

Plans for Advanced LIGO Instruments

Amaldi Meeting, July 12, 2007

Carol Wilkinson LIGO Hanford Observatory

July 12, 2007 LIGO-G070454-00-M

LIGO and Global GW Interferometer Network

Phased Plan for LIGO Interferometers

Extend sensitivity and range of interferometers in steps

Initial LIGO

LIGO

- » Initial phase to establish science with low probability of observation
- » Equivalent year of data at full LIGO design sensitivity (S5) of 10⁻²¹ in 100 Hz bandwidth
- » Ending Sept 2007

Enhanced LIGO

- Factor of 2 improvement in sensitivity (factor of 8 in event rate)
- » Early tests of Advanced LIGO hardware and techniques
- » Install in 2008: Online in 2009 for 1 year

Advanced LIGO

- Factor of 10 improvement in sensitivity (factor of 1000 event rate)
- » Frequent observation; gravitational wave astrophysics
- » Install starting in 2011: Online in 2014

LIGO range for 1.4 Mo NS-NS binaries:

- Initial LIGO Hundreds of galaxies
- Enhanced LIGO Thousands of galaxies
- Advanced LIGO Millions of galaxies

LIGO Advanced vs. Initial LIGO Astrophysical Reach

- Neutron star & black hole binaries
 - » inspiral
 - » merger
- Spinning neutron stars
 - » LMXBs
 - » known pulsars
 - » previously unknown
- Supernovae
- Stochastic background
 - » Cosmological
 - » Early universe

LIGO Advanced LIGO Detector Improvements

Upgrade instrument components to increase sensitivity and move seismic wall to lower frequencies

- Replace passive seismic isolation with multi-staged system with inertial sensing and feedback control
- Increase number of passive suspension isolation steps and use lower noise actuation
- Use lower mechanical-loss materials and construction in suspensions and optical coatings to reduce thermal noise
- Increase laser power ~20x and reduce optical losses to improve shot noise limits and signal strength
- Add GW signal recycling at output to increase sensitivity and allow narrow band frequency tuning.

ADVANCED LIGO LAYOUT

3 Fabry-Perot Michelson Interferometers with 4K arms

Advanced LIGO Parameters

Parameter	LIGO	Advanced LIGO
Input Laser Power	10 W	180 W
Mirror Mass	10 kg	40 kg
Interferometer Topology	Power-recycled Fabry-Perot arm cavity Michelson	Dual-recycled Fabry- Perot arm cavity Michelson
GW Readout Method	RF heterodyne	DC homodyne
Optimal Strain Sensitivity	3 x 10 ⁻²³ / rHz	Tunable, better than 5 x 10 ⁻²⁴ / rHz in broadband
Seismic Isolation Performance	f _{low} ~ 50 Hz	f _{low} ~ 10 Hz
Mirror Suspensions	Single Pendulum	Quadruple pendulum

Advanced LIGO in Context Black: Enhanced LIGO; Blue: Project

- Enhanced LIGO install starts Oct 2008 at Hanford and Livingston
 - » Initial LIGO S5 reaches goal 1 year of integrated data Sept 2007
- Advanced LIGO expected funding start Oct 2007
 - » Procurements of optics, seismic pre-isolator (HEPI), and TM suspensions in 2008
- Complete prototype testing and final designs of remaining AdL systems in 2008 and early 2009
 - » LIGO test beds and Enhanced LIGO integration
- Fabrication, assembly, and stand-alone testing of remaining detector components starts in 2009
- Enhanced LIGO science runs early 2009 to late 2010
- Advanced LIGO starts installing detector components in 2011
- First Advanced LIGO interferometer accepted (2-hour locked stretches) in 2013, second and third in 2014
- Engineering and coincident science runs starting in 2014

LIGO **Pre-Stabilized Laser (180W) Highlights**

Max-Planck Institute, Hannover leads the PSL development, working with Laser Zentrum Hannover and CIT

- Injection locking of the 200 W Laser (LZH, AEI) demonstrated
 - » 150W, 85% TEM00 mode, 8-10 hours
- New Front-End (medium power stage) changed from oscillator to amplifier
 - » First 35W FE delivered to LIGO
 - » 2 more will be used in Enhanced LIGO

