Ground-based Gravitational Wave Detection: Now and Future

Stan Whitcomb Caltech

GR18 / Amaldi7 9 July 2007

LIGO-G070419-00-R

1

Theme: Celebration of a Transition

Looking back

- Resonant bar detector network achieved mature operation
- First extended searches with interferometers at design sensitivity
- **Looking Forward**
- Continued improvements to existing interferometers and construction of advanced interferometers
- R&D into new ideas for acoustic detectors (bars or spheres) for high frequencies

General Relativity: "a theorist's Paradise, but an experimentalist's Hell"

C. Misner, K. S. Thorne and J.A Wheeler, *Gravitation* p. 1131 (1973)

AIP Emilio Segrè Visual Archives

- Nothing exemplifies this statement like gravitational waves
- Convincing observational evidence for their existence not available until ~70 years after initial prediction (Binary Pulsar)
- After 90 years, direct detection still eludes us
- With luck, we may have a direct detection before the 100th anniversary of their prediction

Resonant Bar Detectors

- First ground-based detectors—the beginning of GW detection
 - » Joseph Weber 1960's
- At least 19 different bar detectors (8 countries) were built and used in searches
 - » Several hundred scientists, students, engineers, and technicians involved in the effort
 - » Many of the current leaders in the field got their start

Resonant Bar Operation

Pioneering Achievements of Resonant Bars

- Triggered interest in gravitational waves
 - » Theoretical studies of sources
- Recognition of important noise sources
 - » Thermal
 - » Back action/Quantum
 - » Seismic/acoustic
- Large cryogenic systems
- Need for multiple detectors

First World-wide GW Network: IGEC

International Gravitational Event Collaboration Established 1997 in Perth

Included all operating bar detectors in the world

IGEC-2

IGEC-1 (1997-2000)

» Four years produced 29 days of four-fold coincidences-178 days of three-fold coincidences - 713 days of two-fold coincidences

Followed by a series of upgrades

- » EXPLORER resumed operations in 2000
- » AURIGA resumed operations in 2003
- » NAUTILUS resumed operations in 2003
- » ALLEGRO resumed operations in 2004
- » NIOBE ceased operation

IGEC-2 (2005--)

» First data analyzed covered May-November 2005 when no other observatory was operating

AURIGA INFR

Massimo Visco on behalf of the IGEC2 Collaboration Rencontres de Moriond Gravitational Waves and Experimental Gravity March 11-18, 2007 La Thuile, Val d'Aosta, Italy

Sensitivity Improvements for IGEC-2

- Sensitivity to most signals scales as ∆f^{-1/2}
- Approximately 3x more sensitive than IGEC-1

Massimo Visco Rencontres de Moriond

First Analysis of IGEC-2 Data May 20 –Nov 15, 2005

Noise of Detectors vs Time in Terms of Fourier Component h

A Cloudy Future

- Gradual shrinkage of the bar network due to loss of funding
 - » NIOBE (Perth) shut down, did not join IGEC-2
 - » ALLEGRO (LSU) ceased operation this year
- Continued operation of AURIGA, **EXPLORER**, **NAUTILUS** evaluated annually

Figure courtesy of ALLEGRO Group, LSU

Detecting GWs with Interferometry

Suspended mirrors act as "freely-falling" test masses (in horizontal plane) for frequencies f >> f_{pend}

Terrestrial detector For $h \sim 10^{-22} - 10^{-21}$ L ~ 4 km (LIGO) $\Delta L \sim 10^{-18}$ m

Typical Optical Configuration

(Laser Interferometer Gravitationalwave Observatory)

One interferometer with 4 km Arms, One with 2 km Arms

LIGO

One interferometer with 4 km Arms

LIGO History

Progress of LIGO Sensitivity

LIGO Sensitivity

Anatomy of a Noise Curve

LIGO Duty Factor

Duty Factor for S5

GEO600

Interferometer with 600 m arms, located near Hannover

Harald Lück for the Ruthe Team Rencontres de Moriond Gravitational Waves and Experimental Gravity March 11-18, 2007 La Thuile, Val d'Aosta, Italy

Progress of GEO600 Sensitivity

LIGO-G070419-00-R

600

Signal Recycling Mirror

Harald Lück Rencontres de Moriond

LIGO-G070419-00-R

Location of Signal Recycling Mirror Changes Frequency Response (Frequency of Maximum Sensitivity)

