seismic platform
 - mode frequencies, transfer functions and damping
 - thermal loading effects
 - assembly and reinstallation with monolithic stage
 - cavity tests incl. testing ESD
 - violin mode damping
- OJEU (European Union) process for procurement of parts for final suspensions about to begin

LASTI test mass

Prototype ring heater

Reaction mass with 4 quadrant gold coating for electrostatic drive (ESD)

Beamsplitter Triple Pendulum Suspension

Design features

- » Triple pendulum with two stages of blades
- » Silica mass 370 mm diam x 60 mm thick (~15 kg)
- » Horizontal wedge
- » Wire suspension (change of baseline)
- Design challenges
 - » Extreme mass aspect ratio (plate-like)
 - » Long thin support structure

Beamsplitter aspect ratio ~ 6 to 1

Prototype bolted structure at RAL

Struts to stiffen structure

Beamsplitter advancedligo Triple Pendulum Suspension continued

- Noise requirement: 2 x 10^-17 m/ $\sqrt{\text{Hz}}$ at 10 Hz (-----)
- Noise estimates shown below, assuming 0.1% coupling from vertical

Thermal noise estimate

Seismic noise estimate*

Current status: at conceptual design stage

Input Modecleaner Triple Pendulum Suspension

- Design features
 - » Triple pendulum with two stages of blades
 - » Silica mass: 150 mm diam. x 75 mm thick (~3 kg)
 - » Wire suspension
- Noise requirement: originally 3 x 10^-17 m/√ Hz at 10 Hz (relaxation of this requirement has since been proposed)
- Current status
 - » prototype fully characterised at LASTI
 - » currently being used for cavity tests with quad prototype

Input Modecleaner Triple Pendulum Suspension continued

- Characterisation and comparison to MATLAB model
 - » Mode frequencies, transfer functions, active damping
- More recent work: test of independent modal control with a state estimator for damping minimises sensor noise reinjection (L Ruet)
 - » relies on good model
 - » tested using second modecleaner triple pendulum as quiet reference
- Final design prototype testing & review: late 2008

Longitudinal transfer function at top mass Blue: model, green: damping off, red: damping on

Recycling Mirror Triple Pendulum Suspension

- Design features
 - » Triple pendulum with two stages of blades
 - » Silica mass: 265 mm diam. x 100 mm thick (~ 12 kg)
 - » Wire suspension
- Noise requirement
 - \rightarrow 4 x 10^-16 m/√ Hz at 10 Hz
- Current status
 - » detailed design work now underway
 - » prototype assembly: early 2008

Recycling Mirror Triple Pendulum Suspension continued

Design Challenges

- » Meeting height restriction with large mirror: middle mass "squashed"
- » Meeting total mass budget (~ 120 kg) and 150 Hz lowest structural resonant frequency with steel structure

Stainless steel structure used to ease welding issues

- » Access for assembly and adjustment
 - Mock-up of suspension underway.

Output Modecleaner Double Pendulum Suspension

Design features

- » Double pendulum with two stages of blades
- » Silica optical bench 450 mm x 150 mm x 40 mm (~6 kg)
- » Steel wires
- Requirements
 - » Double pendulum isolation and 6 DOF active damping
 - » Pendulum frequencies 0.8 to 2 Hz (guideline)
- Current status
 - » Prototype with metal bench under test
- First Installation
 - » In Enhanced LIGO, end of 2007

Output Modecleaner Double Pendulum Suspension continued

Characterisation

- Mode frequencies: from 0.5
 Hz (lowest yaw mode) to
 6.7 Hz (highest roll mode)
- » Transfer functions: measured and modelled (actuating and sensing at top mass)
- » Damping (long. and vert. shown)

Other tests

- » Structural resonances
 - lowest ~148 Hz with ~4 kg non-suspended mass attached
- » OSEM design from UK
 - Works well

Conclusions

- All major suspension designs underway
- Common features:
 - » multiple pendulums with blades for vertical isolation
 - » active damping at top mass
 - designs based on GEO 600 design
- Distinctive features:
 - » Test mass quadruple pendulum: monolithic silica final stage with silicate bonding and silica ribbons, and use of reaction chain for global control
 - » All different masses, sizes, requirements
- Status:
 - » prototypes of test mass quad, input modecleaner triple and output modecleaner double already tested
 - » others to follow
- Outlook:
 - » Promising!