Core Optics Highlights

- Selected low absorption, fused silica for Beam Splitters and Test Masses for procurement in 2008
- Acceptable silica/titania-doped tantalum coating recipe and vendor
 - » Continue R&D for low mechanical loss and absorption: will coat Test Masses with best possible coating in September 2009
- Pathfinder optics evaluate polishing and coating vendors; finalize specs mid to late 2008
- Exploring understanding and mitigation schemes for electrostatic discharge and parametric instability

Seismic Isolation Highlights

- Hydraulic External Pre-Isolator (HEPI):
 - » Deployed successfully at LLO, performance understood; procure in 2008
- Internal Seismic Isolation (ISI) selected:
 - » Results from Technology Demonstrator at ETF/Stanford
 - Designed, built, tested, and rejected a prototype of alternative HAM Seismic Attenuation System (SAS)
- Two stage ISI for the BSC chamber:
 - » In-air prototype testing complete; proceeding to in vacuum testing at LASTI
 - » Start procurement early 2009
- Single stage ISI for the HAM chamber:
 - » Started fabrication of 2 units for Enhanced LIGO
 - » Complete integrated testing with Enhanced LIGO and start procurement in mid 2009

BSC-ISI Assembly at LASTI

HAM-ISI CAD Model

July 12, 2007 LIGO-G070454-00-M

Suspensions Highlights

LIGO

ETM/ITM Quadruple Pendulum Noise Prototype Assembly at RAL

Test Mass (Quad) Suspension

- » GEO-like monolithic design with fused silica fibers
- » 'Controls' prototype tested at LASTI
- » 'Noise' prototype being cleaned for integrated testing with ISI at LASTI
- » Production slated for early 2008

Mode Cleaner Suspension

- » 'Controls' triple prototype demonstrated at LASTI
- » Recycling mirror noise prototype testing at LASTI in 2008
- » Production starting in early 2009

Output Mode Cleaner

- » Bench testing of prototype completed
- » Enhanced LIGO fabrication Aug 2007
- Complete integrated testing in Enhanced LIGO and start production late 2008

LIGO Integrated Systems and Controls Highlights

- DC readout design is well-advanced
 - » Output Mode Cleaner and DC readout elements in fabrication for Enhanced LIGO
 - » Tip-tilt mirror development for OMC alignment: prototype built at Australia National University

Lock Acquisition

- » Locking test of a quad+triple suspension cavity in progress at LASTI
- » Investigation of Seismic platform interferometer to stabilize low-frequency fluctuations of the long arms by Australia National University

Alignment sensing and control

- » New modulation scheme with lower modulation frequency & more flexible interferometer tuning
- » New InGaAs quadrant photodiodes identified and tested
- Project fabrication schedule to start mid 2009

40M beam splitter chamber

LIGO Input Optics and Thermal Compensation Highlights

INPUT Optics

- Mode cleaner optical design complete; procure optics in 2008
 - Active beam jitter suppression dropped from design;
 PSL beam stability plus MC filtering good enough
 - » Controllable mode matching changed from CO2 beam directed on a MMT mirror to a resistive ring heater around an FI element
- Faraday isolators & RTP modulators being prepared for Enhanced LIGO
- Final design and procurement of other elements in 2008

Thermal Compensation System

- Full sensor-compensator test planned for LASTI in 2008-2009
- Production starting early 2010

Isolator for EnLIGO

LIGO Advanced LIGO Status Summary

- R&D proceeding well
 - » No significant technical issues
 - » Matched to and keeping up with project schedule
- Enhanced LIGO is an early test of many Advanced LIGO subsystems
 - » Will retire a lot of technical/implementation risk
- Passed baseline review in June at NSF confirmation of cost, schedule
- Strong support from Congress for the NSF allowed budget for 2008
- Review in Fall after Congress allocates budget one last check of situation (theirs and ours)
-Funding in ~October 2007...
- Start turning off ELI in 2010, start turning on AdL in 2013