One interferometer with 3 km arms, located near Pisa

Progress of Virgo Sensitivity

Virgo Sensitivity

29

((0))

Virgo Science Run 1 (VSR1)

Started on May 18—data will be analyzed with LIGO/GEO

First five weeks

Stability of Sensitivity

TAMA300

- 300 m interferometer, located at National Astronomical Observatory of Japan (Tokyo)
- Project started 1995
- First large interferometer to begin observations
- Best sensitivity in world 2000-2002

Kazuaki Kuroda for the TAMA/CLIO/LCGT Collaboration

Mitaka campus, National Astronomical Observatory

Progress of TAMA300 Sensitivity

Kazuaki Kuroda for the TAMA/CLIO/LCGT Collaboration

TAMA 300 Observation Summary

Total 3102 hours data was accumulated

Joint observations with LIGO/GEO during DT7-DT9

Kazuaki Kuroda for the TAMA/CLIO/LCGT Collaboration

New Seismic Attenuation System for TAMA300

- Recognized need for better seismic isolation
- Joint development with LIGO, based on earlier Virgo concept
- Now being installed

Construction of CLIO

"Status of TAMA 300" N.Kanda & the TAMA collab.

Current sensitivity of CLIO

AIGO (Australian International Gravitational-wave Observatory)

- 8km x 8km AIGO site 70km north of Perth granted 1998.
- Construction begun 1999
- Currently operating 80m High Optical Power interferometer test facility in collaboration with LIGO.

David Coward for ACIGA Rencontres de Moriond Gravitational Waves and Experimental Gravity March 11-18, 2007 La Thuile, Val d'Aosta, Italy

AIGO Site

- Substantial AIGO facility now in place.
- Education and astronomy centre opened 2003.
- Roads, clean room laboratories, workshops, visitor accommodation completed.
- Facility designed for extension to long baseline Advanced LIGO type detector.

David Coward Rencontres de Moriond

A Global Network of Gravitational Wave Interferometers

Looking to the Future

LIGO

Advanced LIGO!

- Take advantage of new technologies and on-going R&D
 - » Active anti-seismic system operating to lower frequencies
 - » Lower thermal noise suspensions and optics
 - » Higher laser power
 - » More sensitive and more flexible optical configuration

x10 better amplitude sensitivity

 \Rightarrow x1000 rate=(reach)³

 \Rightarrow 1 day of Advanced LIGO

» 1 year of Initial LIGO !

Planned for FY2008 start, installation beginning 2011

Astrophysical Targets for Advanced LIGO

- Neutron star & black hole binaries
 - » inspiral
 - » merger
- Spinning neutron stars
 - » LMXBs
 - » known pulsars
 - » previously unknown
- Supernovae
- Stochastic background
 - » Cosmological
 - » Early universe

What is so Advanced about Advanced LIGO?

Parameter	LIGO	Advanced LIGO
Input Laser Power	10 W	180 W
Mirror Mass	10 kg	40 kg
Interferometer Topology	Power-recycled Fabry-Perot arm cavity Michelson	Dual-recycled Fabry-Perot arm cavity Michelson
GW Readout Method	RF heterodyne	DC homodyne
Optimal Strain Sensitivity	3 x 10 ⁻²³ / rHz	Tunable, better than 5 x 10 ⁻²⁴ / rHz in broadband
Seismic Isolation Performance	f _{low} ∼ 50 Hz	<i>f_{low}</i> ~ 10 Hz
Mirror Suspensions	Single Pendulum	Quadruple pendulum

Virgo Plans for Future Upgrades

- Virgo+:
 - » Intermediate upgrade toward Advanced Virgo
 - » At least2 times sensitivity increase over nominal Virgo
 - » Build and commission from 2008 to mid 2009
 - » Science run in 2010
- Advanced Virgo:
 - » Major upgrade for all subsystems
 - » 10 times sensitivity increase over nominal Virgo
 - » Installation beginning in 2011

Julien Marque for the Virgo Collaboration Rencontres de Moriond Gravitational Waves and Experimental Gravity March 11-18, 2007 La Thuile, Val d'Aosta, Italy

Expected sensitivity of Virgo+

- Virgo+ configuration not yet set
 - » Higher power laser
 - » Fused silica suspensions
 - » Increase arm finesse
- Final Decision to be made late 2007

	Virgo+ (NN) (Mpc)
NSNS	28-61

Julien Marque Rencontres de Moriond LIGO-G070419-00-R

Advanced Virgo

 Similar scope to AdLIGO

- » Larger mirrors
- » Improved coatings
- » Higher laser power
- » DC read-out
- R&D underway
- Design decisions late in 2007

Julien Marque Rencontres de Moriond LIGO-G070419-00-R

Plans of the GEO collaboration

Stefan Hild

LIGO-G070419-00-R

6

0 0

GEO HF

- Emphasize high frequencies--length less important
- Pioneer advanced techniques for other large interferometers
- Tuned signal recycling and squeezing?

Large-scale Cryogenic Gravitational wave Telescope (LCGT)

- 3 km baseline
- Utilizes cryogenic mirrors (sapphire)
- Construction at an underground site (Kamioka mine)
- Two parallel interferometers installed in a common vacuum envelope
- Suspension point interferometer
- Proposal currently under consideration for 2008 funding

LCGT Design Sensitivity

Kazuaki Kuroda for the TAMA/CLIO/LCGT Collaboration

LIGO-G070419-00-R

52

AIGO Planning

- Western Australian Centre of Excellence for Gravitational Astronomy 2005
- WA Government Steering Committee
- Project prospectus completed 2006
- AIGO concept plan submitted to Minister for Science Oct 2006
- AIGO International Advisory Committee appointed

David Coward Rencontres de Moriond

Importance of AIGO

- AIGO provides strong science benefits e.g. host galaxy localization
- 5km baseline sensitive to inspirals in the range ~ 250Mpc
- Australian Consortium welcomes new partners in this project

David Coward and David Blair

Einstein Gravitational-Wave Telescope (ET)

Harald Lück for the European Gravitational-Wave Community

LIGO-G070419-00-R

56

ET Baseline Concept

Underground location

- **>>** Reduce seismic noise
- » Reduce gravity gradient noise
- » Low frequency suspensions

Cryogenic

Overall beam tube length ~ 30km Possibly different geometry

Some Timelines

	<i>′</i> 06	<i>′</i> 07	<i>'</i> 08	<i>'</i> 09	′10	<i>'</i> 11	<i>'</i> 12	<i>'</i> 13	<i>'</i> 14	´15	<i>`</i> 16	<i>'</i> 17	<i>'</i> 18	<i>'</i> 19	´20	<i>'</i> 21	<i>'</i> 22
Virgo				Virgo	+		A	dvan	ced V	rgo		••	•				
GEO		-			_		GE	D HF		••	••	••]					
LIGO Hanford Livingston				LIG	D+		Ac	vanc	ed LI	GO		•••	3				
LISA												Laun	ch	Trans	fer	data	
E.T.			••	DS • •	•	• • •	PCP	••	• • •	Со	nstru	ction	Com	missi	oning	dat	a

Timelines subject to R&D progress, funding, ...

Harald Lück for the European Gravitational-Wave Community

DUAL DUAL: R&D for a New Concept of Acoustic Gravitational Wave Detector

1 -the "dual" concept : read displacement between two massive resonators with a non-resonant read-out M. Cerdonio et al. Phys. Rev. Lett. 87 031101 (2001)

> avoid resonant bandwidh limit and thermal noise contribution by the resonant transducer

2 - selective readout: only the motion corresponding to GW sensitive normal modes is sensed M. Bonaldi et al. Phys. Rev. D 68 102004 (2003)

reduce overall thermal noise by rejecting the contribution of non-gw sensitive modes

DUAL

Projected Sensitivities (Dual & Advanced ifos)

R&D in Progress to Define Achievable Sensitivity

- Configurations
- Materials
- Suspensions
- Readout:
 - » Optical
 - » Capacitive + SQUID
- Cosmic rays effect (→ underground?)
- Demonstrator of
 - » Large area readout
 - » Back-action reduction
 - » Mode selectivity

Final Thoughts

- In the past few years we have seen the individual bar detectors around the world mature into a coherent network, but we have also seen them passed in sensitivity by interferometers
- Interferometers are now showing the sensitivities and bandwidths that they promised and we are beginning to see the interferometer projects begin to organize themselves into similar networks
- Next generation detectors will soon be under construction giving up to a factor of 1000 more 'science'